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Dynamic Causal Modeling on the Identification
of Interacting Networks in the Brain: A
Systematic Review

Duojin Wang™ and Sailan Liang

Abstract— Dynamic causal modeling (DCM) has long
been used to characterize effective connectivity within net-
works of distributed neuronal responses. Previous reviews
have highlighted the understanding of the conceptual basis
behind DCM and its variants from different aspects. How-
ever, no detailed summary or classification research on the
task-related effective connectivity of various brain regions
has been made formally available so far, and there is also a
lack of application analysis of DCM for hemodynamic and
electrophysiological measurements. This review aims to
analyze the effective connectivity of different brain regions
using DCM for different measurement data. We found that,
in general, most studies focused on the networks between
different cortical regions, and the research on the networks
between other deep subcortical nuclei or between them and
the cerebral cortex are receiving increasing attention, but far
from the same scale. Our analysis also reveals a clear bias
towards some task types. Based on these results, we iden-
tify and discuss several promising research directions that
may help the community to attain a clear understanding of
the brain network interactions under different tasks.

Index Terms— DCM, interacting networks, effective con-
nectivity, brain regions.
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HPC: hippocampus.

AMY: amygdala.

BG: basal ganglia.

Thal: thalamus.

ACC: anterior cingulate cortex.
CPM: continuous passive movement.
DMN: default mode network.

AM: autobiographical memories.
EmpaToM: empathy & Theory of Mind.

I. INTRODUCTION

YNAMIC causal modeling (DCM) is a generic Bayesian

framework for inferring hidden neuronal states from
brain activity measurements and their context-dependent mod-
ulation. Since its introduction in 2003 by Friston et al. [1] for
functional magnetic resonance imaging (fMRI) data, following
a dozen years of research involving hundreds of studies on
dynamic changes among multiple brain regions, a consensus
view has emerged suggesting that DCM is the predominant
way of characterizing effective connectivity within networks
of distributed neuronal responses [2]. Currently, DCM has
been extended to the data of electroencephalography (EEG) [3]
and functional near-infrared spectroscopy (fNIRS) [4]. The
basic idea of DCM is to construct a reasonably realistic neu-
ronal model of interacting brain regions, and enable effective
connectivity among different brain regions to be estimated
from observed data [1]. Previous reviews have highlighted the
understanding of conceptual basis behind DCM and its vari-
ants from methodological [5], biophysical [6] and mathemati-
cal [7] aspects. However, no detailed summary or classification
research on the task-related effective connectivity of various
brain regions has been made formally available so far, and
there is also a lack of application analysis of DCM for hemo-
dynamic and electrophysiological measurements. Fortunately,
the scientific literature has produced hundreds of studies that
focused, directly or indirectly, on the application of DCM,
which has resulted in a multitude of cases of the interactions
between the elements of the interested neural system related to
the different tasks. A comprehensive analysis for the effective
connectivity of different brain regions using DCM for different
measurement data is therefore eagerly anticipated. In line with
this objective, this review aims to screen and fix on the most
relevant DCM research available in the literature to identify
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the effective connectivity of various brain regions for different
tasks. We focus on interacting networks in the brain under the
conditions of tasks related to motor, cognition, and specific
diseases. We screened more than six hundred papers in the past
ten years and resulted in a total of 181 relevant publications.
We structured our analysis to address three main research
questions:

« What tasks are involved in the study on the identification
of interacting brain networks using DCM?

« Which effective connectivity has been identified in these
studies?

o What is the status of the three data sources used for brain
connectivity analysis?

The rest of this article is organized as follows. In Section II,
we describe the literature search methodology, which includes
the search query, the exclusion criteria, and the taxonomy used
to classify results by task types and effective connectivity.
Then in Section III, the results of our analysis are reported
and the most relevant trends are identified. In Section IV we
present a critical analysis of the results and addressing the
research questions posed. Finally, Section V concludes this
article.

