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Abstract— Appropriate interpretation of motor unit (MU)
activities after surface EMG (sEMG) decomposition is a key
factor to decode motor intentions in a noninvasive and
physiologically meaningful way. However, there are great
challenges due to the difficulty in cross-trial MU tracking
and unavoidable loss of partial MU information resulting
from incomplete decomposition. In light of these issues,
this study presents a novel framework for interpreting
MU activities and applies it to decode muscle force. The
resulting MUs were clustered and classified into different
categories by characterizing their spatially distributed firing
waveforms. The process served as a general MU tracking
method. On this basis, after transferring the MU firing trains
to twitch force trains by a twitch force model, a deep network
was designed to predict the normalized force. In addition,
MU category distribution was examined to calibrate the
actual force level, while functions of some unavailable MUs
were compensated. To investigate the effectiveness of this
framework, high-density sEMG signals were recorded using
an 8 × 8 electrode array from the abductor pollicis brevis
muscles of eight subjects, while thumb abduction force
was measured. The proposed method outperformed three
common methods (p < 0.001) yielding the lowest root
mean square deviation of 6.68% ± 1.29% and the highest
fitness (R2) of 0.94 ± 0.04 between the predicted force and
the actual force. This study offers a valuable, computational
solution for interpreting individual MU activities, and its
effectiveness was confirmed in muscle force estimation.

Index Terms— Muscle force estimation, EMG decomposi-
tion, neural drive information, motor unit, deep learning.

I. INTRODUCTION

THERE is a great demand for natural and effective human-
machine interfaces, facing major challenges in accurately

decoding motor intentions from biological signals collected
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from the brain, peripheral nerves, and muscles [1]–[3]. Surface
electromyography (sEMG) directly reflects muscle activities of
related motor intentions [4] and contains both pattern [5], [6]
and strength [7], [8] information thereof. It also possesses
an easy-to-use advantage with non-invasive measurements [9].
Therefore, it has become a common technique for extracting
neural commands and decoding motor intentions.

The basic goal of decoding motor intentions is to decode
the motor strength, which is also known as muscle force
estimation. Generally, previous studies into the muscle force
estimation mainly employed various features in the time-,
frequency-, or nonlinear domains of the sEMG signals
[10]–[14]. Of these, amplitude-associated features such as
root mean square (RMS) of amplitude [10], [11] and
envelop (ENV) have attracted many research interests with
development of numerous computational models or optimiza-
tion methods to boost their performance [12], [14]. However,
these methods mainly depend on data-driven statistical models
rather than the physiological nature of muscle force generation.
Due to severe overlap of individual MUs’ activities, coupling
of noises and cross-talks from multiple muscles in the raw
sEMG signals, these macroscopic features can only offer a
general interpretation of muscle force with limited precision.

Recently, sEMG decomposition has become a rapidly devel-
oping technique [15]–[18], [44]–[47] that can break down the
highly superposed sEMG signals into its constituting compo-
nents, i.e., motor unit (MU) activities, primarily using blind
source separation algorithms. Those acquired MU activities
are regarded as a direct reflection of microscopic neural drive
information and serve as a practical way to accurately decode
motor intentions, and the muscle force in particular [19]–[24].
Many studies made use of the discharge timings of all decom-
posed MUs to estimate the muscle force [22], [23]. A few
studies have tried to roughly discriminate contributions for
individual MUs by employing an MU twitch model to assign
numerical contributions in the order of their recruitment [24].
These studies have preliminarily verified the feasibility of esti-
mating muscle force from MU activities. However, given the
limited performance of the cutting-edge sEMG decomposition
technique, it is still very difficult to easily interpret and utilize
these individual MU activities towards precise decoding of
muscle force.

After sEMG decomposition, the difficulty in cross-trial
MU tracking and unavoidable loss of partial MU information
due to incomplete decomposition [43], [44] emerge as two
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Fig. 1. Block diagram of the proposed study framework. Two modules were well designed to address the issues in applications of EMG decomposition.
The MU tracking module recognized the MUs by a clustering operation. The force estimation module employed machine learning algorithms to decode
the muscle force from the representative subset of MUs.

key issues that restrict its wide applications. Induced by the
blind source separation algorithms, although the raw high
density sEMG (HD-sEMG) signals can be decomposed into
a set of activated MUs, their number was uncertain with no
knowledge of their type and size when the decomposition was
performed across trials (i.e., each segment of EMG signal is
decomposed individually). Thus, it brings a great challenge
to accurately track all decomposed MUs across trials, leading
to the difficulty in understanding the function of every MU.
The other challenge originates from the unavoidable loss of
partial MU information due to unsuccessful and incomplete
decomposition of all activated MUs. Such incomplete decom-
position always presents inconsistent and unknown degrees
of decomposition leading to slight or considerable differences
between two groups of MUs in number and type when they
are decomposed separately. These differences restrict the use
of more advanced techniques such as machine learning or
deep learning in the interpretation of MU activities. Therefore,
solving these two issues above is a prerequisite for effective
interpretation of neural drive information, and it also leads to
a key foundation to decode the muscle force.

