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Abstract— Brain stroke affects millions of people in
the world every year, with 50 to 60 percent of stroke
survivors suffering from functional disabilities, for which
early and sustained post-stroke rehabilitation is highly rec-
ommended. However, approximately one third of stroke
patients do not receive early in hospital rehabilitation
programs due to insufficient medical facilities or lack
of motivation. Gait triggered mixed reality (GTMR) is
a cognitive-motor dual task with multisensory feedback
tailored for lower-limb post-stroke rehabilitation, which
we propose as a potential method for addressing these
rehabilitation challenges. Simultaneous gait and EEG data
from nine stroke patients was recorded and analyzed to
assess the applicabilityof GTMR to different stroke patients,
determine any impacts of GTMR on patients, and bet-
ter understand brain dynamics as stroke patients perform
different rehabilitation tasks. Walking cadence improved
significantly for stroke patients and lower-limb movement
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induced alpha band power suppression during GTMR tasks.
The brain dynamics and gait performance across different
severities of stroke motor deficits was also assessed;
the intensity of walking induced event related desynchro-
nization (ERD) was found to be related to motor deficits,
as classified by Brunnstrom stage. In particular, stronger
lower-limb movement induced ERD during GTMR rehabil-
itation tasks was found for patients with moderate motor
deficits (Brunnstrom stage IV). This investigation demon-
strates the efficacy of the GTMR paradigm for enhancing
lower-limb rehabilitation, explores the neural activities of
cognitive-motor tasks in different stages of stroke, and
highlights the potential for joining enhanced rehabilitation
and real-time neural monitoring for superior stroke rehabil-
itation.

Index Terms— AR/VR, clinical treatment, electroen-
cephalogram (EEG), mixed reality, motor control, lower-limb
stroke rehabilitation.

I. INTRODUCTION

POST-STROKE rehabilitation is a long term battle, which
includes many different stages and approaches throughout

the course of a patient’s recovery. However, many hindrances
may cause stroke patients to miss proper rehabilitation, such
as insufficient medical facilities, lack of motivation, trans-
portation difficulties, or economic burden. Creative assist
approaches have utilized novel technologies to transform
traditional rehabilitation processes into efficient, intriguing
experiences in order to raise motivation and accelerate dif-
ferent stages of the rehabilitation progress, such as robotic
assisted systems [1]–[4], virtual reality (VR) [5]–[9], and
brain-computer interfaces [4], [8]–[11]. Stroke occurs due to
a blockage or reduction of blood supply in the brain, the
resulting central nervous system (CNS) damage leads to motor
or other functional losses. Traditional post-stroke rehabilitation
therapies focus solely on behavioral outcomes even though
the peripheral nervous system is usually intact in the case of
brain stroke. As non-invasive brain imaging techniques, such
as electroencephalography (EEG), have emerged and become
more widely used, there has been an increase of attention to
the importance of CNS condition and neural activity during
stroke rehabilitation.
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TABLE I
CLINICAL CHARACTERISTICS OF PARTICIPANTS

Conventional post-stroke rehabilitation therapy can be
vitally augmented by EEG monitoring, in particular there have
been various attempts to use EEG for the prevention of laziness
or slacking by patients during robot assisted therapy. One such
investigation tried to avoid this slacking problem by introduc-
ing EEG-based movement intention detection techniques using
event-related desynchronization (ERD), which is exhibited
as a drop in power of particular EEG frequencies during
performance of certain tasks [12]. In another, EEG-based
mental fatigue detection during stroke rehabilitation had been
used to keep track of the efficacy and quality of stroke
rehabilitation therapy [11]. Prognostic and monitory EEG-
biomarkers during resting and task states have been identified
recently to determine proper intervention timing and to predict
the therapeutic efficacy of the given interventions [13]. More-
over, increasing numbers of studies have employed mobile
brain/body imaging (MoBI) to investigate neural dynamics
synchronized with body motion capture and other modalities
of physiological significance [14]. MoBI reveals new insights
into the neural dynamics of active human movement with
realistic tasks outside of the laboratory and has been utilized
in many kinds of neural imaging studies [15]–[17]. We have
recently proposed a post-stroke lower-limb rehabilitation sys-
tem [18], in the spirit of MoBI, to overcome conventional
movement restrictions and comprehensively explore the neural
dynamics and behavioral outcomes during active post-stroke
lower-limb rehabilitation in the real world. This new imaging
modality exhibits great potential for home-based post-stroke
rehabilitation, by providing not only behavioral outcomes, but
also neurological information to remote medical professionals.

