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Whole Body Center of Mass Feedback in a
Reflex-Based Neuromuscular Model Predicts

Ankle Strategy During Perturbed Walking
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Abstract— Active prosthetic and orthotic devices have
the potential to increase quality of life for individuals with
impaired mobility. However, more research into human-like
control methods is needed to create seamless interac-
tion between device and user. In forward simulations the
reflex-based neuromuscular model (RNM) by Song and
Geyer shows promising similarities with real human gait
in unperturbed conditions. The goal of this work was to
validate and, if needed, extend the RNM to reproduce human
kinematics and kinetics during walking in unperturbed and
perturbed conditions. The RNM was optimized to reproduce
joint torque, calculated with inverse dynamics, from kine-
matic and force data of unperturbed and perturbed treadmill
walking of able-bodied human subjects. Torques generated
by the RNM matched closely with torques found from inverse
dynamics analysis on human data for unperturbed walking.
However, for perturbed walking the modulation of the ankle
torque in the RNM was opposite to the modulation observed
in humans. Therefore, the RNM was extended with a control
module that activates and inhibits muscles around the ankle
of the stance leg, based on changes in whole body center of
mass velocity. The added module improves the ability of the
RNM to replicate human ankle torque response in response
to perturbations. This reflex-based neuromuscular model
with whole body center of mass velocity feedback can repro-
duce gait kinetics of unperturbed and perturbed gait, and as
such holds promise as a basis for advanced controllers of
prosthetic and orthotic devices.

Index Terms— Human gait, reflex modeling, neuromuscu-
lar control, prosthetics, orthotics.

Manuscript received February 26, 2021; revised July 16, 2021;
accepted August 11, 2021. Date of publication November 30, 2021;
date of current version December 10, 2021. This work was supported in
part by the EU Research Program FP7, FET-Proactive initiative “Sym-
biotic human-machine interaction” (ICT-2013-10) through the Project
SYMBITRON under Project 611626, in part by the VICI Flexible Robotic
Suit Project, and in part by the Netherlands Organisation for Sci-
entific Research (NWO) under Grant 14429. (A. Q. L. Keemink and
T. J. H. Brug contributed equally to this work.) (Corresponding author:
A. Q. L. Keemink.)

This work involved human subjects or animals in its research.
Approval of all ethical and experimental procedures and protocols was
granted by the Local Ethics Committee (METC) under Approval No.
NL50450.044.14.

A. Q. L. Keemink, E. H. F. van Asseldonk, and H. van der
Kooij are with the Department of Biomechanical Engineering, Uni-
versity of Twente, 7522 NB Enschede, The Netherlands (e-mail:
a.q.l.keemink@utwente.nl).

T. J. H. Brug is with the Department of Human Machine Teaming,
Netherlands Organization for Applied Scientific Research (TNO), 2597
AK Den Haag, The Netherlands.

A. R. Wu is with the Department of Mechanical and Materials Engi-
neering, Queen’s University, Kingston, ON K7L 3N6, Canada.

Digital Object Identifier 10.1109/TNSRE.2021.3131366

I. INTRODUCTION

ACTIVE and portable prosthetic and orthotic (P/O) devices
for the lower extremities have the potential to improve

mobility and quality of life for individuals with reduced
mobility [1], [2]. Effective control of an active P/O device
requires understanding of human control of gait. Simula-
tion studies have shown that control by neural feedback
alone, provided by sensors and spinal reflexes, can gener-
ate human-like gait and can be made robust against pushes
and variations in floor height. This was shown in a sagit-
tal plane model by Geyer and Herr [3] and extended to
3D by Wang et al. [4], Geijtenbeek et al. [5] and extended
with supraspinal high-level control contributions by Song
and Geyer [6]. The latter model will be referred to as the
reflex-based neuromuscular model (RNM).

A. The Original RNM

The original RNM [6] (schematically shown in top half
of Fig. 1) requires different sources of information as input.
First, supraspinal input: desired foot clearance height, foot
placement location and it will choose which leg should be
transferring to swing after double stance. Additionally, the
RNM uses local sensory feedback from muscle stretch, mus-
cle stretch rate, and muscle force, corresponding to signals
traveling along type I and II afferents.

