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A-GAS: A Probabilistic Approach for Generating
Automated Gait Assessment Score

for Cerebral Palsy Children
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Abstract— Gait disorders in children with cerebral
palsy (CP) affect their mental, physical, economic, and
social lives. Gait assessment is one of the essential steps of
gait management. It has been widely used for clinical deci-
sion making and evaluationof different treatment outcomes.
However, most of the present methods of gait assessment
are subjective, less sensitive to small pathologicalchanges,
time-taking and need a great effort of an expert. This work
proposes an automated, comprehensive gait assessment
score (A-GAS) for gait disorders in CP. Kinematic data of 356
CP and 41 typically developing subjects is used to validate
the performance of A-GAS. For the computation of A-GAS,
instance abnormality index (AII) and abnormality index (AI)
are calculated. AII quantifies gait abnormality of a gait cycle
instance, while AI quantifies gait abnormality of a joint
angle profile during walking. AII is calculated for all gait
cycle instances by performing probabilistic and statistical
analyses. Abnormality index (AI) is a weighted sum of AII,
computed for each joint angle profile. A-GAS is a weighted
sum of AI, calculated for a lower limb. Moreover, a graphical
representation of the gait assessment report, including AII,
AI, and A-GAS is generated for providing a better depiction
of the assessment score. Furthermore, the work compares
A-GAS with a present rating-based gait assessment scores
to understand fundamental differences. Finally, A-GAS’s
performance is verified for a high-cost multi-camera set-up
using nine joint angle profiles and a low-cost single camera
set-up using three joint angle profiles. Results show no
significant differences in performance of A-GAS for both the
set-ups. Therefore, A-GAS for both the set-ups can be used
interchangeably.

Index Terms— Human locomotion, gait assessment, cere-
bral palsy, automation.

I. INTRODUCTION

ABNORMAL bone growth, bone deformation, loss or
reduction of neural activation in muscles, loss of pro-
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prioception and muscle abnormalities may lead to abnormal
walking patterns [1]. Cerebral Palsy (CP) is the most common
pediatric neurodevelopmental disorder that affects motor skills,
muscle tones, balance and movements [2]. Since CP is a
non-progressive disorder, accurate and timely gait manage-
ment may help in significant recovery of the movements.
Assessment of abnormal walking patterns is considered one
of the most crucial steps of gait management in CP. Accurate
assessment of gait helps the doctor in selecting appropriate
interventions [3]. For example, in case of minor gait deviations
with spasticity, botulinum toxin may be provided for relaxing
muscles and avoiding muscle contracture [4]. Then, a series of
physical therapy sessions are conducted to strengthen the mus-
cles. In between the sessions, a gait assessment is performed
to track the changes in gait and formulate new management
strategies. However, most of the present gait assessment tools
are not very sensitive to record small pathological changes in
the gait [5]. The following subsection overviews present gait
assessment tools by explaining their assessment methodolo-
gies, clinical relevance, limitations and advantages over other
methods.

A. Literature Review

Broadly, gait assessment tools can be classified into three
categories: qualitative methods, quantitative methods, and
clinical gait analysis. Qualitative methods of gait assessment
include both observation-based methods and questionnaire-
based methods [6]. The fundamental principle of observation-
based methods is to detect and understand the abnormality in
the gait, mostly by visualising the video of gait. Therefore,
these methods demand a great understanding of the biome-
chanics of walking and experience in gait assessment. The
observer generates a report, and calculates a gait assessment
score based on the observations of gait’s basic parameters
such as stride, joint angles, posture and movements. Most
of the popular observation-based classifications systems are
based on the work of Sutherland et al. [7], Winter et al. [8]
and Rodda et al. [9]. On the other hand, questionnaire-based
methods need less understanding of walking and no experience
in gait assessment. These methods consist of questions related
to walking and other movements of the lower limbs. Gillette
Functional Assessment Walking Scale is a popular 10-point
scale parent-report questionnaire that can be used with no or
little knowledge of gait [10]. Functional Mobility Scale [11],
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Gross Motor Function Classification System (GMFCS) [12],
Pediatric Quality of Life inventory [13], Pediatric Evalua-
tion of Disability Inventory [14], Gait Outcomes Assessment
List [15] and Activities Scale for Kids [16] are some other
widely used questionnaire-based assessments. No doubt, these
methods are beneficial for preliminary gait assessment in
the absence of an expert. However, they are less accurate,
less comprehensive, and biased towards some common gait
pathologies.