Novel and creative rehabilitation tasks with EEG monitoring
shed light on post-stroke rehabilitation by emphasizing the
fundamental aspects of stroke recovery mechanisms, opening
new opportunities in stroke rehabilitation therapy. Neural
plasticity reorganizes and reconnects the undamaged neu-
rons through a series of spontaneous and learning dependent
processes [19], and plays a central role in stroke recov-
ery [20]–[24]. An enriching and motivational environment
promotes motor recovery and neural plasticity [25], [26].
Creating an intriguing and motivational rehabilitation scenario
that not only improves rehabilitation efficacy via behavioral
outcomes, but also accelerates recovery in the brain.

To provide an enhanced rehabilitation experience, we uti-
lized the mixed-reality music rehabilitation (MR2) system
which integrates EEG monitoring, an auditory/visual aug-
mented reality interface, and gait analysis into a platform on
which the gait triggered mixed reality (GTMR) task, a dual
cognitive-motor task designed as an immersive and interactive
rehabilitation scenario, was deployed. This allows observation
of not only the behavioral outcomes during these rehabilitative
tasks, but also exploration of the associated neural dynamics.
This study was intended to assess the applicability and usabil-
ity of this system and task for rehabilitation across the varied
capabilities of ambulatory stroke patients.

II. METHODS

A. Participants
Nine post-stroke patients were recruited for this study,

five male and four female. As stroke varies in severity,
the commonly used Brunnstrom Scale categorizes mobility
during recovery on a I to VI scale, with spasticity and
volitional control being characterized to assess the nature of
the movements [27]. As our task requires volitional movement,
the inclusion criteria were: (1) post-stroke patients classified
in Brunnstrom Stage III, IV, or V with hemiplegia in a
lower-limb, defined by volitional control of that limb with
decreasing degrees of spasticity, (2) being able to complete
a one-minute walk by themselves, with or without assistive
devices, such as a cane, and (3) with no significant visual
or aural impairments. The individual clinical characteristics
of stroke patients are detailed in Table I. All experiments
were practiced under Institutional Review Board (IRB) reg-
ulations and national laws. The experiment was approved
by the Kaohsiung Medical University Chung-Ho Memor-
ial Hospital IRB (case number: KMUHIRB-E(I)-20170020).
All participants gave written informed consent and were given
a specified description before participating in the experiments.
Brunnstrom stage assessments were performed by their phys-
ical therapists before experimental participation.

B. Gait Triggered Mixed Reality (GTMR)

The GTMR task is a dual cognitive-motor task which
uses a music rhythm game embedded in a real-time gait
monitoring and feedback system. In our previous study [18],
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Fig. 1. (a) The system structure of the MR2 system [18]. (b) Screen
shot of the rhythm game inspired mixed reality music exercise. (c) The
experimental environment of this study.

we proposed a multimodal mixed reality music rehabilitation
system utilizing a gait-triggered mixed reality environment
and the preliminary results showed promising potential for
assisting lower-limb stroke rehabilitation. The mixed reality
music rehabilitation (MR2) system structure is illustrated in
Figure 1(a). The MR2 system is composed of three integrated
systems: an EEG monitoring system, for collecting neurophys-
iological data, a mixed reality interface system, presenting
both visual and auditory stimuli in augmented reality, and
a gait analysis system, using inertial measurement units on
the lower limbs. The EEG monitoring system continuously
records EEG data through one subject’s experimental session.
The GTMR game is tailored to assist walking lower-limb
stroke rehabilitation by giving the participants real-time visual
feedback related to their walking gait. The contents of the
music-themed rhythm game are presented as a holographic
overlay on the HoloLens (Microsoft Corp.; Redmond, USA)
mixed reality system. As shown in Figure 1(b), white target
balls are generated alternatingly onto the left or right blue
tracks according to the music beats. The target balls move
towards the participants along the blue track, urging the
participants to react by making a step forward on the cor-
responding side. When the participants make a step forward,
and the step meets a predefined knee joint angle standard,
the gait analysis system sends the detected step event back
to the HoloLens, generating a rainbow colored bullet on
the corresponding (left/right) side of the track, which moves
towards the white target ball. Participants gain points when
the rainbow-colored bullets impact and negate the white target
balls. There were three song choices which were all trimmed
to a 1-minute duration and the total number of white ball
targets was adjusted to 90 (45 for each side). The target amount
was designed according to the lower bound of the average for
healthy elders’ natural walking cadence, approximately 91.7 to
116 step/min [28]–[33]. Five inertial measurement unit (IMU)-
based motion capture sensors were fastened on the lower-limbs