In addition to muscle state, also vestibular organs, joint
proprioception and load receptors in the legs are modeled to
calculate global body posture. The sensory signals are inputs
for ten decentralized reflex control modules, representing
ten groups of feedback loops, to generate muscle activation
signals for eleven simulated Hill-type [7] muscles per leg.
The resulting muscle forces act on the leg joints, resulting in
net torques around those joints. Each leg has four joints that
are actuated by this net muscle torque: hip ab-/adduction, hip
flexion/extension, knee flexion/extension and ankle plantar-/
dorsiflexion.

A total of 82 feedback parameters determine the behavior
of the modeled spinal reflexes and supraspinal step location
planning. The RNM can generate stable human-like gait in
simulation for different scenarios, like walking up or down
a slope, or on uneven terrain, and shows some balance
robustness against low-force pushes without adjusting these
parameters. This property is desirable for control methods of
P/O devices to automatically adjust the gait pattern to different
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Fig. 1. Schematic overview of the original RNM (top shaded area and
dashed lines) and the data-driven RNM (top and bottom shaded area).
The dashed part has been removed and replaced with the bottom, data-
driven, part. The data-driven model estimates joint torques using the
recorded kinematics and ground-reaction forces as input. Parameters of
the data-driven RNM are optimized to minimize the difference between
the joint torques predicted by the RNM and the torques obtained from
the data from inverse dynamics.

scenarios. Conventional control methods [8]–[16] based on
fixed joint trajectories do not show this flexibility.

B. Using a RNM as a Controller

The possibility of the RNM to generate human-like adequate
responses to perturbations is a strong motivation for develop-
ing such a model to be used in the control of P/O devices.
In previous work [17]–[19] we showed that using a RNM as a
controller for some of the joints in a robotic lower-extremity
exoskeleton is a feasible control strategy.

However, using a RNM on its own has hardly any true
walking stability guarantees due to possible mismatches in
biomechanical parameters between the human-exoskeleton
combination and the rigid body properties used in the model.
Nonetheless, we have achieved promising results in our
exoskeleton devices when some joints are position controlled
while others are controlled by the RNM. In [19] walking speed
of SCI patients was increased by such a controller. In [18] a
RNM controller for an ankle exoskeleton resulted in improved
gait for incomplete SCI patients. We have achieved stable
exoskeleton walking with crutches by smoothly switching
from fully RNM controlled joints to position control when

leaving a safe, phase dependent, range of motion. The used
position controller was limited to trajectory replay, so a
controller that adapts foot placement based on body state could
result in stable crutch-free walking where a RNM controls
the joints for a vast majority of the movement time. Also,
using a RNM as a joint-level controller shows greater flexi-
bility and human like joint impedance, compared to trajectory
control [20].

C. Contribution of This Work

This work delivers several novel contributions. We quan-
titatively investigate the model’s ability to reproduce human
joint torques during walking in unperturbed and perturbed
conditions by having it imitate human torque data obtained
from perturbed gait experiments. A qualitative comparison
between human joint torques and model torques was done for
the original RNM [6]. Additionally, in [21] a mostly qualitative
comparison was made between model output and several dis-
turbance experiments without improving model shortcomings.
A quantitative analysis of torque responses to balance pertur-
bations during walking is therefore lacking and is provided
in this work. Moreover, both previous studies investigated the
responses of a model that was optimized for metabolic energy
efficiency, instead of optimizing it to imitate human responses.
Consequently we show that the original model shows too high
torque in the ankle joint and lacks capacity in the spinal reflex
network to generate adequate torque responses in the ankle
joint after perturbation. We therefore add a novel extension to
the model that responds to whole body center of mass (CoM)
information to be able to overcome this shortcoming.

To achieve the aforementioned goals, data from unperturbed
and perturbed gait of able-bodied human subjects [22], [23]
was used to drive the model, instead of using forward rigid
body dynamics (as shown in the removed central part in
Fig. 1). We optimized the parameters of these data-driven
RNMs (DDRNM) by minimizing the difference between pre-
dicted joint torque from the model and joint torques obtained
from able-bodied human gait data from inverse dynamics.