Most of the shortcomings of qualitative methods are
addressed by quantitative methods. In these methods, gait
data, mostly kinematics of joints and segments of a patient’s
lower limb, are compared with normal kinematics data for
understanding areas of abnormality in the gait. The two most
common quantitative approaches involve manual assessment
score calculation and automatic computation based methods.
In manual calculation-based methods, an expert (also known
as rater) rates gait-related parameters by comparing them with
their corresponding normal parameters values. For example,
Edinburgh Visual Gait Score [17] was developed for assessing
the gait of CP children in all three planes. It uses 17 gait
parameters of ankle, knee, hip, pelvis and trunk, covering all
three planes. It uses a three-point scale for each parameter,
where ‘0’ denotes normal, ‘1’ denotes moderate deviation
and ‘2’ denotes marked deviation. After calculating ratings
for all parameters, a gross rating is calculated by summing
the individual ratings. As a result, the range of gross rating’s
value becomes 0-34. One key limitation of this method is its
subjectivity, due to which the ratings calculated for the same
patient may vary with the raters [18]–[20]. Observational Gait
Scale [21] is a manual calculation-based assessment score
developed for assessing the gait of CP children in all three
planes. It is based on twenty-six parameters (features) of
gait, related to ankle/foot, knee, hip, pelvis joints. Physician’s
Rating Scale [22] and Salford Gait Tool [23] are two other
popular scores to assess ankle, knee and hip joints. Physician’s
Rating Scale has many variants, namely, modified PRS [22],
Abbreviated PRS [24], Visual Gait Analysis Scale [25] and
observational gait scale [26]. All are based on a scoring system
with a maximum score ranging from 1 to 26. Salford Gait
Tool [23] is a five-point scale that assesses three joints at
six gait events: initial contact, end of double support, mid-
stance, start of double support, toe-off, and mid-swing. Manual
calculation-based methods are beneficial in clinical settings.
However, there are some major limitations of these methods
discussed by many researchers in the last few decades [5],
[18]–[20], [27].

On the other hand, automatic computational methods are
objective because they generally use dimension reduction
of the gait data to compute the gait assessment score and
classify gait into normal and abnormal gait. Recently, Lei
Wang et al. [28] proposed an inertial measurement unit (IMU)
based gait normalcy index. The normalcy index was calculated
from six kinematic parameters and six three spatial-temporal
parameters extracted from two shank-mounted IMUs [28].
IMU-based methods can accurately extract only a smaller
number of gait pathology relevant parameters. This limits

the usability of IMU-based methods in clinical gait analysis.
Similarly, Jing Gao et al. [29] proposed an IMU-based abnor-
mal gait recognition algorithm. Their algorithm uses a long
short-term memory network and convolutional neural net-
work for detecting tiptoe, hemiplegic, and cross-threshold
gait abnormal gait. Their method is cost-efficient and can be
used for the recognition of a set of abnormal gaits. However,
every patient has a unique gait abnormality [1], and it is not
feasible to train a neural network for all possible gait disorders.
Trong-Nguyen Nguyen and Jean Meunier [30] proposed an
approach that estimates a human walking gait abnormality
index using an adversarial auto-encoder. They fit 3-D cloud
data to cylinders and fed these cylinders to an adversarial auto-
encoder to calculate some potential gait abnormality indices.
In their other work [31], they tried to estimate skeleton-
based gait abnormality index by sparse deep auto-encoder.
Xiang Chen et al. [32] proposed a three IMUs based objective
motion disability tool for CP patients. They compared gait
acceleration data from three IMUs placed on the trunk and
thighs of healthy and CP subjects to calculate a global score.
The field of use of automatic computational methods for gait
assessment is in its embryo stage. Present methods either
provide a global abnormality index or perform classification
into a small number of gait abnormalities.

Clinical gait analysis is considered the most comprehensive
gait assessment procedure. It may include the processing
of various gait-related signals like three-dimensional motion
data (force, kinematic, kinetic of joints), electromyography
(EMG), physical examination, CT scan and magnetic reso-
nance imaging (MRI) [33]. This approach is time-consuming,
subjective, detailed and needs a team of experts from various
domains. It is recommended mainly in severe cases of gait
abnormality [33].