of the participants (one at hip level and two on each leg). The
gait data from the motion capture system was streamed out
in real time, via Bluetooth, to the Android application on the
experimenter’s tablet. The step detection algorithm identifies
steps by the periodic peaks of the knee angle and sends the
detected step event to both music rhythm game exercise on the
HoloLens and the EEG recording computer. If the knee joint
angle of the step failed to pass 30◦ during walking, the step
event would not be sent; this knee angle threshold encouraged
the participants to lift their feet up, as they often fail to do so,
due to post-stroke symptoms. The experimental environment
and the experimental setup is shown in Figure 1(c). A video
demonstration of this experiment can found at the following
link: https://youtu.be/jt1qRhhvV1U.

C. Experimental Design and Data Acquisition

The experiment consisted of two experimental conditions,
single task (ST) trials, where the participants walked at a
natural pace, and GTMR trials, where the participants walked
with the active MR2 system. There were three phases in
each trial: a standing phase, walking phase, and resting
phase. At the beginning of both ST and GTMR trials, the
participants were asked to stand still for a 30-second-long
standing phase. The standing phase would be utilized as
the baseline of each trial in later EEG analysis. After the
standing phase, the participants were asked to walk at a natural
pace for 1 minute in the walking phase of the ST trials.
Complementarily, during the walking phase of the GTMR
trials, the participants performed the 1-minute-long GTMR
task wearing the MR2 system. Finally, in the resting phase
for both conditions, the participants were instructed to stop
walking and stand still for 30 seconds. Behavioral and EEG
data were collected throughout all of the phases of all the trials.
Each participant repeated five ST trials and five GTMR trials
with self-determined lengths of rest in between. The order of
performing the blocks of GTMR and ST trials was randomized
for each subject to eliminate fatigue as a performance factor.

The EEG data was continuously recorded at a sampling
rate of 1 kHz, with a 32-channel wet electrode, Neu-
roscan (NuAmps) EEG recording system. The EEG data of
each participant was recorded continuously for the whole
session, with the impedance of the EEG signal maintained
under 5 k�. The 32 channel locations followed the inter-
national 10-20 system. The EEG data was analyzed offline
using the EEGLAB toolbox in Matlab. The gait data was
recorded at 40 Hz with the Notch motion capture system. The
IMU sensor calibrations were performed before each trial in
order to avoid error accumulation due to gyro drift. There
were five IMU-based sensors fastened on the lower-limbs
of the participants, consisting of hip, right thigh, left thigh,
right lower leg and left lower leg. The recorded gait dataset
contained continuous joint angle data of right hip, left hip,
right knee, and left knee flexion angles.

D. Gait Data Analysis

Knee joint flexion active range of motion (AROM) measures
the range from the maximal knee extension angle to maximal
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Fig. 2. A flow chart detailing the analysis processing of the electroen-
cephalography data.

knee flexion angle in each gait cycle assessed during the
walking phases. The AROM of participants’ two knees were
calculated individually as the hemiplegic side knee AROM and
the non-hemiplegic side knee AROM, with hemiplegic side
defined as the stroke-affected side. In addition to AROM, the
cadence, defined as the amount of steps taken in one minute,
was also assessed during the walking phase. The cadence
result is the measurement of both sides combined since steps
necessarily alternate.

E. EEG Data Analysis

The collected EEG data was analyzed to isolate the neural
correlates of walking under the rehabilitative experimental
conditions, the process for which is illustrated in Figure 2.