Using this data-driven approach, shortcomings in the model
were found in modulating ankle torque in response to force
perturbations at the pelvis in anteroposterior direction. These
shortcomings were overcome with an additional control mod-
ule reacting to changes in the velocity of the whole body CoM.

D. Outline of the Paper

This paper is structured as follows: Sec. II discusses the
experimental paradigm behind the used data, the changes to the
RNM, the used method for re-optimization and how the RNM
was extended. Sec. III compares the output of the three model
versions with human experimental data and each other. Sec. IV
discusses the usefulness and limitations of the results and the
physiological plausibility of the proposed model extension.
Sec. V concludes the work.

II. METHODS

Model torque data from three versions of the RNM was
compared with able-bodied human torque data, obtained
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through inverse dynamics methods, from experiments in which
subjects were perturbed during treadmill walking. These three
RNM versions were 1) the original model from [6] in
data-driven form (Sec. II-B), 2) a re-optimized version of that
same model (Sec. II-C) and 3) an extended & re-optimized
version of that same model (Sec. II-D).

We will briefly summarize the used experimental procedures
and analysis of the used data in Sec II-A, but for details
we refer to Vlutters et al. [22], [23]. Subsequently the three
model versions are explained.

A. Experimental Procedure

In the work of Vlutters et al. [22], [23] able-bodied sub-
jects walked on a treadmill wearing a hip brace, wrapped
tightly around the pelvis. The hip brace was connected via
rods to motors to perturb the subject [SMH60, Moog, Nieuw-
Vennep, The Netherlands] in anteroposterior (AP) direction or
mediolateral (ML) direction by using indirect force control
(admittance control) to provide a controlled perturbation force
pulse. Kinematic data was collected using a 12 camera optical
motion capture system [Visualeyez II, Phoenix Technologies,
Burnaby, Canada]. Active LED marker frames were placed on
the feet, lower legs, upper legs, front of the pelvis, sternum
and head. Single LEDs were placed on the lateral malleoli
and the lateral epicondyles of the femur. Perturbations to
the subject were measured by FUTEK QLA131 load cells
[FUTEK, Los Angeles, CA, USA] and ground reaction forces
(GRF), for each foot separately, were measured by a dual-belt
instrumented treadmill [custom Y- Mill, Motekforce Link,
Culemborg, The Netherlands] at 1000 Hz. Subjects were
perturbed at magnitudes of 4%, 8%, 12% and 16% of body
weight (BW) in both AP or both ML directions. The perturba-
tion was timed to occur directly after the right foot’s toe-off,
triggered by the vertical GRF of the right leg falling below a
threshold. The duration of each perturbation was 150 ms. The
walking speed was 4.5 km/h, scaled by the square-root of the
leg-length [24].

OpenSIM v3.3 was used to perform inverse dynamics
and inverse kinematics calculations on the marker and GRF
data for all subjects separately. Marker and GRF data were
both zero-phase low pass filtered at 20 Hz in MATLAB
2016b [Mathworks, Natick, USA], with the default 6 Hz
low pass filtering of the inverse kinematics before calculating
torques through inverse dynamics analysis. The default 23 DoF
gait2354 model was used in OpenSIM, scaled to the subject’s
size with help of the marker data.

The used setup and experimental protocol for this experi-
ment were approved by the local ethics committee (METC),
approval number NL50450.044.14. All subjects gave prior
written informed consent in accordance with the Declaration
of Helsinki.

B. Original DDRNM

The RNM [6] was adapted to operate in an inverse dynamics
fashion using experimental data as input: joint angles, angular
velocities, information about stance or swing phase of each
leg and the load on each leg. Signals were averaged over ten

subjects and phase information was derived from the averaged
data.

To determine the muscular torques from these inputs, for-
ward dynamics calculations were required as the Hill-type
muscle models and muscle-tendon dynamics need to be inte-
grated to obtain the muscle length. A schematic overview can
be found in the top part of Fig. 1. For fair comparisons, human
torque (before averaging) and model torque were normalized
to mgl [24], where m is the subject’s body mass, l the subject’s
body length and g is the gravitational acceleration.