B. Motivation and Contributions

As discussed above, a large literature can be found on the
development, verification and implementation of gait assess-
ment tools in clinical environment. No doubt, these methods
can explain gait abnormalities in most cases [6]. However,
there are four major limitations of these methods. First, most
of these methods need significant efforts of an experienced
evaluator. Second, they are subjective and prone to misclassifi-
cation. Third, most of them use features of gait for assessment,
making them less sensitive to detect minor changes in gait and
capture uncommon gait abnormalities. Fourth, they are less
user-friendly as they provide either expanded raw data that is
difficult to interpret or provide some global indices, making
the process of localisation of abnormality more difficult.
Many studies highlighted the shortcomings of the present gait
assessment method [18], [34]–[36]. Several studies reported
large variability of assessment scores when a single subject had
been analysed in a number of different laboratories [37], [38].
However, these methods are being used in clinical settings
due to their popularity, intuitiveness and unavailability of
a comprehensive automated gait assessment system. After
understanding the merits, de-merits of the present methods of
gait assessment and the needs of the clinicians, we concluded



2532 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021

the following expectation from a gait assessment tool. The gait
assessment should:

• be objective, comprehensive, easily implementable and
user-friendly.

• use easy mathematics and white-box signal process-
ing where inner components and logics are available
for inspection. Such gait assessment tools would pro-
vide a better understanding of background processing to
doctors/clinicians.

• use a continuous-valued scale for better sensitivity to
minor changes in gait patterns.

• hold completeness property. By considering all lower
limb joints namely, pelvic, hip, knee and ankle, and
multiple gait cycle instances the completeness of gait
assessment can be assured.

• give freedom to the user to manipulate parameters used
for the gait assessment.

• be fast. By using present methods, each session of gait
assessment and interpretation of the results by experts
takes three to six hours [39].

This work attempts to address above mentioned needs with
the following significant contributions:

1) Automated-Gait Assessment Score (A-GAS) is the first
objective, comprehensive gait assessment methodol-
ogy developed for CP children (as per the authors’
knowledge).

2) The work presents A-GAS report having three compo-
nents corresponding to different levels of gait analysis.
The first component depicts the global abnormality index
of a limb, the second component depicts the abnormality
index of each joint, and the third component depicts the
abnormality of each joint at multiple gait cycle instances.

3) For better clinical acceptance, A-GAS is developed such
that the methodology behind the algorithm of A-GAS
resembles the thinking process of a clinician while com-
paring an abnormal gait with a normal gait. Therefore,
the parameters of A-GAS are easy to understand and
manipulate.

4) The work includes testing the performance of A-GAS
on two joint angle profile configurations. Both the con-
figurations are compatible with the present instruments
available in clinics. The first configuration targets gait
laboratories with multiple-camera set-up. It includes
nine joint angle profiles viz., ankle sagittal, knee sagittal,
hip sagittal, pelvic sagittal, hip transverse, pelvic trans-
verse, hip coronal, pelvic coronal and foot transverse.
The second configuration targets gait laboratories with
Kinect, one camera set-up or goniometers. It includes
three joint angle profiles viz., ankle sagittal, knee sagittal
and hip sagittal.

The rest of the work is as follows: steps to compute A-GAS
are described in Section II; performance of the proposed
assessment system is presented in Section III; a comparison of
A-GAS with one rater-based method, the significance of the
research, limitations and future plans of A-GAS are discussed
in Sections IV; finally, the conclusion of the work is drawn in
Section V.

Fig. 1. Graphics illustrating three orthogonal planes with respect to the
human body and five segments/joints of the lower portion of human body.
The movement of these segments/joints in the three planes during gait
generate joint angle profiles.

II. METHODOLOGY

A. Dataset Description

This work includes rich datasets for testing the performance
of A-GAS on the many possible gait abnormalities. One
CP children’s and two typically developing (TD) children’s,
publicly available datasets with a total of 397 subjects are
used.