[I. MATERIALS AND METHODS

We obtained 673 titles from an initial search of the Web of
Science database and China Knowledge Resource Integrated
Database (CNKI) using the following query string on the paper
title, keywords, and abstract, on papers published in the past
decade (between 01-01-2011 and 31-12-2020):

(DCM OR “dynamic causal modex”) AND (“effective con-
nectivity” OR “brain network”) AND (fMRI OR “functional
magnetic resonance imaging” OR EEG OR electroen-
cephalography OR fNIRS OR “functional near-infrared spec-
troscopy” OR NIRS OR “near-infrared spectroscopy” OR
“optical topography”)

After reading titles and abstracts, we excluded duplicated
publications and those that met one or more of the follow-
ing criteria: reviews, conference proceedings, book chapters,
or dissertations; the studies include measurement data other
than fMRI, EEG, or fNIRS; the studies include approaches
other than DCM; DCM theory research, non-relevant primary
outcome; subjects in research are not human. After reading
the full texts a total of 181 papers were included in the study.
The detailed selection process is illustrated in Fig. 1.

We classified the papers using a twofold taxonomy com-
posed of effective connectivity and task categories, as shown
in Fig. 2. According to traditional brain regions, effective con-
nectivity has been grouped into the following six categories:

o Cerebral cortex (CC)-CC, which represented in the CC
including frontal cortex (FC), parietal cortex (PC), occip-
ital cortex (OC), temporal cortex (TC), insula (INS),
and hippocampus (HPC), there are connections between
certain two brain regions.

o CC- amygdala (AMY), which represented there are con-
nections between CC and AMY.
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through other
sources (n=0)

and CNKI (n=175)

i i
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Fig. 1. PRISMA flow diagram of literature search.

e CC- basal ganglia (BG), which represented there are
connections between CC and BG.

o CC-thalamus (Thal), which represented there are connec-
tions between CC and Thal.

o« AMY-Thal, which represented there are connections
between AMY and Thal.

e BG-Thal, which represented there are connections
between BG and Thal.

Based on the types involved in all publications, the tasks
were clustered into:

« Motor tasks, which included movement or motor-imagery
of upper limb, lower limb and all four limbs.

« Cognitive tasks, which included multiple senses, working
memory, emotion regulation, speech activities, decision-
making and other cognitive tasks.

« Disease-related tasks, which included disease diagnosis
and drug effect.

In addition, we further analyzed these papers based on
different data sources. Considering that the COVID-19,
we excluded the data for 2020, and some categories with too
few numbers have not been included.

I1l. RESULTS

Generally, as shown in Fig. 3, the number of publications
has increased over the years although it has declined since
2016. However, the trends of different effective connectivity
categories are diverse (Fig. 4). For instance, research on the
interactions between CC and CC shows a growth similar
to the overall trend. CC-AMY also rises on the whole, but
with large fluctuations and low fit trend line. Other studies,
including CC-BG, CC-Thal, AMY-Thal, and BG-Thal, were
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Fig. 2. Taxonomic overview of the reviewed studies. The size of the grey dot represents the number of reviewed studies.

not further analyzed due to the small number (1-2 papers
per year). The number of the three task categories (Fig. 5)
also illustrated a sluggish growth over time, with a nearly
linear fitting trend. The observed data for 2020 in all of the

categories above are lower than predicted, which indicates
that COVID-19 has a significant impact on global scientific
research. The distribution of the reviewed works across the
different categories is presented in Fig. 2.
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categories over time.

A. Effective Connectivity

1) FC-FC: The interactions between FC and FC is involved
in numbers of literature, with 78 publications [4], [3], [8]-[83].
Overall, these publications cover all of the task types included
in our taxonomy (see the last column of Fig. 2), of which the
more relevant are upper limb movement, sensory tasks, and
disease diagnosis.

2) FC-PC: This is the most frequent effective connectivity
category in the literatures, with 80 publications [4], [8]-[16],
[171-{23], [26]-[28], [301, [31], [33], [35]-{42], [45], [54]-
[561, [61], [66], [701-[73], [75], [76], [78], [80]-[82], [84]-
[104], [106]-[117] and 11 different task types covered. Like
FC-FC, upper limb movement, sensory tasks, and disease
diagnosis being also the most used.