1) Signal Preprocessing
The four principal steps for the 32-channel EEG signal
preprocessing included band-pass filtering, downsam-
pling, artifact removal, and epoch extraction. A 1-50 Hz
band-pass finite impulse response (FIR) filter was
applied in order to avoid baseline drift, remove high-
frequency ambient noise, and prepare for independent
component analysis (ICA). The filtered EEG data was
downsampled from 1000 to 250 Hz for efficient data
analysis. As walking EEG signal is usually noisy and
contaminated by large movement and muscle artifacts,
two artifact removal methods, bad channel removal
and artifact subspace reconstruction (ASR) [34], [35],
were applied to eliminate the noise. The channels were
visually inspected to identify and remove broken or
atypical channels. ASR was applied to automatically
remove muscle and eye blink artifacts and to reconstruct
the clean EEG data. Finally, the EEG data epochs
were extracted according to the experimental condition,
subject, and phase. Each epoch contained a 30-second
standing phase, followed by a 1-minute walking phase,
and finally, a 30-second resting phase.

2) Independent Component Analysis (ICA)
Independent component analysis is a standard and
effective method for distinguishing independent signal

sources in multi-sourced linear recorded signals. ICA
was applied in order to identify different signal sources
(independent components) and their locations, which
was practical for isolating the signals from our regions
of interest or eliminating non-brain signal sources. ICLa-
bel [36] provided by EEGLAB toolbox was employed
in order to help classify the components into brain,
muscle, eye, heart, channel noise, or other sources.
ICLabel is a powerful tool for automatically classifying
components, providing a more objective interpretation
compared to traditional component classification meth-
ods. This is done by implementing a machine learning-
based component classification model trained on half
a million components, from more than eight thousand
recordings, and labeled by numerous EEG analysis sci-
entists. Two different component selection approaches
were applied for the two parts of EEG results analysis.
For the channel-based band power results, we retained
the components which were classified as brain source
by ICLabel, with a probability above 70%. The selected
components were back-projected to the channel base for
band power analysis in different regions. A relatively
strict component selection criteria was implemented
for the sensorimotor area time-frequency results since
we wanted to closely inspect the walking movement
related to brain oscillations. In this component selec-
tion approach, the selecting criteria for the retained
components were as follows: (1) the component was
classified as brain source by ICLabel, (2) was close to
the brain area associated with lower-limb movement, and
(3) at least 2 components were selected for each subject.
These selection criteria ensured the EEG analysis signal
were brain sourced, lower-limb movement related, and
not dominated by only one component. The selected
components were also back-projected to the channel
base for time-frequency analysis in the sensorimotor
areas.

3) Fast Fourier Transform (FFT)
Fast Fourier Transform (FFT) was applied to the back-
projected EEG data in both band power analysis and
sensorimotor area time-frequency analysis in order to
transform the time domain EEG data to frequency and
time-power-frequency domains. The FFT for band power
analysis was executed using a hamming window, with a
size of 2 seconds and a 50% overlap. The FFT frequency
range was set from 1 to 50 Hz.

4) Time-Frequency and Band Power Analyses
Two analysis approaches were used in this study.
The time-frequency analysis was used to closely observe
the brain dynamics in the lower-limb movement area
of the brain and the band power analysis was used to
observe the brain dynamic in different brain regions.
Time-frequency analysis provides not only the fre-
quency, but also the temporal information of the EEG
data, which allows us to observe both stationary and
non-stationary phenomena. Event-related spectral per-
turbation (ERSP) was employed to visualize the time-
frequency results. Both band power and time-frequency
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results were baseline normalized in each trial to the cor-
responding standing phase EEG data. In order to target
the brain dynamics of the lower-limb movement areas,
a lower-limb movement area strengthening method was
applied to the back-projected channel data near the
sensorimotor area. Based on the brain anatomy, the
Cz channel is the nearest to the lower-limb movement
area, the FCz channel and the CPz channel, which are
proximal to Cz, were averaged to into the ERSP results.
Channel C3 and C4 were also averaged into an ERSP
result. Finally, these two averaged ERSP results and
Cz channel ERSP result were averaged, as illustrated
in Fig. 2. This lower-limb movement area strengthening
method was performed to strengthen the signal from the
channels nearest to the lower-limb movement area.