1) CP children dataset [40]: The dataset was recorded by
the clinical motion analysis laboratory of University
Hospital Pellenberg with approval of the medical ethics
committee of University Hospitals Leuven (ref. s56036)
[41], [42]. It consists of gait analysis sessions recorded
from 356 children (age 4 to 18 years) with unilateral
or bilateral spastic CP (GMFCS level I-III). The pro-
posed work uses only kinematics data from 1719 trials
recorded by the Vicon system (Vicon Motion Systems
Ltd., Oxford, UK) at self-selected speed. Each trial is
a gait cycle with 51 number of samples. A sample plot
of the distribution of knee angle’s profile is shown in
Fig. 2.A.

2) Normal dataset [43], [44]: The dataset was recorded
with signed informed consents of the participants and
approval of the Institutional Research Ethics Committee
of Fondazione Don Carlo Gnocchi. It consists of data
from 41 TD children (20 from [43], 21 from [44]) aged
6 to 17 years. This dataset contains a fewer number
of subjects when compared to CP dataset. However,
it is found to be correlated with another dataset [45]
of 83 TD children with a similar age group [43]. The
proposed work uses only kinematics data recorded by a
9-camera motion capture system (SMART system, BTS,
Garbagnate Milanese, Italy) at self-selected speed. For
further processing, each trial of kinematic data is down-
sampled from 101 to 51 gait cycle instances to match
with CP dataset’s sampling frequency. A sample plot
of the distribution of knee angle’s profile is shown in
Fig. 2.A.

Ankle sagittal, knee sagittal, hip sagittal, pelvic sagittal, hip
transverse, pelvic transverse, hip coronal, pelvic coronal and
foot transverse joint angle profiles are extracted from the
datasets (see Fig. 1).
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Fig. 2. The top portion of the figure shows different gait events with respect to the right leg (light blue). A: Mean and SD of knee sagittal joint angle
profile for CP (red) and TD (blue) subjects is shown. X-axis is gait cycle instance (range 1 to 51) and Y-axis is joint angle in degree. B: PDFs of
CP (red) and TD (blue) subjects at 30th gait cycle instance of knee sagittal joint angle profile. C: Plot of the function used to convert P-value from
T-test into Instance weight. D: Plot showing P-values (y-axis) and Instance weight vector for each gait cycle instance (x-axis).

B. Normal vs Abnormal Comparison

For the feasibility of using a probabilistic approach for gait
assessment, the assumption that gait angle profiles of CP sig-
nificantly differ from TD must hold. To verify this assumption,
some statistical tests are performed for each joint profile. First,
the normality of histograms for CP gait cycles and TD gait
cycles at each cycle instance is verified by Shapiro-Wilk test.
Then normal probability density functions (PDFs) are then
fitted to the data at each cycle instance with 1719 CP data
points and 41 TD data points. A sample plot of PDFs of CP
and TD angle profiles at 30th gait cycle instance is shown
in Fig. 2B. Then, the significance of the difference of means
of CP gait cycles and TD gait cycles at each cycle instance
is evaluated by a T-test. P values obtained by T-test for knee
angle profile are shown in Fig. 2D. It shows that the difference
in means of CP gait cycles and TD gait cycles is significant
(p-value less than 0.05) at most of the gait cycle instances
for knee joint angle. Similar results are obtained for other
joint angle profiles. So we can conclude that the assumption
of gait angle profiles of CP significantly differ from TD
holds. Therefore, there is a possibility of the existence of a
probabilistic solution for quantifying gait abnormality.

C. Instances Weight Calculation

In the previous analysis, at some gait cycle instances,
the difference of means of CP gait cycles and TD gait

cycles was not significant Fig. 2.D. This suggests there is an
absence of evidence to reject the null hypothesis statistically.
In other words, we do not have the confidence to say that
means of CP gait cycles and TD gait cycles at these cycle
instances are different. While at most of the cycle instances,
the difference was significant. This suggests, there is sufficient
evidence to reject the null hypothesis statistically. In other
words, we do have the confidence to say that means of CP
gait cycles and TD gait cycles at these cycle instances are
different. Mathematically, the confidence as mentioned above
is analogous to the p-value of the T-test. The gait cycle
instances with p-values close to one, have lesser significance
for distinguishing values of CP gait cycle with TD gait cycle
when compared with the gait cycle instances with p-values
close to zero. As it can be observed that significance and
p-values are inversely proportional. To quantify this signifi-
cance, a weight instance vector is defined at all cycle instances.
By using a non-linear mapping, the p-value is converted into
an instance weight at each gait cycle instance. This non-linear
mapping is given by the following equation 1, and its shown
in Fig. 2.C.