3) FC-OC: We found 27 papers [3], [23], [35], [47], [57]-
[59], [65], [69], [77], [86], [94], [96], [97], [99], [100], [118]-
[128] involved in this connectivity category, spanning eight
different task types, of which disease diagnosis had the highest
prevalence.

4) FC-TC: We found 30 publications [3], [29], [33], [36],
[44], [51], [56], [57], [63], [67], [111], [115], [120], [121],
[124], [129]-[137] on this connectivity category. Eight task
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Fig. 5. Number of publications and forecasts on task types over time.

types were proposed for its analysis, the most frequent being
sensory tasks, speech tasks, and disease diagnosis.

5) PC-PC: With 55 publication, [4], [10], [11], [13]-[16],
[171-[23], [27], [28], [31], [35]-[39], [41], [42], [54], [61],
[67], [70]-[73], [76], [81], [87]-[90], [101]-[107], [109],
[112]-[114], [117], [138]-[142], [144], [145], this is the third
most considered connectivity category in this review. Ten
different task types were presented and the most relevant were
upper limb movement, sensory tasks, and disease diagnosis.

6) PC-OC: The interactions between PC and OC is the fifth
most covered connectivity category, with 29 publications, [23],
(271, [35], [39], [45], [71], [87]-[89], [92]-[94], [96], [98],
[99], [115], [120], [124], [141], [142], [146]-[154]. The most
frequent task types were sensory tasks.

7) PC-TC: Twenty papers, [26], [36], [56], [63], [67], [73],
[76], [98], [100], [106], [108], [111], [120], [124], [129],
[133], [141], [143], [144], [154], covered this connectivity
category, with 7 different task types, the most relevant being
disease diagnosis.

8) OC-OC: We found 24 publications [27], [35], [39], [45],
[58], [591, [77], [87], [100], [118], [121], [122], [142], [144],
[149], [150], [153], [155]-[161] that studied the interactions
between OC and OC. Seven task types were presented for this
analysis and the most relevant was sensory tasks.

9) OC-TC: We found 23 papers [26], [44], [57], [87]-[89],
[100], [115], [121], [124], [126], [141], [144], [149], [151],
[154], [155], [157], [161]-[165] covering this connectivity
category, spanning seven different task types, of which sensory
tasks had the highest prevalence.

10) TC-TC: There are 24 publications, [3], [29], [36], [51],
[67], [73], [74], [76], [88], [89], [100], [105], [121], [132],
[134], [136], [137], [155], [161], [162], [164]-[167], studied
the interactions between TC and TC. As in the previous case,
seven task types were presented and the most relevant were
sensory tasks, speech tasks, and disease diagnosis.

11) FC-INS: Nine papers, [30], [34], [62], [71], [79], [110],
[128], [131], [145], involved in this connectivity category, with
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a heterogeneous set of task types (please refer to Fig. 2 for
more details).

12) FC-HPC: Eight papers, [60], [64], [79], [97], [115],
[168]-[170], focused on this connectivity category. Five task
types were proposed for its study: memory tasks, emotional
tasks, decision-making, disease diagnosis, and drug effect.

13) PC-INS: We found four publications [30], [71], [131],
[145], that considered this scenario, with three cognitive
tasks proposed: sensory tasks, emotional tasks, and disease
diagnosis.

14) PC-HPC: Only one paper [115], covered this category,
with one task type: disease diagnosis.

15) OC-INS: We found two papers [71], [160] covering this
connectivity category. The analysis of certain cognitive tasks
and disease diagnosis were the task types considered.

16) OC-HPC: Only one publication [171] was found in this
category, focusing on the analysis of disease diagnosis.

17) TC-HPC: Only one paper [115] was found on this
category. One task type was employed for this analysis: disease
diagnosis.

18) INS-HPC: We only found one paper [79] covering this
connectivity category, which focused primarily on drug effects.