F. Statistical Analysis

After processing, both gait and EEG data were assessed
statistically to determine significant effects of the GTMR task.
Due to the small numbers of trials and subjects (n = 9)
and the high variability between subjects the distributions
could not be determined to be normal, particularly when the
patient pool was divided into particular Brunnstrom stages.
Therefore, the non-parametric Wilcoxon signed-rank test was
used to compare between conditions, as it does not assume
such distributions. A significance threshold of 0.05 was used.
Due to the small number of subjects in each group, individual
subject data is displayed to allow for more particular.

III. RESULTS

A. Gait Performance

One of the primary objectives of the GTMR task is to
improve subject’s walking quality. Improvement in walking
can be assessed for both temporal and spatial features, utilizing
kinematic sensors attached to the legs. Improvements in timing
were assessed by measuring cadence, the number of steps
taken per minute, during the 60 second walking portion of the
experiment. A significant increase in cadence during GTMR
trials was observed, increasing to an average of 82.2 steps/min,
from an average of 74.1 steps/min in the ST trials (Figure 3).
Individually, almost all of the patients exhibited the same
or better average cadences, however this improvement was
highly variable (Fig. 4). Statistically significant improvement
occurred in the stage IV patients, which increased from a
group average of 76.1 steps/min to 89.5 steps/min, near the
target cadence of 90 steps/min, though notably this is driven
by large increases by subjects C and E. Neither stage III or V,
showed such statistical improvements at the group level.

In addition to the metric of cadence, the quality of the
steps taken was assessed using the kinematics of the leg.
As a common deficit in post-stroke patients is hemiplegia
resulting in foot dragging, one of the design parameters of
the GTMR task was to promote patients to lift their feet.
From the sensors placed on the body, the flexion angle of
each knee joint during the progress of each step could be
determined, within a possible range from 0◦, with a straight leg
at standing, to 90◦, with the knee at a right angle. The quality

Fig. 3. The average cadence of stroke patients during ST and GTMR
tasks. A significant cadence growth was observed during the GTMR
trials. The p-value of Wilcoxon signed rank test shows the significant
difference (p < .001).

Fig. 4. The average cadence of individual stroke patients in differ-
ent Brunnstrom stages during ST and GTMR tasks. Some cadence
improvement during GTMR trials was exhibited in almost all patients.
The error bars represent the standard deviation across the trials for that
condition. A statistically significant cadence increase at the group level
was observed only in stage IV. The green line indicates the 90 steps/min
cadence goal of the GTMR task.

of the step was assessed by knee active range of motion
(AROM), the peak knee flexion angle during the progress of
a step. While the GTMR task did not produce statistically
significant changes in knee flexion AROM across the entire
population, the AROM for the hemiplegic knee did increase in
the Brunnstrom Stage IV group (Figure 5). While no changes
were seen in the Stage V group, a slight decrease in AROM
in both hemiplegic and non-hemiplegic knees was seen in the
Stage III group, for the GTMR tasks, relative to the ST tasks.

B. Neural Response

Neural responses during the walking tasks were recorded
using EEG. Analysis of the ERSP of the EEG signals
allows for interpretation of the power changes in different
frequency components over the time course of the walking
tasks (Figure 6). From this analysis it can be seen that during
the walking tasks all subjects showed a typical alpha (8-12 Hz)
band power suppression relative to the standing phases of each
trial. This alpha band suppression was present for all subjects
under both conditions, however the extent of the suppression
varied significantly depending on the severity of the stroke,
with lower Brunnstrom stages displaying lower amounts of
alpha suppression. Brunnstrom stage V patients exhibited
alpha suppression levels to the most significant extent, stage III
patents showing minimal suppression, and stage IV showing
a clear intermediate level between the two. While particular
subjects showed increased central alpha suppression in the
ERSPs of the GTMR task relative to the ST task, the statistical
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Fig. 5. The average active range of motion (AROM) of knee flexion for stroke patients at different Brunnstrom stages. Knee flexion AROM increased
during GTMR trials for Brunnstrom stage IV patients while knee flexion AROM of Brunnstrom stage III patients dropped. No significance was found
in the knee flexion AROM between ST and GTMR trials (using of Wilcoxon signed rank test). (Hemi = hemiplegic, NoHemi = non-hemiplegic).