This study is devoted to developing a novel framework
for accurately interpreting MU activities from the sEMG
decomposition towards precise force estimation. The entire
framework was constructed based on two primary scientific
hypotheses. The first hypothesis is that MUs with similar spa-
tial and amplitude characteristics of their MUAP waveforms
exhibit more or less the same function (i.e., the force contribu-
tion). On this basis, a clustering and classification procedure
was designed to generally track the MUs across trials. Second,
a group of MUs derived from the sEMG decomposition
were further hypothesized to be a representative subset of
all activated MUs sufficiently reflecting the dominant neural
drives of muscle force. Therefore, it is possible to decode the
relatively precise muscle force by generalizing the knowledge
learnt from such a representative subset of MUs through a
machine learning approach. To verify both hypotheses and to
demonstrate the feasibility of the framework, it was applied
to muscle force estimation. This study not only presents a
tool for predicting muscle force via MU activities, but also
provides an efficient and practical solution for interpreting and

Fig. 2. (a) The proposed electrode array containing 64 metal probes
arranged in an 8 × 8 array. (b) The placement of the electrode array.
(c) The 3D printed fixtures for fixing the wrists and fingers and the
one-dimensional load cell for force measurement.

understanding individual MU’s functions and contributions
after applying cutting-edge sEMG decomposition techniques.

II. METHODS

Fig. 1 shows the proposed framework in this study con-
sisting of three major procedures. Neural drive informa-
tion in the form of MU activities was extracted using a
HD-sEMG decomposition technique. The MU tracking mod-
ule was designed to roughly recognize different MUs across
trials through clustering and then to classify the MUs into
some categories. The force estimation module worked in
two parallel lines. One line estimated the normalized force
curve by quantifying each MU’s contribution to the force in
every category, and the other line evaluated the MU category
distribution pattern to predict the gain factor for obtaining
the actual force. Both lines were designed using machine
learning approaches incorporated with corresponding known
physiological mechanisms.

A. Data Collection and Preprocessing

In this study, eight neurologically intact male subjects with-
out any musculoskeletal injuries or neuromuscular disorders,
especially in hand function (age: 24 ± 2, mean ± standard
deviation), were recruited. The experimental protocol of this
study was approved by the Ethics Review Committee of
University of Science and Technology of China (Hefei, Anhui,
China). All subjects gave their informed and written consent
prior to any procedure of the experiments.
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HD-sEMG signals were recorded from the abductor pollicis
brevis (APB) muscle on any hand of the subject using a
flexible 64-channel mono-polar electrode array arranged in
an 8 × 8 grid. Each electrode probe of the array was 2 mm
in diameter with an inter-electrode distance of 4 mm. Our
home-made multi-channel sEMG data recording system was
used. Its reliability has been already validated in previous
studies [12], [25]. The recording system was built with a
two-stage amplifier at a total gain of 60 dB (AD8200, Analog
Devices; OPA349, Texas Instruments), a band-pass filter set
at 20-500 Hz for each sEMG channel, and a 16-bit analog-to-
digital converter (ADS1198, Texas Instruments). The sampling
rate was set at 2 kHz for recording HD-sEMG signals.
A one-dimensional load cell (LDST-V-HY, Luckly Inc.,
Beijing, China) was attached to the recording system for
synchronous recording of both the force and HD-sEMG data.
A series of 3D-printed apparatuses with magnetic bases were
fixed on appropriate positions on the examination table to
support the tested hand and to mobilize the wrist and fingers
against other movement interference.

After skin preparation using medical alcohol, the electrode
array was placed over the APB muscle of the tested hand with
all columns of the array along the direction of the thumb.
The thumb was put into a round circle attached on the load
cell for force recording. The other four fingers and wrist were
fixed by customized apparatuses. Before data collection, the
maximum voluntary contraction (MVC) of the tested muscle
was determined for each subject. The subject was required
to perform thumb abduction with maximal effort three times
each maintained for at least 2 s. The maximum reading of
the force output during the three repetitions was regarded as
the MVC.

The following experimental protocol involved four different
force levels set at 10%, 20%, 30%, and 40% of the MVC.
At each force level, there are five data recording trials by
performing the task of thumb abduction with five repetitions.
In a single trial, subjects were instructed to gradually increase
the muscle force within 2-s until reaching the target force level
and then maintain the level for an additional 3 s. A sufficiently
long rest was allowed between two consecutive trials and force
levels to avoid fatigue. During the experiment, the actual force
exerted by the subject was shown on a computer screen in real
time as feedback. A pre-defined force curve was also shown
on the screen as a target to guide the force generation for
each subject. Subjects were encouraged to follow the target
curve, but deviation from this curve was allowed during the
experiment. Only actual recorded force data were adopted
in the follow-up data analysis. The recorded sEMG and
force data were transferred to a hard disk for further off-line
analyses.