19) FC-AMY: There are twenty papers [43], [46]-[48], [69],
[83], [97], [110], [119], [123], [143], [168], [169], [172]-
[177], [179] involved in the study of interactions between
FC and AMY. Five task types were presented and the most
relevant were emotional tasks and disease diagnosis.

20) PC-AMY: Only two publication, [174], [175], covered
this connectivity category. Disease diagnosis was the task type
considered.

21) OC-AMY: Six papers, [26], [69], [119], [146], [174],
[179], covered this connectivity category, with four different
task types: sensory tasks, emotional tasks, disease diagnosis,
and drug effect.

22) TC-AMY: We found three publications [142], [149],
[180] that studied the interactions between TC and AMY. Two
cognitive tasks were presented: sensory tasks, and emotional
tasks.

23) INS-AMY: Only one paper [110] were found in this
connectivity category, focusing on the analysis of disease
diagnosis.

24) HPC-AMY: We found three publications [168], [169],
[181], that considered this scenario, with two cognitive tasks
proposed: memory tasks, and emotional tasks.

25) FC-BG: Three publications [152], [178], [182] were
found on this category. Two task types were employed for
this analysis: decision-making and drug effect.

26) PC-BG: Only one paper [152] covered this category.
One task type was proposed: decision-making.

27) INS-BG: Only one paper [183] covered this connectivity
category. Emotional tasks were the task type considered.

28) HPC-BG: Only one publication [79], covered this cate-
gory, with one task type: drug effect.

29) FC-Thal: We found twelve publications [34], [63], [64],
[72], [78], [82], [83], [125], [152], [178], [184], [185] that
studied the interactions between FC and Thal. Five different
task types were presented: sensory tasks, decision-making,
other cognitive tasks, disease diagnosis, and drug effect.

30) PC-Thal: Five papers, [72], [82], [145], [154], [184],
covered this category, with two task type: disease diagnosis
and drug effect.

31) OC-Thal: Only one paper, [152], covered this category,
with one task type: decision-making.

32) TC-Thal: We found two publications, [63], [154], that
considered this scenario, with two disease-related tasks pro-
posed: disease diagnosis and drug effect.

33) INS-Thal: We found three papers [34], [183], [186] cov-
ering this connectivity category. Two task type was proposed:
sensory tasks and emotional tasks.

34) AMY-Thal: Only one paper [83] covering this category,
which focused primarily on drug effect.

35) BG-Thal: Three papers [152], [178], [183] were studied
the interactions between BG and Thal, with two different task
types: emotional tasks, decision-making, and drug effect.

B. Task Type

1) Motor Tasks of Upper Limbs: This type refers to the
movement of hands, especially the fingers. Motor tasks of
upper limbs were used to measure the effective connectivity
of different brain regions in 16 publications. These cov-
ered the following specific tasks: finger-pinching execution
and imagery, finger-tapping execution and imagery, finger
extension/flexion execution, out-and-back finger movement,
squeeze and release a ball, hand force-tracking task, wrist
extension/flexion execution, and fist closures task.

2) Motor Tasks of Lower Limbs: We found only one paper
mentioning this category. The task required the subjects to
perform continuous passive motion (CPM) of the ankle.

3) Motor Tasks of All Four Limbs: This task type has been
also involved in only one paper, it required the subjects to
perform wrist and ankle flexion movements.

4) Stimulation of Different Sensory Channels: This type
includes eight different sensory tasks such as visual, auditory,
tactile, vibrotactile, thermal, gustatory and electrical stimula-
tion as well as cold-stimulating pain. It is the second most
commonly used task type in this review (TABLE I), with
43 appearances in papers, spanning 16 different effective
connectivity categories.

5) Memory Tasks: The memory tasks were proposed by 13
papers. Nine specific tasks were identified: immediate mem-
ory task, delayed memory task, the n-back task with let-
ters, numbers, and pictures, multi-source interference task,
Think/No-Think task, Sternberg item recognition task, and
autobiographical memories (AM) retrieval task.