InstanceWeight (Pvalue) = 1 + (0.25 − 1)

1.51/Pvalue
(1)

Instance weight is calculated for all instances and stored in
a vector ‘I’. The least value of I is set to 0.5 to avoid vanishing
the entity’s value multiplied with it. The nature of the vector is



2534 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021

Fig. 3. A: Knee sagittal joint angle profile of a sample X kneeS (black),
mean and SD of CP (red) subjects and mean and SD (blue) of TD
subjects is shown. B: Position of X kneeS

30 in PDFs of CP (red) and
TD (blue) subjects at 30th gait cycle instance of knee sagittal joint angle
profile.

chosen to be non-linear with a slower descent rate at smaller
p-values values to take advantage of the physical significance
of p-values.

D. Computation of A-GAS of a Given Sample

An abnormality score A-GAS is computed for representing
the degree of abnormality in gait. For a given sample X ,
let us assume that the angle profile of knee joint in sagittal
plane at i th gait cycle instance is denoted by XkneeS

i and the
abnormality index of knee angle profile in sagittal plane at i th
gait cycle instance is denoted by AI I kneeS

i . So, the expression
for computing AI I kneeS

i is given by the following equations 2.

AI I kneeS
i = I kneeS

i ∗ LkneeS
i (2)

where, I kneeS
i is i th gait cycle instance value of instance

weight vector I kneeS computed for knee joint, LkneeS
i is i th

gait cycle instance value of modified likelihood ratio vector
LkneeS of knee joint and AI I kneeS

i is i th gait cycle instance
value of instance abnormality index vector AI I kneeS of knee
joint. For computation of LkneeS

i , likelihood of XkneeS
i for CP

gait cycle at i th instance and TD gait cycle at i th instance
are calculated from their respective fitted PDFs. To elaborate,
in step 1, PDFs for CP gait cycles and TD gait cycles are
computed for a gait cycle instance. A sample PDF plot is
shown in Fig. 3B for gait cycle instace 30 of sample shown in

Fig. 3A. In step 2, likelihood of the values of a given sample is
noted. In the given example, Xknee

30 = 27, Ł(μC P
30 , σC P

30 |27) =
0.03367 and Ł(μT D

30 , σ T D
30 |27) = 0.00830. Here, μC P

30 and
σC P

30 are mean and SD of CP profile value’s distribution
at the 30th gait cycle instance, respectively. μT D

30 and σ T D
30

are mean and SD of TD profile value’s distribution at 30th
gait cycle instance, respectively. Ł is the likelihood function.
In step 3, likelihood ratio (L RkneeS

i ) of TD to CP is computed
by equation 3. For the sample, likelihood ratio of TD to CP
is 0.008305/0.03367 = 0.2467.

L RkneeS
i = Ł(μT D

i , σ T D
i |XkneeS

i )

Ł(μC P
i , σC P

i |XkneeS
i )

(3)

In step 4, modified likelihood ratio LkneeS
i is computed by the

following equation 4.

LkneeS
i =

⎧⎪⎨
⎪⎩

1 − L RkneeS
i i f L RkneeS

i ≤ 1

0 i f L RkneeS
i > 1

0 i f Ł(μC P
i , σC P

i |XkneeS
i ) = 0

(4)

According to the equation 4, the modified likelihood ratio of
the given sample is 1 − 0.2467 = 0.7533. Modified likelihood
ratio is inspired from Bayes’ discrimination rule which states
that a sample x is assigned to a group that maximises πi Łi (x)
is higher, where πi is prior probability of group i . However,
it it not possible to accurately estimate π for CP and TD group
at each gait cycle instance. Therefore, it is assumed same for
both the groups. In the final step, steps 1-4 are repeated for
all gait cycle instances to compute LkneeS .

For all nine joint angle profiles, a joint abnormalcy index
(i.e. AI joint ) is calculated by adding AI I kneeS

i at all instances
(equation 5).

AI kneeS =
51∑

i=1

AI I kneeS
i (5)

These AI joint are multiplied with their corresponding weight
W joint and summed to compute A-GAS.

A − G AS =
9∑

j=1

AI j ∗ W j (6)

where, W j is the weight of j th joint. Weight vector W
represents prior probability of abnormality in joints. The
values of W are derived from Table I.