Several steps were taken to reduce the noise contamination
in the pre-processing procedure [25]. The recorded sEMG
signals were filtered by a Butterworth band-pass filter set at
20-500 Hz to eliminate the potential low-frequency motion
artifacts and high-frequency interference. A set of notch filters
were utilized to reduce the effect of power line interference
as well as its harmonics. A 5-s data segment including the
filtered HD-sEMG signals and corresponding force data was

extracted from each trial. A total of 20 data segments were
obtained over four force levels for each subject.

B. HD-sEMG Decomposition Into Individual MU Activities

HD-sEMG decomposition was used to extract individual
MU activities as a physiological representation of neural
drives. Due to the superior capability of capturing spatial infor-
mation, the development of HD-sEMG leads to a significant
progress of sEMG decomposition based on blind source sep-
aration techniques. Recently, many HD-sEMG decomposition
algorithms have emerged and are well-designed. Of these, both
convolution kernel compensation (CKC) [18] and progressive
FastICA peel-off (PFP) [16], [17] are representative algorithms
that have been widely recognized and validated. They were
also reported to yield comparable performance [15]. In this
study, the PFP algorithm was employed with the consideration
that the peel-off strategy enables the ability to extract as more
MUs as possible [16], [17]. The PFP can be alternated by other
decomposition algorithms such as CKC or other modified ver-
sions towards automatic and online decomposition [44]–[47].

C. Module for MU Tracking and Identification

It is possible to obtain different groups of MUs when
the sEMG segments were separately decomposed. Therefore,
it is necessary to track and identify them across trials. Strict
tracking of individual MUs requires to recognize every iden-
tical MU across different trials [42], but this is difficult and
even impractical to be validated. Alternatively, we adopted a
general cross-trial MU tracking strategy that can identify MUs
by “category” based on the similarity of spatial distribution
patterns of their MUAP waveforms over the 2D electrode
array. From muscle physiology experiments, the spatial and
amplitude characteristics of the MUAP waveforms are deter-
mined by many factors such as the size, type, and location
(including depth) of every MU [52]. Specifically, many larger
MUs are likely to be distributed at superficial/shallow locations
of the muscle thus leading to greater MUAP amplitude and
force contribution [53]. Although it is impossible to accurately
measure or estimate these factors (depth in particular) of indi-
vidual MUs from the sEMG, we hypothesized that the MUAP
waveform pattern can generally reflect the MU’s function and
force contribution in this study. This explains the general
MU-tracking strategy, which led to an engineering solution for
classifying MUs exhibiting similar MUAP waveform patterns
into the same category. We further assumed that the MU size
was positively correlated with the MUAP amplitude for a pop-
ulation of decomposed MUs. This general and simplified trend
was established due to the trade-off between the physiological
nature and computational practicability.

There were two procedures in this module: One was an
unsupervised learning procedure termed clustering to deter-
mine how many and what categories (i.e., clusters) a popu-
lation of MUs could be divided and placed into. The other
was a supervised learning procedure termed classification to
identify what category a new MU could belong to, on the
basis of a training set of MUs whose category membership was
known from the prior clustering procedure. To characterize the
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MUAP waveform in each channel, the maximum and absolute
value of the minimum and RMS amplitude were calculated
as three features. These features from all channels were then
concatenated to form a feature vector for each MU.

In the former clustering procedure, a K-means algorithm
was applied to cluster the MUs into K categories. It was
necessary to pre-assign the number K with a primary criterion
to minimize the within-category sum of squared errors (SSE)
while K is set as small as possible [29], [30]. The relation
between the SSE and K was investigated by some pre-tests,
and then K was finally set to 10 in this study. Afterwards, the
centroid (a vector in the feature space) of each of 10 categories
was calculated via the K-means algorithm. At this stage, there
was no information regarding the order of these categories.
Considering that the centroid was able to represent each MU
category, the norm of the centroid was thus calculated. It was
used to represent the size of the MUs belonging to the category
according to the above assumption that the MU size was
reflected by its MUAP amplitude. Thus, all categories were
sorted in an ascending order of their centroid norms. These
were then labelled as C1-C10 accordingly. In the subsequent
MU classification procedure, it was straightforward to consider
the MU categories with centroids determined by the prior
clustering procedure as a well-trained classifier. The original
population of MUs were clustered into 10 categories and were
used as the training dataset of the classification procedure.
In the testing phase, any given MU could be identified to
belong to one category from whose centroid the MU’s feature
vector had the minimum Euclidean distance. Therefore, this
module provided function of generally tracking and identifying
every decomposed MU from each trial with a specific category
within C1-C10. This made it possible to properly align the
input data, which is beneficial for further analysis such as
utilizing deep networks.