6) Emotional Tasks: Emotional tasks are mainly triggered
by visual or auditory stimuli. Nine task types were proposed
in 16 publications and 18 effective connectivity categories
were determined. The nine tasks included emotional face dis-
crimination, object discrimination, emotional face-matching,
emotional film clips feedback task, emotional sounds dis-
crimination, neurofeedback task with social images, picture
encoding task, free recall memory test, and empathy & Theory
of Mind (EmpaToM) task.

7) Speech Tasks: This kind of task was found in 18 publi-
cations, all of them focusing on the interactions between CC
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and CC. Thirteen tasks were involved: speech discrimination,
semantic matching task, picture naming task, gesture-speech
integration, make predictions about the onset of a speech
sound, semantic-based therapy task, Stroop test, semantic
feedback task, tone judgment task, dialogues stimuli, rhyming
task, phoneme detection task, semantic categorization task.

8) Decision-Making Tasks: This type of task is also based on
visual stimuli. It was used in almost all effective connectivity
categories, except for the interactions between AMY and Thal.
The specific tasks used were target recognition in different
visual fields, numbers detection and repetition, incentive-
compatible free-choice tasks, as well as event and object
generation.

9) Other Tasks Related to Cognition: Eleven publications
were found covering this aspect. It refers to all other cognitive
tasks that do not belong to the mentioned five types. Most
studies focused on the default mode network in the resting-
state. Reaction time task, monetary incentive delay task, famil-
iarity judgement of faces, focusing on self condition or other
conditions while watching a set of video-vignettes, and button-
press with/without the restriction of movement lateralization
or/and timing, were the other five tasks found in this category.

10) The Tasks Related to Disease Diagnosis: This type is
the most considered in the literature, with 48 appearances in
papers, spanning 24 different effective connectivity categories
(TABLE I). We found 24 different specific tasks, the most
frequent being resting-state fMRI, n-back tasks, emotional face
discrimination, object discrimination, and image matching of
different targets.

11) The Tasks Related to Drug Effect: Eight different tasks
have been proposed in 16 publications, all of them focusing
on the changes in effective connectivity resulting from dif-
ferent drugs. The most frequent were resting-state fMRI after
drug intervention and repetitive finger movements after drug
intervention.

C. Data Source

As shown in Fig. 6, further analysis of the research data
sources indicated that the number of studies based on fMRI
accounted for the vast majority of the total, but it has stopped
increasing after 2015 and leveled off gradually; the number of
studies on EEG has generally increased slowly over time, and
predictive model shows that research on EEG should increase
further excluding the factor of COVID-19. DCM has only
recently been applied to adult fNIRS, there are not many
related studies, and its number showed a nearly linear growth.

IV. DISCUSSION

We observed an increasing relevance of identification of
interacting networks in the brain using DCM. This fitting
trend, visible in the nearly linear growth in the numbers of
papers (Fig. 3) is, however, only in part accompanied by an
increase in the range of effective connectivity and related tasks
that are researched, which show a more moderate increment.
This, together with our taxonomic analysis summarized in

OVERVIEW OF THE TASKS FOUND ON THE REVIEWED WORKS
ENGAGED IN THE THREE MAIN TYPES

TABLE |

AselL

SYSB) 10JOJAl

Upper
limb

Finger-pinching  execution and  imagery,
finger-tapping execution and imagery, finger
extension/flexion  execution,  out-and-back
finger movement, squeeze and release a ball,
hand force-tracking task, wrist extension/flexion

execution, fist closures task.

Lower
limb

continuous passive movement (CPM) of the
ankle

All four
limbs

Wrist and ankle flexion movements

syse} aApIugo)

Sense

Visual stimulation, auditory stimulation, tactile
stimulation, vibrotactile stimulation, electrical
stimulation, cold-stimulating pain,
stimuli, gustatory stimuli.

thermal

Memory

Immediate memory task, delayed memory task,
n-back task with letters, n-back task with
numbers, n-back task  with  pictures,
multi-source interference task, Think/No-Think
task, Sternberg item recognition task, AM
retrieval task.