We used data of 16 strides out of the total experimental
data, which were stitched together into a single dataset. For
the perturbed cases, the perturbation amplitude increased each
stride. The stitched dataset was as follows:

• four strides of unperturbed walking,
• four strides with backward perturbation (4%, 8%, 12%,

16% of BW),
• four strides with forward perturbation (4%, 8%, 12%,

16% of BW),
• four strides with outward perturbation (4%, 8%, 12%,

16% of BW).
There was no inverse dynamics torque data for strides
with inward perturbations. Inward perturbations lead to
cross-stepping of the right foot onto the left treadmill, not
allowing for inverse dynamics torque calculation [23].

The original 82 reflex gains and offset parameters from [6]
were used as a reference model. These parameters were opti-
mized using covariance matrix adaptation evolution strategy
(CMA-ES [25]) to have the model walk energy efficiently in
a forward dynamics simulation. It was optimized for walking
on flat ground without disturbances on the virtual body. For all
data-driven versions of the RNM, the same muscle parameters
and body geometry were used as in this original [6]; they were
not mutable in any (re-)optimization described in the following
subsections.

The data-driven model using the original parameters from
Song and Geyer [6] is referred to in the remainder of this work
as the ‘original DDRNM’.

C. Optimized DDRNM

A new set of values for the 82 reflex gains and offsets was
found after optimizing the data-driven model. The goal of the
optimization was to have normalized modeled output torque
of the stance-leg be close to normalized human torques of the
stance-leg. This second model is referred to as the ‘optimized
DDRNM’ in the remainder of the text.

The optimization objective was to find a single, constant
parameter set θ∗ that minimizes the mean weighted absolute
normalized torque difference:

θ∗ = argmin
θ

⎧⎨
⎩

1

N j Nt

N j∑
j=1

Nt∑
t=1

|Th, j (t) − Tm, j (t, θ)|
σh, j (t)

⎫⎬
⎭ , (1)

in which Th, j (t) is the normalized human joint torque,
Tm, j (t, θ) is the normalized model joint torque for a given joint
j , reciprocal weighting factor σh, j (t) is the time-dependent
standard deviation of normalized torque across subjects, cal-
culated from human data for that joint. The amount of joints
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is given by N j = 4 (all joints in the stance leg: hip ab-
/adduction, hip flexion/extension, knee flexion/extension and
ankle plantar-/dorsiflexion), t = 1, . . . , Nt is a given discrete
time instant, assuming constant time step, where Nt is the
amount of data points that cover 16 strides (see Sec II-B).

CMA-ES was used, with a population of 20 samples per
generation, evolving over 4,000 generations. The parameter
search space was unbounded and initialized with the parame-
ters from the Original DDRNM. To avoid a local optimum,
every 400 generations the covariance and related variables
were reset to their initial value, while keeping the best solution
candidate as the mean. A parallel CMA-ES optimization of
4,000 generations took about 15 hours on a PC with two
Xeon E5-2630 V4 CPUs, 2.2 GHz, 20 logical cores with
40 threads [Intel, Santa Clara, USA] running the MATLAB
2016b Simulink version of the model in Accelerator Mode.

D. Optimized Extended DDRNM

When humans counteract anteroposterior perturbations
applied at the pelvis directly after right foot toe-off, large mod-
ulations occur in the left ankle joint torques [23]. A backward
perturbation is counteracted by applying less plantarflexion in
the stance leg after perturbation, whereas forward perturba-
tions results in more plantarflexion in the first half of stance,
and less before push off. No change in foot placement, w.r.t.
the whole body CoM, after anteroposterior perturbations was
observed [22], [23]. However, the same studies suggest that for
mediolateral perturbations a change in step width and duration
are strategies used by humans.

The original RNM was optimized to respond to whole body
CoM velocity changes, e.g. due to perturbations, by changing
step length [6]. It has a supra-spinal control element that
decides foot placement, based on whole body CoM velocity
and position with respect to the feet. However, it does not have
a specific control module to modulate the muscle excitation
of muscles around the ankle in a human-like way in case
of perturbations (as is also discussed in Sec. III). Therefore,
we propose an extension to the RNM by adding an extra
control module (M11) that does excite or inhibit muscles of
the stance-foot ankle, based on whole body anteroposterior
CoM velocity deviations (see Fig. 2) but does not activate
after mediolateral CoM velocity deviations. The possible neu-
rophysiology of M11 is discussed in Sec. IV-A.