D. Module for Decoding Muscle Force With Neural
Drive Information From Categorized MUs

The incomplete decomposition of HD-sEMG signals
directly led to unavoidable loss of some activated MUs, thus
affecting the integrity of the MU activities. This became an
important issue in decoding the neural commands producing
the muscle force. To address this issue, we further hypothe-
sized that the resulting MUs can be regarded as a sufficiently
representative subset of all activated MUs. In order to predict
the primary behavior of all activated MUs (i.e., the muscle
force production in this study) from the representative subset,
two parallel lines were designed with appropriate machine
learning algorithms. One line decoded the normalized muscle
curve, and the other line predicted a gain factor representing
the corresponding force level. The final force could be pre-
dicted by multiplying the outputs from both lines.

1) Decoding Normalized Force Curve From Categorized MUs:
The aim of this line is to decode the normalized force curve by
estimating fluctuations of the muscle force. Two conjunctive
approaches were designed including an electricity-to-force
transformation using a physiological twitch force model and
a deep network that further estimated the normalized force
curve.

a) Twitch force model: This model can establish the
electricity-to-force transformation process at an MU level that
is essentially involved in the sEMG-based force estimation.
Every occurrence of an MU discharge corresponds to the gen-
eration of a twitch. This process is well described by a twitch
force model originally proposed by Milner-Brown et al. [31],
which generally explains how a muscle force is constituted
from twitch forces generated by a group of activated MUs.
In this model, the force twitch is simulated as a critically
damped second-order system f (t):

f (t) = P · t

T
e1−( t

T ), (1)

where T is the contraction time and P is the value of peak
twitch force. In the original version of this model [31]–[33],
P was modeled to be positively correlated with the MU size,
and the contraction time T was inversely related to twitch
amplitudes P. The MU size was simplified as a series of
integer numbers assigned from 1 to 120 where 1 is the size
of the smallest MU and 120 is the size of the largest MU
in the motor neuron pool. These parameters can only reflect
the relative size and relation between MUs and their force
contributions. These are only meaningful in a simulation study
and unavailable in practical use. An estimation of MU size
is required when applying this model. Although without any
prior knowledge of the recruitment order for each MU, the
MU recruitment was believed to follow the size principle [32].
In addition, the size of an MU was reflected by the MUAP
amplitude. According to the above assumption, P was modeled
to be linearly correlated with the peak-to-peak amplitude of the
MUAP waveform. Its value multiplied by pre-defined constant
of 0.01 (just for unit conversion) was used to straightforwardly
assign the peak amplitude of twitch force P. Thus, T was
calculated as follows [32], [33] where TL was determined to
be 300 according to some pretests:

T = T L ·
(

1

P

)1/4.2

. (2)

Each channel from the 8 × 8 array obtained a twitch force
based on its own MUAP waveform forming an 8 × 8 array
of twitch force for each MU. A 8 × 8 array twitch force
train (TFT) was obtained through a convolution of the twitch
force and corresponding discharge timing trains thus represent-
ing a basic contribution of each MU to force. One may argue
that the multi-channel form is just meaningful for the MUAP
waveform but it is not for the twitch force. We intentionally
kept the transformed TFTs in the multi-channel form to
preserve important spatial information. Therefore, it could be
processed and characterized by the subsequent deep learning
network into which the TFTs were fed.

The TFTs of a group of decomposed MUs from each data
segment were further re-arranged and sorted according to the
MU categories. By directly accumulating the TFTs of the
MUs within every category, a categorized TFT (CTFT) was
generated and represented by a 10000 × 8×8 × 10 feature
matrix. Here, 10 is the number of categories; 8 × 8 indicates
the electrode array; and 10000 represents the time length.
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Fig. 3. Structure of the proposed encoder-decoder network. The size of the input is 100 × 10 × 8 × 8, where 100 represents a sample with length
of 50ms. 10 is the MU category number and 8 × 8 is the spatial distribution of electrode. The six layers of convolution in the encoder were set at the
valid padding.

b) Encoder-decoder deep network: The previous approach
transformed the MU electrical activities into mechanical
CTFTs grouped by 10 MU categories in a channel-wise
manner. This procedure was conducted to address how and
how differently these MU categories contributed to the muscle
force. A deep learning network was built in an encoder-
decoder manner (Fig. 3) taking advantage of characterizing
the spatial information over the 2D array.