The values from Table I are first assigned to W,
then linearly maped from 0.5 to 1 to and normalised
by dividing

∑
W . So, the final values of W become

0.941, 0.669, 0.605, 0.5, 0.805, 1, 0.726, 0.761 and 0.574.
A similar reasoning is used for computing A-GAS by using
only three joint angle profiles viz., ankle sagittal, knee sagittal
and hip sagittal. Thus, the equation for A-GAS is given by
the following equation 7.

A − G AS =
3∑

j=1

AI j ∗ W j (7)

The final values of W becomes 1, 0.5 and 0.748. The pseudo-
code of calculating A-GAS, AI and AII for a sample X is
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TABLE I
NO OR MINOR GAIT DEVIATIONS PERCENT SAMPLE IN CP DATASET

FOR VARIOUS JOINT ANGLE PROFILE ACCORDING

TO RATINGS OF AN EXPERT [42]

Fig. 4. The pseudo-code of calculating A-GAS, AI and AII for a sample X.

given in Fig. 4. For all the analyses, a system having the
following specifications is used; Intel(R) Core(TM) i5 6200U
CPU @ 2.30 GHz, 4 GB DDR4 RAM, NVIDIA GeForce
930MX graphic engine, 64-bit Windows 10 Operating System
and Matlab 2020a platform.

III. RESULTS

A. A Sample Report of A-GAS

By following the steps mentioned in the Section II, report
of A-GAS is generated for a sample CP subject (see Fig. 5).

The report of A-GAS has four key features. First, it pro-
vides an easily interpretable comprehensive gait assessment.
Second, it utilises the unique properties of each gait cycle
instance to compute the corresponding AI I . Third, it provides
abnormality indices at three levels for a better understanding
of gait pathology. Fourth, it uses knowledge of both CP and
TD distributions to compute AI I .

B. Comparison of A-GAS for CP and TD Subjects

To understand the performance of A-GAS an analysis is
performed. A-GAS is computed for all CP and TD subjects.
Fig. 6 shows PDFs of CP and TD subjects. It can be inter-
preted from the Fig. 6 that A-GAS value of TD subjects is less
than most of the CP subjects. The overlapping areas of PDFs

is negligible, and by setting a decision criterion at around 0.13,
A-GAS can accurately classify subjects into TD and CP.

A similar analysis is performed for individual joints. Fig. 7
shows PDFs of CP and TD subjects for all nine joints. It can
be interpreted from the Fig. 7 that AI value of TD subjects is
less than most of the CP subjects at all joints. However, there
are noticeable overlapping of PDFs of AI for CP and TD
subjects at hip coronal, pelvic coronal and pelvic transverse
joint angle profiles. There can be multiple possible reasons for
these overlapping. One reason can be no or less deviation of
CP gait angle profile from TD gait angle profile in many CP
subjects at hip coronal, pelvic coronal and pelvic transverse
joint angle profiles. This reasoning is also supported by results
of [42], where 62.9% CP hip coronal angle profile, 48.6%
pelvic coronal angle profile and 44.4% pelvic traverse angle
profile showed no minor gait deviations. Another possible
reason can be the induction of minor abnormality in TD
subjects at hip coronal, pelvic coronal and pelvic transverse
joint angle profiles due to measurement errors. The range of
motion of these joints is very small (5◦- 20◦), and small error
in measurement can leads to a large deviation from normal
gait angle profile.

C. Comparison of Assessments

The establishment of an instrumented gait laboratory needs
plenty of money and space. Moreover, recording and process-
ing of 3-dimensional signal takes time [46]. However, low-cost
equipments such as Kinect, one-camera set-up and goniometer
can be easily used for both small clinics and personal use.
Therefore, an experiment is performed to propose a combi-
nation of three joint angle profiles that can replace current
nine joint angle profile configuration effectively. A config-
uration having knee sagittal, hip sagittal and ankle sagittal
joint angle profile is used for developing a three joint angle
profile based score because its performance is found to be
better than all other possible combinations. At all samples,
Bland- Altman plot [47] is calculated for three joint angle
profiles configuration (say A-GAS 1) and nine joint angle
profiles configuration (say A-GAS 2). Fig. 8 shows, around
96% difference (A-GAS - 1 A-GAS 2) lies in 95% confidence
level range. This suggests that both the configurations can be
used interchangeably for clinical use [47].