Module M11 has an upper (vt,u) and lower (vt,l ) threshold
to detect a whole body CoM velocity deviation (�v) between
the real whole body CoM velocity v and the typical or
expected whole body CoM velocity v̂ . If this deviation crosses
a threshold, due to a perturbation, the muscles around the ankle
will be excited or inhibited. Muscles acting around the ankle
are the Soleus (SOL), Tibialis Anterior (TA) and Gastrocne-
mius (GAS). The SOL (plantarflexor) and the TA (dorsiflexor)
are mono-articular muscles. The GAS is a bi-articular muscle,
imposing plantarflexion on the ankle and flexion on the knee.
The amount of inhibition or excitation (Sx for each muscle
x , i.e. SOL, TA or GAS) is linearly related to the difference
between threshold vt,u/ l and �v. Note that there is always
neural measurement delay and subsequent neural excitation
delay.

Fig. 2. (a) Whole body CoM velocity deviation detection uses the
real CoM velocity (v), expected CoM velocity (v̂) and activates control
module M11 based on a threshold on their difference (Δv). Although
v barely passes the upper bound of the normal cyclic behavior, the
effect of perturbation (shown with shaded area) is directly detected.
(b) Schematic overview of how M11 excites/inhibits muscles around the
ankle. Representing the scenario of the example in Fig. 2a, Δv passing
the upper boundary will excite (+) the GAS and SOL of the stance leg
and will inhibit (−) the TA.

The time-varying expected whole body CoM velocity v̂ was
calculated, for each moment in time, as the average of the
whole body CoM velocity over five unperturbed strides. The
signal of each stride was re-sampled and linearly stretched to
synchronize all gait events before averaging.

In summary, for each moment in time (t) the contribution
of module M11, at the level of the spine, to the excitation (S)
of a muscle x is given by:

�v(t) = v(t − �t) − v̂(t − �t) (2)

Sx,M11(t) =

⎧⎪⎨
⎪⎩

Gu,x · (�v(t) − vt,u), if �v(t) > vt,u

Gl,x · (�v(t) − vt,l), if �v(t) < vt,l

0, otherwise,

(3)
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Fig. 3. Normalized human torques compared to predicted torques from the original DDRNM and the optimized DDRNM. Full stride of left leg (initial
stance leg) during and after perturbation is shown, which shows most of the counteraction against perturbations. Graph starts at right toe-off at 0%.
The solid shaded area indicates when the perturbation was applied, the hatched areas indicate periods of double stance. Four situations are shown
to compare unperturbed and perturbed (denoted as ‘Pert.’) walking for each joint. The human torque pattern for unperturbed walking is repeated
in each of the perturbed walking plots for comparison, denoted as ‘Human (Unpert.)’ in the figure legend. Perturbation direction is with respect to
walking direction. Only the highest perturbation magnitude (16% of body weight) is shown.

where x ∈ {SOL,TA,GAS} indicates the muscle. Module M11
only activates for the leg that is in stance. At the muscle level,
these contributions will be delayed w.r.t. the spine, as is done
for a all reflex contributions in [3], [6]. A neural measurement
delay of the whole body CoM velocity of �t = 17.5 ms is
used, as this is the same value used for all signals regarding
upper body posture from the vestibular organs in [6].

M11 has eight parameters: six linear gains (G·,·, two for
each muscle) and two thresholds (vt,·, the same for all muscles)
that are the same for both legs. This model we call the ‘opti-
mized extended DDRNM’. This optimized extended DDRNM
has 82 + 8 = 90 parameters, which were all re-optimized in
the same manner as explained in Sec. II-C.

III. RESULTS

This section will discuss the torque profiles obtained from
the original, optimized and optimized extended versions of
the RNM, and compare those to the torques found by inverse
dynamics.