The encoder architecture was inspired by the depthwise
separable convolution [34], [35]. The idea was to indepen-
dently map spatial correlations (the 8 × 8 array, equivalent to
width × height of an image) and cross-channel correlations
(the channel refers to color channel with a dimension of 3 in
natural images and 10 MU categories in this study other
than the sEMG recording channel). In contrast to the original
depthwise separable convolution that executes the pointwise
convolution operation immediately following the depthwise
convolution, two consecutive depthwise convolution layers
were designed here to encode specific force contributions for
each MU category from the amplitudes of MUAP waveform
as well as to define the spatial distribution. In each layer,
12 filters with a filter size at 3 × 3, a stride of 1 × 1, and
valid padding were performed on an individual channel of
the feature map. Here the feature map is a common term
representing output data structure of the prior layers. Two
layers of this convolution enables an enhanced capability of
spatial information characterization with a proper receptive
field size at 5 × 5. Subsequently, four pointwise convolutions
were adopted to extract the category correlations. Each layer of
the pointwise convolutions employed 1 × 1 convolution with
a stride of 1 × 1 and valid padding to be performed across
channels. The filter numbers of the four layers were 16, 16,
32, and 32. A total of six layers were constructed in a parallel
manner to deal with the four-dimensional input feature matrix
of a sample. In each layer, 100 parallel convolution operations
were employed by sharing weights between them to deal with
time steps of 100. The features obtained from the encoder
were then fed into the decoder. The typical long short-term
memory (LSTM) [36], [37] was employed to capture the long-
range dependencies of data. A two-layer LSTM block was
designed to constitute the decoder. The first layer consisted
of 128 memory cells and the second layer contained one
memory cell. The outputs were given by a fully connected
layer with 100 neurons. The above hyper-parameters were
designed according to the characteristics of the input and were

fine-tuned and validated through pre-tests. The architecture of
the proposed deep network is summarized in Fig. 3.

The network was trained via training samples well labeled
by recorded true force curves normalized between 0-1. Before
feeding into the network, the CTFT from each data segment
was normalized as well: The TFTs of 10 MU categories were
summed up, and the maximal value of the summation over the
64 electrode channels was obtained to normalize the original
CTFT. The normalized CTFT feature matrix was then further
segmented into 100 samples via a non-overlapping window at
a length of 50 ms (equivalent to 100 data points). Thus, every
window with a 100×10×8×8 feature matrix was considered
to be the basic sample for network training and testing.
Each sample was labelled via the corresponding 100-point
normalized force curve during the training phase. The network
was trained using Python with the Keras framework. The mean
square error (MSE) was minimized with mini-batch gradient
descent [38] with a learning rate of 0.0001. When the network
was well trained, it could predict a normalized force curve by
every consecutive window for any input CTFT.

2) Predicting Force Gain Factor to Estimate the Actual Force:
We present here the other line in the force estimation module
of the proposed framework to estimate the gain factor for
retrieving the actual force level. The increased force level is
expected to be reflected by both recruitment of more MUs
and increase in their firing frequencies according to prior
physiological knowledge [32]. However, these two phenomena
might not be obvious from the decomposed MUs due to
unavoidable loss of partial MU information. Alternatively, it is
feasible to analyze the MU category distribution of a set of
decomposed MUs by inferring the straightforward force level.
As each MU category was previously determined by a previous
MU tracking and identification module, it was straightforward
to calculate the MU category distribution here.

For a set of MUs obtained in each trial, we counted
the number of MUs in every MU category. Then, it was
normalized by the total number of decomposed MUs to get
the proportion of MUs belonging to every category. On this
basis, a center of gravity was calculated:

Grav =
∑10

i=1
i · Pi , (3)

where i represents the MU category and Pi is the corre-
sponding proportion. In addition, the median value of the
MU category in their distribution was calculated as well.
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Both values were used to form a feature vector for each
data segment/trial. These feature vectors well-labeled by their
actual force levels from the training dataset, were used to
construct a support vector machine model using quadratic
kernel (QSVM) [39], [40]. Thus, any given feature vector
could be fed into the trained model to predict a force level for
the data trial. This procedure was equivalent to estimation of a
corresponding gain factor, which was in turn used to amplify
the normalized force (which was predicted in the previous line)
so as to retrieve the actual force.

E. Model Training and Performance Evaluation

The proposed framework involved multiple supervised
machine learning approaches/models that needed to be trained
appropriately with labelled data to enable corresponding
functions. All of these approaches were trained consistently.
Besides, the framework for force estimation was tested in a
user-specific manner with both the training and testing datasets
from the same subject. For each subject, there were five data
segments/trials at each of four force levels. Thus, a five-fold
cross-validation strategy was conducted: One data segment
from each of four force levels was selected respectively to
form the testing dataset while the remaining 16 data segments
were used for training all supervised learning models.

Two metrics were employed to evaluate the force estimation
performance: root mean square deviation (RMSD) [12] and
goodness of fit (R2) from a linear regression [41] between the
estimated force and the actual force. The small RMSD and
the high R2 indicate satisfactory performance. Both metrics
were performed on the predicted normalized force curve, i.e.,
the output of the deep neural network, without consideration
of the final predicted force by multiplying the predicted gain
factor.