IV. DISCUSSION

A. Comparison of A-GAS With Present Rating Based
Scale

As discussed in the Section I, most of the present scales are
based on raters. Since all rating-based scale has its pros and
cons, it is very difficult to select the best scale among them.
To address this problem, a consensus study was performed
by Angela Nieuwenhuys et al. [48]. Thirteen experts from
eight gait laboratories identified 49 clinical assessment relevant
joint motion patterns in children with CP. Each trial of the
CP dataset used in the study is rated by one of the two
expert rater. ‘0’rating for a joint motion pattern denotes no or
minor deviation from TD, while, rating other than ‘0’denotes
a specific gait abnormality. This rater-based method provides
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Fig. 5. Report of A-GAS consists of nine subplots. Each subplot corresponds to one joint angle profile; A: knee sagittal, B: hip sagittal, C: hip
coronal, D: hip transverse, E: ankle sagittal, F: pelvic sagittal, G: pelvic coronal, H: pelvic transverse and I: foot transverse. In a subplot, blue curve
represents mean normal joint profile, red curve represents sample joint angle profile, and height and colour of bar plot represent the magnitude of
instance abnormality index (AII) at an instance, y-left axis represents angle value (in degree), y-right represents AII, x-axis represents gait cycle
instance and numerical value at the bottom of each subplot represents joint AI. A-GAS of the sample is written at the bottom of the plot.

Fig. 6. PDFs of A-GAS calculated for CP and TD samples.

discrete value of rating while A-GAS provides a continuous
score. Therefore, for comparison, all trials are divided into two
classes; one with ‘0’rating and other with non-‘0’ratings. Fig. 9
shows histograms of A-GAS for both the classes at each joint
angle profile. In all the joint angle profiles, mean of A-GAS
for class with ‘0’rating is less than mean of A-GAS for class

with non-‘0’rating. In a scenario when both assessments are
perfect we expect zero overlapping between the histograms
with zero A-GAS value for all trials of class with ‘0’rating.
However, in the Fig. 9 we can observe a lot of overlapping
between the histograms at some joint angle profiles. The
possible reason for overlapping can be, incompleteness and in-
sensitiveness of the rating based scale. Since, the rating based
scale exploited a limited number of gait abnormal patterns to
quantify abnormalities, sometimes it fails to capture abnormal
patterns. This limitation of rater-based method contribute to
its incompleteness to understand all possible types of gait
abnormalities. Non-zero value of A-GAS value for trials of
class with ‘0’rating supports this argument. Furthermore, the
rater-based method is in-sensitive to minor changes in gait
angle profile because it is based on a discrete scale. For
example, the same rating will be provided to a knee joint in
sagittal with minor knee hyper-extension and a knee joint in
sagittal with major knee hyper-extension [42]. While A-GAS
is sensitive to even minor pathological changes as it provides
a continuous reading of gait abnormalities.

As mentioned in the literature review sections, previously
many researchers attempted to quantify gait anomalies. How-
ever, a direct comparison of A-GAS with these methods
is not feasible due to different datasets and following four
reasons. First, these methods either provide a global abnor-
mality index or perform classification into a small number of
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Fig. 7. The figure consists of nine subplots. Each subplot corresponds to one joint angle profile; A: knee sagittal, B: hip sagittal, C: hip coronal,
D: hip transverse, E: ankle sagittal, F: pelvic sagittal, G: pelvic coronal, H: pelvic transverse and I: foot transverse. In a subplot, blue curve represents
PDF of joint abnormality index (AI) of TD sample for its corresponding joint angle profile and red curve represents PDF of AI of CP sample for its
corresponding joint angle profile.

Fig. 8. Bland- Altman plot for three joint angle profiles configuration
(say A-GAS 1) and nine joint angle profiles configuration (say A-GAS
2). (A-GAS - 1 A-GAS 2) difference for 1690 samples out of 1760 lies in
95% confidence level range.

gait abnormalities, while A-GAS provides joint-specific gait
assessment score. Second, these methods used either used
IMUs or 3-D cloud data for recording gait, while A-GAS
uses joint angle profiles of the joints. Third, the applicability
of these methods is not tested in clinical settings, therefore,
their credibility is questionable. Fourth, a completely different
experimental protocol and instrumentation is needed to imple-
ment each of these methods.