A. Original DDRNM

When feeding unperturbed kinematics to the original
DDRNM, the resulting normalized torques showed large dif-
ferences with human data in amplitude and offset (see Fig. 3).
The original parameters resulted in peak ankle plantar flexion

torques that were 3.3 times higher than human torques. The
model hip adduction torque shows a bias when compared to
human data. The torques around the knee joint and hip flexion
joint showed resemblance in shape, however differences in
peak magnitudes can be observed.

Feeding the original DDRNM with data of perturbed walk-
ing resulted in a modulation of the ankle torque that is opposite
to the ones observed in the experimental data (see Fig. 3).
Whereas human subjects showed less plantar flexion torque,
in response to a backward perturbation, the model showed
more plantar flexion torque. In case of a forward perturbation,
humans increased plantar flexion torque in the initial stage
after perturbation, while conversely the modeled ankle torque
showed substantially less plantar flexion torque.

B. Optimized DDRNM

Optimizing the DDRNM resulted in model torques that
resembled the human torques better than using the original
parameters (see Table I and Fig. 3). The root mean square
error (RMSE) for the optimized DDRNM is lower than the
original DDRNM by a factor of 5.2. After optimization,
the unbiased zero-lag cross-correlation (R-value), indicat-
ing similarity in shape, is higher for all joints except the
ankle.
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TABLE I
RMSE (NORMALIZED TORQUE) AND R-VALUE OF ORIGINAL DDRNM,

OPTIMIZED DDRNM AND OPTIMIZED EXTENDED DDRNM, ALL

COMPARED TO HUMAN DATA. COMPARISON OF TORQUE DATA

IS DONE PER JOINT IN THE STANCE-LEG, FOR ALL

PERTURBATION MAGNITUDES AND DIRECTIONS

(I.E. 16 STRIDES) COMBINED

After parameter re-optimization, an opposite response in
ankle torque modulation after perturbation was still present
(see Fig. 3). This indicates that the optimized DDRNM is
unable to adjust ankle torques in response to pelvis pertur-
bations in a human-like fashion. Compared to the ankle, the
optimized torques of the other joints followed human torque
data better for the perturbed cases.

C. Optimized Extended DDRNM

In the optimized extended DDRNM, including M11 resulted
in considerable changes in the torque applied at the ankle joint,
only when AP perturbations were applied (see Table I and II
and Fig. 4). Thus, M11 neither decreased the model’s abil-
ity to generate human-like torque during normal walking,
nor did it change model behavior when ML perturba-
tions were applied. The M11 generated torques closer to
human torques for backward perturbed walking and for-
ward perturbed walking (see Fig. 4, and notice decreased
RMSE in Table II). The R-value indicates slightly lower
similarity to human torque, for the model with M11 for
backward perturbations, when compared to the model with-
out M11. However, both correlation values are high. With
M11, the model produced more human-like torque responses
to a forward perturbation, as reflected by higher correlation
(see Table II).

Addition of M11 resulted in more human-like modulation
of the muscle excitation in response to an anteroposterior per-
turbation. For a forward perturbation the optimized DDRNM
shows a decreased GAS and SOL excitation and an increase in
TA excitation compared to unperturbed walking. This causes a
net decrease in plantar flexion torque (see Fig. 5a). In contrast,
the optimized extended DDRNM has more excitation of the
GAS and SOL and less excitation of TA directly (see Fig. 5b),
resulting in torques closer to human torques. For a backward
perturbation, the addition of M11 has a large effect on the
excitation of the GAS. The optimized DDRNM shows more
excitation of the GAS, compared to unperturbed walking,

Fig. 4. Normalized human ankle (+dorsiflexion) torque compared to
the optimized DDRNM (denoted as ‘Opt.’) and the optimized extended
DDRNM (denoted as ‘Opt. Ext.’). Effectively, in the plots in Fig. 3-bottom-
right, the original DDRNM is replaced with data from the optimized
extended DDRNM. The mediolateral outward perturbation is not eval-
uated. See Fig. 3 caption for further details.

Fig. 5. Modeled muscle excitation of the GAS, SOL and TA of the stance
leg (left leg) in case of applied perturbations for both (a) optimized, and
(b) optimized extended DDRNM. Graph starts at right toe-off at 0%. The
solid shaded area indicates the perturbation, the hatched areas indicate
periods of double stance.

while the optimized extended DDRNM shows less excitation
of the GAS.