Three common methods for force estimation were selected
for performance comparison. The method using a composite
firing sequence of all obtained MUs [22], [23] was selected
and denoted as the FR method because it is a representative
MU-based method for force estimation. In this method, dis-
charge timings from all decomposed MUs were summed up
to form a composite firing sequence without consideration
of different contributions of these MUs to the force. The
instant firing rate was calculated by dividing the number of
discharges within a sliding windows by the window length of
400 ms where the window increment was set at 50 ms [23].
The instant firing rates were regarded as the features to
predict the force using the three-order polynomial regres-
sion model [12]. In addition, methods employing macro-
scopic sEMG amplitude- associated features were conducted
as well. Both the averaged RMS [10], [11] amplitude and
the envelop [12] of the sEMG signals over all channels were
selected due to their wide applications. These were denoted
as the RMS method and the ENV method, respectively. For
the RMS method, the same overlapping sliding window was
adopted to be the same as the FR method. For the ENV
method, a full-wave rectification along with a 3-Hz butter-
worth low-pass filter was adopted to compute the envelop
of each sEMG channel [12]. Similarly, the same three-order

Fig. 4. The number of decomposed MUs for each force level over all
subjects.

polynomial regression model [12] was applied to predict the
force for both methods. For the above three methods, both the
true force and their corresponding features were normalized
between 0 and 1. Other settings including the training and
testing strategy were the same as those in the proposed method
or were optimally assigned.

F. Statistical Analysis

A one-way ANOVA was applied to examine the effect of
muscle contraction strength (10%, 20%, 30% and 40% MVC)
on the number of decomposed MUs. To examine the effect
of the method (four methods in total: the proposed method,
the FR method, the RMS method and the ENV method) and
the force level (four levels: 10%, 20%, 30% and 40% MVC)
on the force estimation performance, two separate repeated-
measure two-way ANOVAs were performed on the RMSD and
R2 respectively; both factors were considered as within-subject
factors. If possible, post-hoc multiple pairwise comparisons
with a Bonferroni correlation were conducted. The level of
statistical significance was set at p < 0.05 for all analyses.
All statistical analyses were completed using SPSS (ver. 24.0,
SPSS Inc. Chicago, IL).

III. RESULTS

A. HD-sEMG Decomposition Results

The decomposed MU number was calculated for each
force level by averaging over all trials from eight subjects,
giving a result at 9.10 ± 1.35 (mean ± standard deviation),
12.73 ± 3.15, 12.83 ± 3.13, and 12.98 ± 3.75 for the
four force levels shown in Fig. 4, respectively. There was no
significant difference (p > 0.05) of decomposed MU number
reported between any pair of force level among MVC20,
MVC30, and MVC40. However, a significant difference was
reported between MVC10 and any of other force levels pre-
senting a significant increase on the MU number for the three
larger force levels.

Fig. 5 gives an example of HD-sEMG decomposition results
from a representative data trial from subject 2. Each obtained
MU was represented by its MUAP waveform and corre-
sponding firing sequence. All of these decomposed MUs
were produced in an uncertain order evidently. Each MU can
be identified with its spatial distribution pattern of MUAP
waveforms over all channels as shown in Fig. 5(b). The core
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Fig. 5. (a) An example of the EMG decomposition results from a 5-s segment of subject 2. A series of MU discharge timings and corresponding MUAP
waveforms from channel 37 were presented. (b) The spatial distribution of waveforms over all channels were illustrated for four representative MUs.

Fig. 6. Illustration of MU proportion falling into each category for all force levels and subjects.

area of channels with larger MUAP amplitudes is quite dif-
ferent between MU4 and MU8 in the case of the comparable
maximum amplitude of their MUAP waveforms.

B. MU Identification and Tracking Results

Fig. 6. presents examples of MUAP waveforms over the 2D
array of 10 representative MUs selected from 10 categories
(C1-C10) in a size increasing order, respectively. Visual
inspection shows that the MU in every category has a specific
spatial distribution pattern of waveforms. Besides, it was found
that MUAP waveform from C1 to C10 presented a gradual
enlargement of amplitude. For a clearer description of the
general tracking procedure, the decomposed MUs from two
trials as well as its corresponding category are illustrated in
Fig. 7. There were slight differences either in the total number

or MUAP waveforms between both MU groups although they
were at the same force level from one subject.

Fig. 7 shows that MUs clustered into the same category
(e.g., C3, C4 and C9) have a proximate MUAP waveform
distribution regardless of whether they are in the same trial.
Specifically, different MUs with dissimilar MUAP waveforms
but proximate amplitude distribution can be clustered into the
same category such as some MU examples in C5 or C7.