Emotion

Emotional  face  discrimination,  object
face-matching,

emotional film clips feedback task, emotional

discrimination, emotional
sounds discrimination, neurofeedback task with
social images, picture encoding task, free recall
memory test, EmpaToM task.

Speech

Speech discrimination, semantic matching task,
picture naming task, gesture-speech integration,
make predictions about the onset of a speech
sound, semantic-based therapy task, Stroop test,
semantic feedback task, tone judgment task,
dialogues stimuli, rhyming task, phoneme
detection task, semantic categorization task.

Decision
-making

Target recognition in different visual fields,

numbers detection and repetition,
incentive-compatible free-choice task, event and

object generation.

Others

Resting-state fMRI, focusing on self condition
or other condition while watching a set of
video-vignettes, button-press with/without the
restriction of movement lateralization or/and
timing, reaction time task, monetary incentive
delay task, familiarity judgement of faces,

SYSE) PaIR[AI-aSBISI(]

Disease
diagnosis

Resting-state  fMRI, detection on a rapid
successive visual presentation, thinking of an
appropriate word to complete an incomplete
sentence and press the button simultaneously,
letter n-back task, continuous picture viewing,
emotional  face object
discrimination, Stroop task, verbal n-back task,
gesture-speech integration, target recognition in
different visual fields, resting-state EEG, EEG
recording during different paradigms, image
matching of different targets, object-location
associative learning task, event-related fMRI,
numeric n-back task, emotional n-back task,
standard neuropsychological test, auditory
paced  finger tapping  task,
delayed-response  working memory task,
salience integration task, finger-tapping task,
reward learning task.

discrimination,

sequence

Drug
effect

fMRI after drug intervention, auditory stimuli
caused by familiar names during the loss of
consciousness induced by propofol, emotional
face discrimination after drug intervention,
picture n-back task, Cocaine-word Stroop task,
repetitive  finger movements after drug
intervention, EEG recording during different

paradigms, Go/NoGo response inhibition task.
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Fig. 2, demonstrates that the current research methods for
coupling between brain regions are still restricted to a small
portion of the applicable task types and effective connectivity
categories. In the following sub-sections, we will consider in
more detail the possible causes of this situation.

A. Effective Connectivity

The number of papers focusing on the interactions between
CC and CC prevails by one or two orders of magnitude
over any other effective connectivity categories considered
in our taxonomy, of which FC-FC, FC-PC, and PC-PC are
the most numerous in the CC-CC category. FC is the largest
lobe of the brain and makes up about a third of the surface
area of each hemisphere, it is devoted to different actions,
such as skeletal movement, ocular movement, speech control,
and the expression of emotions, etc., [187]. The PC plays
important role in integrating sensory information from various
parts of the body, knowledge of numbers and their relations,
and in the manipulation of objects. It also includes many
other functions such as processing information relating to the
sense of touch [187]. Therefore, all of the tasks mentioned
in Fig. 2 involved the connection between the FC and the
PC. In our opinion, however, the dominance of more effective
connectivity between certain brain regions does not imply that
the effective network between other brain regions is less rele-
vant. A simple task in daily activities often requires multiple
brain regions to cooperate to complete. The current analysis
shows that in the CC-CC category, there are too few effective
connectivity analyses related to INS and HPC, with only 28
publications (6.7% of the total), especially those related to PC-
HPC, OC-INS, OC-HPC, TC-HPC, and INS-HPC. This may
be explained by the fact that the connection mechanism of
these brain regions is not well understood and is still under
exploration. In particular, the paper accidentally discovered
that INS and HPC are connected during the study of the

anterior cingulate cortex (ACC) to HPC effective connectivity
in response to the drug [79].