Fig. 6. Event related spectral perturbations (ERSPs) in the sensorimotor cortices of gait triggered mixed reality (GTMR) and single task (ST) trials
for stroke patients at different Brunnstrom stages, showing the group level composites (left column) and the individual subjects within that group.
Walking-induced ERD in the alpha bands (8-12 Hz) during GTMR and ST trials can be seen in all stages (highlighted regions). The baseline used
was before time t = 0 s corresponding to the standing phase preceding the dotted red line. The end of the walking phase and is demarked by a
dotted blue line at t = 60 s.

strength of these differences was not able to be established at
the group level.

A closer analysis of spectral power in different regions
of the brain revealed differences in activations between the
GTMR and ST conditions in different groups. During the
GTMR task, stage IV patients displayed significantly increased
power in the theta (4-7 Hz) and low-gamma (13-24 Hz) fre-
quency bands across most medial regions of the cortex, includ-
ing the medial-frontal cortex, along with increased power in

all frequency bands in the parietal region (Figure 7). Outside
of stage IV patents, minimal power differences between tasks
was seen in Brunnstrom stage V and stage III patients at the
group level.

IV. DISCUSSION

In this study, the GTMR task was utilized as a cognitive-
motor dual task tailored to assist lower-limb post-stroke reha-
bilitation. The experiment was designed to investigate the
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Fig. 7. Comparison of each subject’s spectral power of ST and GTMR conditions in theta (4-7Hz), alpha (8-12Hz), beta (13-24Hz), and low-gamma
bands (25-40Hz) at different cortical locations. Subjects are grouped into Brunnstrom stages (Stage III: B, G, I; Stage IV: A, C, E, H; Stage V: D, F).
Power increases in theta bands near frontal regions and increases of low-gamma bands near frontal, central and parietal regions can be observed
in Brunnstrom stage IV. Decreases in gamma band power near parietal and occipital can be seen in Stage III.

neural dynamics of stroke patients during these assisted lower-
limb rehabilitation tasks. Behavioral and EEG measurements
and analyses were carried out in order to assess the applica-
bility and usefulness of the GTMR task for rehabilitation and
observe the brain dynamics of unassisted and GTMR assisted
walking.

A. Improving Rehabilitation With Gait Triggered
Mixed Reality

Compared to traditional single task lower-limb stroke reha-
bilitation (only walking), research has increasingly suggested
that cognitive-motor dual tasks not only improve walking
ability [37]–[39] and reduce fall risk [38], but also enhance
brain activation [40], [41] in stroke patients. The GTMR
task employed in this study was designed based on similar
principles, and improved cadence as compared to the ST trials.
However, the source of much of this cadence increase was
derived from larger improvements in the Brunnstrom Stage IV
group, the Stage III and V patients didn’t show significant
cadence improvements. Some of this discrepancy could be
traced to the designed task difficulty, which was calibrated
to a healthy target cadence of 90 steps/min. Stage V patients
performed ST walking near this rate already, therefore it could
be expected that no significant difference between GTMR and

ST tasks would be found. As the experiment was designed
not just for speed, but to encourage patients to lift their feet,
instead of dragging them, this logic is also represented in the
AROM results, where there was negligible difference between
leg movements between the two tasks and the angles between
hemiplegic and non-hemiplegic legs are similar in Stage V. The
difference in Stage IV and Stage III improvements, for both
cadence and AROM results, can also be interpreted similarly.
Stage IV subjects were capable of achieving the objectives of
the task, but the task was either too ambitious or difficult for
the Stage III subjects. Stage IV subjects showed significant
improvements during the GTMR task when compared to
standard walking, in both cadence, which approached the ideal,
and in hemiplegic knee AROM. Unfortunately, the Stage III
subjects did not show improvements, and actually displayed
nominally decreased AROM angles for both legs in the GTMR
task. This discrepancy is suspected to be an influence of
cognitive motor interference, which is common for dual task
rehabilitation, particularly with the fact that it is exhibited
in both legs. Such cognitive motor interference has been
identified in reduction of gait performance during other dual-
task walking experiments [42]–[44].