C. Force Estimation Results

Based on the 10 predefined MU categories, the proportion of
each MU category could be calculated after deriving multiple
MUs from a single data trial. An example is illustrated in
Fig. 8 and presents the MU category’s distribution of each
trial from subject 5. Although the number of MUs in each
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Fig. 7. All the decomposed MUs and the corresponding category for two trials selected from subject 5.

Fig. 8. Illustration of MU proportion falling into each category for all force levels of subject 5.

Fig. 9. Illustration of MU proportion falling into each category for all force levels and subjects.

category varied across trials within the same force level, their
MU category distribution showed a very consistent pattern
within the same force level but quite different patterns across
force levels. Specifically, MUs with larger category number
(supposed to have a larger size) gradually appeared as the
force level increased. Fig. 9 further reports the MU category’s
distribution patterns summarized for all subjects at four force
levels, respectively. The same finding can be observed in which
the MU category distribution pattern can be characterized by
increasing the proportion of MUs with larger amplitudes at
larger force levels. Although it is difficult to discriminate force

levels using the number of decomposed MUs (almost compa-
rable across levels), the MU category distribution pattern can
work.

Fig. 10 presents an estimation based on the proposed
method that first tracked the force in its trend more accurately
than the ENV method, the RMS method, and the FR method.
The FR method using discharge properties of MUs can track
subtle force fluctuations even though it reported a worse
performance mainly due to a larger time delay in estimating
the force curve. Visual inspection shows that the proposed
method outperformed other methods and exhibited superior
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Fig. 10. Force estimation results of subject 5 at 20%MVC. The
corresponding methods and its performance evaluation were presented
in each subplot.

Fig. 11. Examples of predicted force segments after multiplying
corresponding force gain.

performance in tracking subtle force fluctuations with a limited
time/phase difference.

A further force estimation with the force gain is shown in
Fig. 11. It was able to retrieve the actual force level to calibrate
the predicted force resulting from the normalized input towards
the actual force curve.

Fig. 12 reports the performance of force estimation in terms
of both RMSD and R2 metrics averaged over all subjects
using all four methods, respectively. When all data trials
were pooled together for statistical analysis, the proposed
method achieved the lowest RMSD (6.84% ± 1.29%) and the
highest goodness-of-fit (0.94 ± 0.04). This approach outper-
formed the other three methods including the ENV method
(RMSD: 13.30% ± 3.36%, R2: 0.73 ± 0.19), the FR method
(RMSD: 15.51% ± 4.65%, R2: 0.64 ± 0.26), and RMS

(RMSD: 15.44% ± 4.16%, R2: 0.66 ± 0.25) with statistical
significance ( p < 0.05) revealed by ANOVAs.

IV. DISCUSSIONS

It is very challenging to interpret the MU activities after
sEMG decomposition facing difficulty in cross-trial MU track-
ing and unavoidable loss of partial neural drive information
due to incomplete decomposition. The major contribution of
this study is to provide a framework of engineering solutions
for addressing both issues resulting from the cutting-edge but
developing sEMG decomposition technique. These solutions
are presented and applied as a novel method for decoding the
muscle force.

The amplitude-based method is a traditional and straight-
forward way for muscle force estimation. In this study,
two widely used amplitude-based methods were tested,
and they achieved consistent performance with previous
reports [22], [23]. The FR method directly used the com-
posite spike trains through sEMG decomposition for muscle
force estimation. This method was based on the fact that a
stronger central stimulation activates more MUs as well as
more frequent firings of these MUs, thus generating greater
muscle strength. However, this MU-based method failed to
outperform traditional amplitude-based methods. We believe
that the main reason may fall on the lack of differential
treatment of different MUs as well as the negative effect
brought from both issues mentioned above. This also indicates
that processing only MU firings may not make full use of the
neural drive information. In fact, relying on just the firing
information is basically a simplified strategy that avoids both
issues in the interpretation of MU activities. The insufficient
performance of the FR method suggests the necessity of pro-
viding effective solutions to both issues. Instead, the proposed
framework is dedicated to addressing both issues using two
data processing modules respectively. When applied to muscle
force estimation, this method significantly outperformed other
common methods ( p < 0.001), demonstrating its feasibility
of the designed solutions in addressing both issues and the
usability of decoding the muscle force. This confirms the
anticipation of this study that addressing both issues can
facilitate sufficient interpretation of the microscopic neural
drive information.

In the proposed framework, the important spatial informa-
tion in the form of individual MUAP waveforms distributed in
the 2D grid was used to assist the identification and tracking
of MUs across trials. Two benefits were obtained from this
module. The first benefit is the capability of cross-trial MU
tracking, which makes it possible to analyze MUs obtained
from separate implementations of the sEMG decomposition
algorithm on different data trials. This enables the general-
ization of knowledge learned from one trial to others, which
is a prerequisite for introducing advanced supervised machine
learning methods like deep neural networks in processing MU
activities. The other benefit is to further sort the categorized
MUs in size or type thus enabling the calculation of MU
proportions to characterize the distribution of MU categories
in each trial. MUs with larger amplitude gradually appeared
with increasing proportions at greater force levels as shown
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Fig. 12. Performance of force estimation evaluated by the RMSD (left) and R2 (right) using the proposed method and three comparison methods,
respectively.

in Figs. 8 and 9. This finding agrees with the size princi-
ple [32], and it further demonstrated the effectiveness of the
MU tracking module and the subsequent muscle force gain
factor prediction using the MU proportions.