Fig. 9. The figure consists of nine subplots. Each subplot corresponds
to one joint angle profile; A: knee sagittal, B: hip sagittal, C: hip coronal,
D: hip transverse, E: ankle sagittal, F: pelvic sagittal, G: pelvic coronal,
H: pelvic transverse and I: foot transverse. In a subplot, the blue region
represents the histogram of joint abnormality index (AI) of trials of
class with ‘0’rating for its corresponding joint angle profile and red
curve represents PDF of AI of trials of class with non-‘0’rating for its
corresponding joint angle profile.

B. Significance of the Research, Limitations and Future
Plans

Gait management in CP and other pathological gait disor-
ders is a long process. It is crucial to track the progress of the
process by timely recording patient’s gait activities. However,
rating a limited number of gait events with discrete values
may lead to poor sensitivity of the method [27]. Moreover,
during this long process of treatment, a patient may have
to change their doctor. However, as most of the ways are
subjective, the therapy may suffer after switching doctors.
In addition, the subjectivity of these methods may lead to poor
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reliability, specificity, sensitivity, and validity [49]. Despite
many possible solutions for developing a robust automated gait
assessment using a deep learning-based method, we choose a
conventional approach due to three reasons. First, it is very
difficult to interpret/visualise the computations by using a deep
neural network to predict gait assessment score. Conversely,
a probabilistic approach based on simple computation provides
sense to the intermediate computations. Such transparency in
computations increases the reliability and clinical acceptance
of the method. Second, an optimum solution of a deep
learning-based approaches corresponds to a local minima of
the loss function. Use of the same network architecture on
a similar problem do not guarantee the convergence of the
solution. In other words, deep learning-based approaches are
problem and training data specific. However, simple tools
of statistics and probability are problem and data invariant.
A-GAS is a genialised approach that can also be used for other
modalities of gait data, such as gait kinetics. Third, implemen-
tation and understanding of deep learning-based approaches
require high-performance computers (including GPUs/TPUs)
and expertise in a specific field. While computations of
A-GAS can be done on simple computers/smartphones. Also,
elementary knowledge of mathematics and programming is
sufficient for its implementation and understanding.

The work proposed an automated method for gait assess-
ment with a great potential for clinical use. However, there
are a few limitations of this work. A-GAS’s performance has
only been tested on CP a dataset; its performance on other
gait pathologies needs to be tested. Also, the feasibility of
A-GAS need to be tested in clinical environments. Since the
proposed method extracts decision parameters from the normal
and abnormal data, its results depend on the population of
the datasets. Moreover, as it compares gait cycle instances
of a given sample with normal and abnormal datasets, the
sampling frequency of the datasets should be matched with the
sample. Furthermore, A-GAS can quantify abnormality in a
lower limb, so it does not directly account for gait asymmetry.
However, by comparing A-GAS, AI, and AII of both the
legs, an index for abnormality can be derived. In future work,
we will test A-GAS in a clinical setting; by understanding
doctors’ needs, some additional features will also be added.
A collaborated artificial intelligence would be developed in
future to suggest possible causes of the gait abnormality and
interventions needed for its treatment. In addition, A-GAS will
be tested for tracking the progress of rehabilitation in various
gait disorders.

V. CONCLUSION

In conclusion, the work tries to improve the method of diag-
nosing gait abnormalities in CP by presenting an automated,
comprehensive gait assessment score for objectively quantify-
ing gait abnormalities in a lower limb. Performance of A-GAS
is verified on kinematic data of 356 CP and 41 TD children,
which suggests great potential of its use in clinical settings.
A graphical representation of the gait assessment report,
including AII, AI, and A-GAS is generated to understand the
results in a more interactive way. Moreover, the study com-
pares the performance of A-GAS with a present rating-based

gait assessment scores on the same dataset to understand
fundamental differences between them. Lastly, the degree of
agreement between values of A-GAS’s for high-cost multi-
camera set-up using nine joint angle profiles and values of
A-GAS for low-cost single camera set-up using three joint
angle profiles is computed. Results suggest both the set-
ups can be used interchangeably, as there are no significant
differences in performance of A-GAS for both the set-ups.
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