One of the objectives of this study was to assess the applica-
bility of this system and task across stages. Given the small
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sizes of the patient groups, limited statistical power is a prob-
lem, and therefore strong conclusions based on group level
statistics are difficult to ascertain. However, the applicability of
the task across the population can still be gleaned, based upon
what group level findings are available and the trends seen
across the individual subjects. Overall the heterogeneity of
the different individuals and stages is apparent, and indicates a
fundamental challenge for improvements of any rehabilitation
system must incorporate, that training with an appropriate
intensity and motivation is essential for effective post stroke
rehabilitation. Luckily game-based rehabilitation tasks, like
GTMR, can easily alter task difficulty by toning down the
density of music beat targets, changing songs or virtual cues,
and widening acceptable tolerances. Beyond allowing the ther-
apy difficulty to be set appropriately, such a system allows for
an actively adaptive task, dynamically adjusting the difficulty
and environment to their particular level, as to continually
challenge and engage the subject, but without making the task
unachievable or demoralizing the subject. This could even be
done specifically to focus on where the particular deficits of a
subject, for example reinforcing improper leg kinematics, even
if the subject is performing well in speed.

B. Cortex Oscillations in Recovering Stroke Patients

As the recovery that occurs during rehabilitation is reflective
of neural changes due to neural plasticity, the impact of
rehabilitation scenarios should be present in the processes
of brain and the signals they generate. The multisensory
feedback endemic to the GTMR task creates an intensive and
motivational rehabilitation environment, the effects of which
were assessed electrophysiologically. Decreases in power of
central alpha were shown in both GTMR and ST walk-
ing tasks. Similar decreases in alpha and beta bands over
sensorimotor cortices has been found during active walking
on the treadmill, where it has been suggested that these
decreases are related to increased cortical involvement during
active and/or spontaneous lower-limb movement [45]–[47].
Unfortunately, there was not sufficient statistical differences
in central alpha power between the GTMR and ST tasks
at the group level, though there were notable statistical
differences for certain individuals. The inability to robustly
resolve these differences at the group level are likely a
result of lack of statistical strength due to small numbers
of subjects within each group and heterogeneity of brain
lesion locations throughout the subject pool. Despite not being
able to resolve differences in ERDs between tasks, clear
differences in central alpha depression during walking was
present across different stages of stroke, with a better stroke
progression corresponding to stronger ERD. This is in line
with evidence showing that EEG-based analyses, such as
quantitative electroencephalography, which derives quantita-
tive metrics, such as power spectra, from EEG signal, can serve
as prognostic indices and monitory biomarkers in post-stroke
motor recovery [13], [48]–[51]. There has been multiple inves-
tigations correlating cortical parameters and stroke disability
assessment scales, such as the National Institutes of Health
Stroke Scale (NIHSS) [48], [49], activity of daily living (ADL)

evaluations [52], modified Rankin Scale (mRS) [51], and
Fugl-Meyer assessments (FMA) [13], [50], [51], [53].

Investigating GTMR effects in other regions of the brain
did yield some statistically relevant differences between the
GTMR and ST conditions, showing the impact of the GTMR
task on the brain and indicating where the most benefit may
be derived. Studies have linked low frequency band power
increases with task difficulty [54] and decision making [55].
Gevins et al. reported that difficult tasks elicited large theta
signals at AFz (midline of Fz and FPz channel) [54], which
may indicate that the relative increases of frontal theta seen
in many subjects in our study are indicative of the challenge
of the GTMR task. In accordance with previous studies
comparing active to passive walking [45], [46], we observed
significant power increases in low gamma band frequencies
(25-40Hz) at frontal, central, and parietal regions during
GTMR trials of the stage IV patients. Similarly, Bulea et al.
observed significant increases in gamma band frequencies over
the posterior parietal cortex during active treadmill walk-
ing when compared to passive walking [45]; such gamma
increases in our study may indicate that our virtual task
helps drive motor processes in a similar way to a physical
external driver. We also observed broadband power increases
near the parietal area for stage IV patients, analogous to
results by Chang et al. [56], who observed similar broad band
power increases at Pz and Oz channels during VR balancing
tasks for elders with fall risk. Notably, the most significant
neural effects were seen in the stage IV subjects, who also
exhibited the strongest improvement in cadence during the
GTMR trials. This indicates that the use of the GTMR as
a rehabilitation tool, was most effective for and most accurate
to the capabilities of the stage IV subjects, and that such EEG
features correspond to task effectiveness. If the task presented
by the GTMR was too easy, then minimal differences in neural
response indicating challenge would be expected, as exhibited
in the stage V subjects. Stage III subjects displayed possible
decreases in cortical power during the GTMR tasks, relative
to the ST tasks, however the robustness of this was limited
by sample size, this could indicate that these subjects found
both normal walking and that enhanced with GTMR equally
challenging, or that the GTMR task was felt to be too difficult
and subjects became apathetic. These results indicate that the
GTMR task is an effective challenge and engaging method
of therapy for rehabilitation and again reiterate the need
to customize the task and adapt its difficulty to the varied
capabilities of the participants.