It should be noted that the current study only presents a
module for general MU identification and tracking. In contrast
to the strict tracking and recognition of MU reported in
previous work [42], it rather handled categories that contained
MUs exhibiting similar spatial and amplitude characteristics.
This process induced some tolerance of the MU-matching
process. Such tolerance was introduced by our simple hypoth-
esis to associate MU’s function and size especially with its
MUAP waveform distribution. We acknowledge that it is not
truly accurate and there may be many exceptions. In the
same spatial area, for instance, a deeper and stronger MU
with greater force contribution could exhibit a similar MUAP
waveform distribution with a smaller one above it due to the
attenuation effects of the tissues. In our module, both MUs
were placed into the same category and assigned by equal
contributions. However, our hypothesis indicated a general
trend for a population of MUs. At a given time point, it at least
provided an engineering solution for modeling the function
and force contributions from a group of MUs, thus ensuring
computational practicability. Its successful application in this
study demonstrated the feasibility of this module, and further
verified the first hypothesis from the engineering point of
view. Taking this advantage, in the subsequent procedure
using a muscle twitch force model, the MUs’ contributions
to the force were directly accumulated in the same category
whereas the contributions of MUs from different categories
were processed differently. In addition, this MU tracking
module could categorize an uncertain number of MUs from
the sEMG decomposition to obtain a fixed number of size-
ordered categories (Fig. 7), which served as a procedure for
data regularization and dimension alignment. This is also in
favor of the implementation of subsequent supervised machine
learning methods.

Taking advantage of the distribution pattern of MU cate-
gory to predict a gain factor is only a part of the solution
to address the issue of unavoidable loss of partial neural
drive information. Machine learning methods (i.e., the deep

network in this study) are necessary when making use of
information from the representative subset of activated MUs
to estimate the function (force generation) of all activated
MUs. In particular, this network focuses on characterizing
the MU’s spatial information compared to other MU-based
methods. Taking the spatial information into account is also
an important factor in the differentiation of contributions to
force for different MUs. All of these features explain why the
proposed method outperformed other MU-based methods.

However, there are still some limitations in this paper. The
proposed framework was established to address the difficulty
in the interpretation of the decomposed MU activities due
to the limited performance of the current sEMG decompo-
sition technique. As a result, it involves relatively complex
approaches. The framework can be further simplified in the
future when the sEMG decomposition technique is sufficiently
advanced. In addition, it was validated through an experi-
ment conducted in limited scenarios. More factors closer to
practical situations should be considered. For example, the
quality of sEMG signals has a great impact on the ability of
decomposition, restricting its application at high force levels.
This brings a limitation wherein small-to-medium force levels
were adopted rather than high force levels due to limited
decomposition performance. Therefore, the estimation of the
gain factor was simplified as a classification task under the
current force levels. Future work will use data with sufficiently
varying force levels. In this case, a regression-based method
would be more appropriate in practical use to predict the cur-
rent force levels. A reliable real-time decomposition algorithm
and a real-time force estimation framework can guide the
direction of our future work. In addition, the current study
solved the one-dimensional force decoding from MU activi-
ties. Future efforts would be made to decode a more complex
multi-dimensional information of motor intentions especially
for simultaneous and proportional control of multiple DoFs
towards future advanced applications.

More importantly, the robustness of the method against
electrode shift or other interference are required for practi-
cal muscle-machine interfaces. Many previous studies have
made great efforts to deal with electrode shifts or anomaly
motion rejection in the scene of gesture recognition [49]–[51].
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These works can offer practical experience of utilizing the spa-
tial information to build more robust models against variations
like electrode shift. Future efforts will be made towards this
direction.

V. CONCLUSION

This study presents a novel framework that offered practical
solutions to address both the cross-trial MU tracking issue
and unavoidable loss of partial neural drive information issue
for processing individual MU activities when applying sEMG
decomposition techniques. The goal was better interpretation
of the microscopic neural drive information, and the method
was evolved for precise muscle force estimation. The proposed
method significantly outperformed other common methods
including routine sEMG amplitude-based methods or a rep-
resentative MU-based method demonstrating its effectiveness.
This study offers valuable solutions to both technical issues
in interpreting complex microscopic neural drive information
raised from the application of sEMG decomposition. Our
efforts will promote the usability of sEMG decomposition
techniques towards advanced decoding of motor intentions.
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