The BG is of major importance for normal brain function
and behavior. They are associated with a variety of functions
such as control of voluntary motor movements, eye movements
and emotion, etc. [188]. Another brain region involved in
motor tasks is the Thal. The Thal has multiple functions,
generally believed to act as a relay station, or hub, relay-
ing information between different subcortical areas and the
CC [187]. However, none of the papers studied the interaction
between BG or Thal and other brain regions in motor tasks.
It is most likely although the functions of BG and Thal have
been recognized, the mechanism of their connection with other
brain regions is still poorly understood. Moreover, BG and
Thal are close to the center of the brain. Generally, the
electrophysiological and hemodynamic data of the deep brain
cannot be obtained by using EEG and fNIRS, and can only be
measured with the help of fMRI in most cases. Therefore, the
limitation of research methods may also lead to this situation.

B. Task Type

In the category of motor tasks, upper limb tasks are more
than the other two types. Their experimental design is usually
relatively simple, and it is easier to implement the activation
of the corresponding CC in related studies. Despite these prac-
tical advantages, we consider them insufficient to reflect the
activation of the CC by all modes of motion. The motor tasks
that have been particularly disregarded in the literature are the
movement or motor-imagery of the lower limbs (one paper), all
four limbs (one paper), and other parts of the body (no paper).
We consider that these aspects are worthy of further research,
since they often present in many daily activities, rehabilitation
treatments, and other realistic scenarios, and with the further
intensification of demographic aging, the elderly’s demands
for rehabilitation, especially exercise training, are gradually
increasing. The lack of research on non-upper limb motor tasks
in the literature may be related to the method of the research
data acquisition. In general, fMRI and EEG require subjects to
keep their bodies stationary during the experiment. Although
fNIRS is not sensitive to subjects’ head movements, its data
has not been applied to DCM for a long time, and there are
still few related studies at present.

The category of cognitive tasks is extremely popular in the
study on identification of interacting networks in the brain
by means of DCM. This is probably due to the fact that
fMRI and EEG are traditional imaging technologies in the
field of cognitive neuroscience. After years of development,
both of them have established experimental tasks and relatively
mature experimental paradigms. Therefore, cognitive tasks
accounted for the vast majority in this review. In addition,
sensory tasks are the largest type in the category of cognitive
tasks. This may be explained by the fact that the sensory
system is an important way for people to interpret information
from the physical world and create perceptions of the world
around them. Another interpretation is that visual, auditory,
and other sensory tasks in most cases only need to perform
simple stimulation on the corresponding sensory channels.
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It is relatively easier to implement in experimental design
than emotion regulation, speech activities, and other cognitive
tasks. There are not many studies related to memory tasks,
however, it is worth noting that all memory tasks are directly
related to working memory, and it seems that researchers
are very interested in how working memory load modulates
brain connectivity through different n-back tasks. Emotion and
speech are two other popular types of cognitive tasks. The
difference is that the emotional tasks are relatively simple and
mainly focus on analyzing the effective connectivity between
different brain regions through emotional visual stimuli. The
specific types of speech tasks are more diverse, involving
language, semantics and gesture-speech integration, etc. Nev-
ertheless, we believe that they should receive more attention
in the future, especially the former, because emotional tasks
involve 20 effective connectivity types, but most of them are
supported by only one publication, their effectiveness needs
to be further explored. The same applies to decision-making
tasks. They involve multiple brain connectivity, but are still
poorly considered in the literature and should therefore receive
more attention in the future. The default mode network (DMN)
is part of the brain structure which shows higher neural activity
when one is at rest, it has always been a research hotspot in the
field of neuroscience. Therefore, resting-state fMRI is the most
common task type among other cognitive tasks. Some of the
individualized tasks associated with different studies, such as
focusing on self condition or other conditions while watching
a set of video-vignettes and button-press with/without the
restriction of movement lateralization or/and timing, are also
classified as the type of other cognitive tasks.