IV. DISCUSSION

The goal of this work was to investigate whether the
original RNM [6] was able to reproduce human kinetics during
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TABLE II
RMSE (NORMALIZED TORQUE), SUMMED OVER ALL JOINTS IN THE

STANCE LEG, AND R-VALUE OF ORIGINAL DDRNM, OPTIMIZED

DDRNM AND OPTIMIZED EXTENDED DDRNM, ALL COMPARED TO

HUMAN DATA OF ONE STRIDE FOR PERTURBATIONS OF LARGEST

MAGNITUDE (16% BODY WEIGHT) AND AN UNPERTURBED STRIDE

perturbed and unperturbed walking so that it might be used
as a controller for P/O devices. When driven by kinematic
data, the original DDRNM showed large differences between
its predicted torque and torque from measurement data during
unperturbed walking. Re-optimization resulted in a good fit for
unperturbed walking, but not for perturbed walking. Hence, the
model was extended with whole body CoM velocity deviation
feedback to excite and inhibit muscles around the ankle.
Re-optimization of this extended model’s reflex parameters
resulted in joint torques closer to human torques for both
perturbed and unperturbed walking, shown by lower torque
imitation error and higher torque signal correlations. The
original DDRNM’s generation of plantar flexion torque in case
of backward perturbations, which is opposite to the human’s
response, was no longer present after the model’s extension
with whole body CoM feedback and re-optimization.

A. Using Whole Body CoM Information for Balance and
Its Possible Underlying Neurophysiology

The original RNM from [6] uses whole body CoM position
and velocity for step adjustment, but could not use it to
modulate torque responses around the ankle. Such stepping
strategies have been known from balance control literature,
as Hof et al. [26] suggested that the body CoM position and
velocity seem to be involved in controlling foot placement in
response to mediolateral information.

The question remains, however, what the underlying neu-
rophysiology of our proposed M11 could be. Previous studies
showed that whole body CoM states encode for muscle activity
in response to perturbed balance [27], [28]. Since the CoM
states depend on the movement of all body segments, con-
sequently information from multiple sensory systems together
with an internal model of body dynamics have to be integrated
by supraspinal circuits to reconstruct an internal representation
of whole body CoM states. Several studies have shown that
fusion of visual, vestibular and proprioceptive information is
used to control the whole body CoM during standing to main-
tain balance [29]–[31]. This process of sensory integration can
be modelled as an adaptive Kalman filter [32]. The cerebellum
is considered to act like a sort of Kalman filter [33], predicting

states utilizing internal forward models that are updated by
delayed available sensory information.

Another study that hints at the involvement of supra-spinal
circuits, like how M11 is now modeled, in modulating the
ankle muscles to maintain balance during walking, is an exper-
iment in which individuals received anteroposterior pelvis
perturbations while their ankle joints could not contribute to
the balance recovery [34]. The latter was realized by physically
blocking the ankle joints through a pair of modified ankle-foot
orthoses with pin feet. The amplitude of the evoked responses,
delayed by around 100 ms, were dependent on the perturbation
magnitude and direction, and qualitatively similar to responses
when walking without the ankle-foot orthoses. These results
imply that ankle muscle responses can be evoked without
changes in proprioceptive information of the ankle muscles
themselves. This also suggests the involvement of supra-spinal
instead of only spinal circuits, which would also be in line with
a rather long delay of the responses of around 100 ms.

B. Limitations and Future Work

Driving the model with kinematic data does not allow it
to learn how to imitate human foot-step placement in the
supraspinal reflex network. Moreover, the optimal controller
parameters that produce a human-like torque response to
forced kinematic input, might not generate stable walking
when applied in a forward dynamics simulation or real-world
application where the dynamics close the loop between applied
torque and resultant motion. In future work, evaluating cost
objectives in both forward and inverse rigid body dynamics
simulations, or switching to a direct collocation method [35],
might alleviate this problem. However, a reality gap between
forward simulation and application on P/O devices will always
remain. Therefore, using the DDRNM as a controller is limited
to cases as discussed in Sec. I-C where stability is not required
(e.g., due to crutch use or because other joints are controlled
differently) or when a second type of supervisory controller
takes over when the DDRNM torques might result in undesired
states.