C. Towards Home Based Rehabilitation

While this study assessed the immediate neurological and
behavioral effects of the GTMR task, showing its capa-
bilities as part of a potential rehabilitation regime, further
assessment in a longitudinal study is needed to address its
efficacy for long term rehabilitation and how it compares to
traditional rehabilitation systems. Given its small sample size
and focus on determining the applicability across the range
of physiological capabilities in ambulatory stroke patients,
this study is limited to this assessing the applicability to
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particular subjects and acting as a guide for continued studies
which can focus on the particular impact that it has on a
more targeted population. Further work is also needed to
develop an adaptive paradigm which can scale the difficulty
of the task to complement capabilities of the patient and
their progression through the rehabilitation progress. A notable
advantage of such an automated, adaptive system is that such
a system can be used at home, in conjunction with in-clinic
support. Compared to traditional hospital based rehabilitation
programs, home based rehabilitation offers better accessibility
to medical rehabilitative care by providing cost-efficient and
effective rehabilitation tasks using assist systems. Many unique
features and advantages contribute to the feasibility of GTMR
thriving as a practical home based rehabilitation system for
assisting lower-limb stroke rehabilitation. Mixed reality based
systems integrated with motion sensors can minimize the
safety issues by allowing the participants to see the real-
world environment. Gait triggered mixed reality provides
appropriate motivation and flexibility in altering task diffi-
culty for the different capability levels of patient. Moreover,
an integrated multimodal monitoring system provides not only
behavioral, but also cortical information regarding the rehabili-
tation progress, which can automatically be sent to supervising
clinicians and rehabilitation specialists for review. Particularly,
integrated EEG monitoring plays a role in stroke rehabilitation
by providing CNS recovery information for tracking recovery
progress comprehensively. The impacts of such a system are
clearly limited to patients who are ambulatory, while such an
augmented reality system could theoretically be adapted for
other motor deficits, such an application would still remain
limited to relatively moderate deficits where subjects can
initiate and perform movements without the need for external
physical interaction. Such an assisted system could potentially
be integrated with exoskeletal system, which could expand the
applicability to greater deficits. Such automated systems have
value in expanding the potential reach of clinical rehabilitation,
augmenting limited in-person capacity of facilities and staff
with remotely monitored and easily accessible rehabilitation.
While a wet, wired electrode EEG system was used in this
study, the potential of dry, wireless electrode EEG monitoring
systems as effective alternatives should be recognized for
the portability and ease-of-use needed in home based reha-
bilitation systems. Such advancements in noninvasive brain
monitoring technologies, like electroencephalography, lower
the bar for in-home neurological explorations of rehabilita-
tion for stroke. As neurological monitoring systems progress
further towards commercialization and integrate with appro-
priate rehabilitation assist systems, like our GRMR task,
emerge, home-based post-stroke rehabilitation becomes closer
to providing a missing piece of the puzzle for proper and
comprehensive neural rehabilitation.

V. CONCLUSION

In this study, we proposed a gait triggered mixed reality
system tailored for assisting post-stroke lower-limb rehabili-
tation and assessed its application across ambulatory stroke
patients. The improvement in metrics of cadence and knee

AROM highlight the importance of appropriate task difficulty
in lower-limb stroke rehabilitation and the capacities of such
intervention. Moreover, the relationship between neural oscil-
lations across the cortex and Brunnstrom stage provides insight
into the complex neural activity of stroke patient recovery and
the heterogeneity of brain activity across patients at different
stages of improvement. Ultimately, gait triggered mixed reality
elevates the performance of lower-limb stroke rehabilitation
in a motivational environment and has the potential to signif-
icantly enhance home-based lower-limb stroke rehabilitation.
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