In the category of disease-related tasks, disease diagnosis
is a very important and popular type. In our opinion, these
tasks are closely related to the cognitive tasks mentioned
earlier, because the vast majority of the diseases in these
researches are psychiatric disorders which characterize by
a multitude of symptoms affecting a variety of cognitive
domains. Because of this, some of the tasks in this type
are the same as the category of cognitive tasks, while some
are new. As a result, the number of tasks related to disease
diagnosis is the largest of all categories. The diseases in the
literature mainly involved schizophrenia and depression, with
21 publications. Others such as posttraumatic stress disorder,
social anxiety, amyotrophic lateral sclerosis, autism, epilepsy,
irritable bowel syndrome, and smoking addiction are supported
by only less than two research each. Understanding the neural
basis underlying various psychiatric disorders is essential for
the diagnosis and treatment of such disorders. Therefore,
in our opinion, research directions related to this task type
are particularly promising. The same applies to the type of
drug effect. The changes in effective connectivity resulting
from drug-induced functional and neurological abnormalities
vary widely. At present, however, the effects of most drugs
are rarely studied by researchers, they still have a long way
to go.

C. Data Source

The fMRI has always been the most commonly used
data source for researchers to use DCM to infer effective

connectivity. Although research based on EEG and fNIRS data
has gradually increased in recent years, these two techniques
are generally unable to detect brain activity in deep subcortical
nuclei, which has led to the largest number of fMRI-based
studies in this review. However, fMRI and EEG are more
sensitive to the subjects’ head movements, so they cannot
accurately record the brain’s responses when the infants are
awake. On the contrary, the fNIRS devices can realize data
collection in various occasions and locations, and have a high
tolerance to the movement of the subjects. Therefore, in recent
years, research on brain connectivity based on fNIRS data are
gradually increasing.

D. Limitations

The brain connectivity analyzed by DCM is directional, but
due to the numerous brain regions involved, the number of
directed networks is too large. Therefore, this review did not
focus on the directed network between the concerned brain
regions, which is nonetheless an important aspect that should
be addressed in future analysis and research.

Generally, emotional and cognitive tasks should be two
types of tasks, rather than subordination, but in almost all liter-
ature, emotional tasks are implemented through emotional sen-
sory stimuli. Therefore, this review classifies emotional tasks
as a sub-type of cognitive tasks without further distinction.

V. CONCLUSION

This review revealed an increase in the number of publica-
tions focused on analyzing brain connectivity using the DCM
method excluding the factor of COVID-19, which demon-
strates that, in general, the scientific community has a growing
interest in the identification of interacting networks in the
brain. We found that there was large heterogeneity in the dis-
tribution of the effective connectivity category. Most research
focused on the networks between different cortical regions
except INS and HPC. This highlights that the connectivity
between the various regions of the CC is still an area of great
concern to the scientific community. Research on the networks
between other deep subcortical nuclei (such as AMP, BG,
and Thal) or between them and CC are receiving increasing
attention, but far from the same scale. In particular, some
effective connectivity categories have only one related paper in
the past 10 years, which requires further research to support.
Over the years, some task types have mature experimental
paradigms, such as emotional stimuli discrimination, n-back
tasks, and resting-state fMRI. There are also task types that are
receiving increasing attention but still cannot be considered to
have reached the same level of maturity. Motor tasks of lower
and all four limbs, for example, have been greatly overlooked
in the literature, together with other types which including
decision-making and other cognitive tasks. We consider that
performing different tasks to discover the corresponding brain
network connections is very important for understanding the
brain’s information processing. Especially in the field of
rehabilitation, robots are increasingly involved in people’s
rehabilitation process, but the scientific community has mixed
opinions on the effect of robot-assisted rehabilitation [189].
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Modern rehabilitation medicine is based on the theory of
neuroplasticity [190], so it is particularly critical to study the
brain network in the process of robot-assisted rehabilitation.
This requires the coordination of multiple tasks, but so far,
there are still too few studies related to some tasks mentioned
above. Nevertheless, different data sources play different roles
in different task types. For example, the fNIRS devices are
better at hyperscanning and motor task analysis. We can take
advantage of these features to increase further research and
exploration.

The results of this review can give people a clear under-
standing of what aspects have been overlooked in the study
on the identification of interacting networks in the brain with
DCM in the past decade. We hope that the results will not
only answer the three questions raised in Section I, but also
point towards relevant future research directions.
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