In this work, we optimized reflex parameters to match
joint torques from the stance-leg only, because the stance
leg is the one that shows the largest joint torque modula-
tions to counteract the applied perturbations [22]. However,
the swing leg also reacts to the applied perturbations, e.g.
by additional hip abduction torque when perturbed outward.
Although higher torque might hint at outward stepping, this
mediolateral stepping response cannot be investigated in full
detail from the current results due to the inverse dynamics
nature of the DDRNM. In future work, M11 will be extended
to also excite/inhibit the contralateral muscles of the swing
leg, e.g. those around the contralateral hip and investigate the
model’s foot placement in both AP and ML directions.

After extending and re-optimizing the model, the DDRNM
could capture the direction and approximate magnitude of the
human responses, but still some differences with the human
torque response remain. The torque match between model and
data is lower for perturbed strides compared to unperturbed
strides (see Fig. 4, Table I and Table II). The reflexes in M11
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were kept simple, having only gain and threshold parameters,
in line with the reflexes of the original model [3], [6].
Adding more signals or modules could potentially improve
the torque fit, at the risk of over-fitting the model to the data,
resulting in responses that generalize poorly. In future work,
an optimal balance should be found between increasing the
model’s complexity (i.e. number of signals or modules) and
the quality of the torque reproduction and generalization by
promoting low gains or sparsity through regularization during
optimization and evaluations in multiple scenarios.

C. RNM as a Controller for P/O Devices

A state-of-the-art review in [2] suggests that active actuation
of P/O devices is needed to give patients full support during
the entire gait cycle, reduce metabolic cost while walking at a
self-selected speed, increase gait symmetry and reduce wear-
and-tear of the user’s unaffected joints.

The extended DDRNM has potential to be a controller to
assist walking, without having to switch between different con-
trol modes or gait trajectories. Previous research has already
shown the potential of the original RNM in real-world P/O
devices in the lab [17], [19], [36], [37] but also in commer-
cially available devices, such as the active Ottobock/BionX
emPOWER prosthetic ankle. Future work should show if the
proposed robustness claims of using a DDRNM controller also
have benefits in activities of daily life when used in lower-
extremity exoskeletons.

The extended DDRNM controller requires reliable state
information from the P/O device as its input. Estimating
whole body CoM states with sufficient accuracy from a
single inertial measurement unit (IMU) and joint encoders
during stance [38] and estimating whole body CoM state
and GRF during walking with three IMUs [39], [40] seem
feasible measurement strategies to be able to use the extended
DDRNM as a controller outside of a lab environment. In the
original [6] and in this work, noise-free signals were used
as input to the (DD)RNM, resulting in a model that might
not be robust to sensor noise and bias. However, experience
from our previous work using IMUs and encoders for active
balance control [38] and the fact that muscle dynamics act as
a low-pass filter both suggest that performance of a DDRNM
controller with real-world sensors would be as expected. Any
detrimental effects of noise could also be limited further
by adding feed-forward drive [41], e.g. by using Central
Pattern Generators (CPGs) in the spinal cord [42]. Negative
contributions of sensor bias can be counteracted by continuous
or periodic (re)calibration.

Furthermore, the original [6] and extended (DD)RNM
model were optimized to walk at a single speed only. In [43]
the authors showed that the addition of feed-forward drive
through CPGs allows for speed changes. This could extend
the number of scenarios to which a DDRNM controller is
applicable in P/O devices.

V. CONCLUSION

This study proposes an extension of the RNM with whole
body CoM velocity feedback at the ankle joint to achieve

more human-like ankle torque responses to anteroposterior
perturbations during walking. With this extension, the model is
able to reproduce able-bodied joint torques during unperturbed
and anteroposteriorly perturbed walking well. However, the
efficacy of the model’s anterioposterior ankle torque modula-
tion and mediolateral stepping strategy should both be verified
with forward simulation.

For application in the control of P/O devices, using an
optimized extended data-driven RNM controller appears to be
a promising controller candidate. Measured kinematics from
the device would allow a P/O device to mimic able-bodied
joint torque responses under both unperturbed and perturbed
walking conditions.
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