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Abstract— Conveying image information to the blind or
visually impaired (BVI) is an important means to improve
their quality of life. The touch screen devices used daily are
the potential carriers for BVI to perceive image information
through touch. However, touch screen devices also have
the disadvantages of limited computing power and lack
of rich tactile experience. In order to help BVI to access
images conveniently through the touch screen, we built an
image contour display system based on vibrotactile feed-
back. In this paper, an image smoothing algorithm based
on convolutional neural network that can run quickly on
the touch screen device is first used to preprocess the
image to improve the effect of contour extraction. Then,
based on the haptic physiological characteristics of human
beings, this paper proposes a method of using the improved
MH-Pen to guide the BVI to perceive image contour on
the touch screen. This paper introduces the extraction and
expression methods of image contours in detail, and com-
pares and analyzes the effects of the subjects’ perception
of image contours in two haptic display modes through
two types of user experiments. The experimental results
show that the image smoothing algorithm is useful and
necessary to help obtain the main contour of the image
and to ensure the real-time display of the contour, and the
contour expression method based on the motion direction
guidance helps the subjects recognize the contour of the
image more effectively.

Index Terms— Contour display, image smoothing, touch
screen interaction, motion direction guidance, BVI.
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I. INTRODUCTION

FOR a long time, people have been trying to convey
image information to blind or visually impaired (BVI) to

promote their development in object recognition and spatial
cognition. Although BVI cannot directly acquire the informa-
tion in the visual images, the lack of vision does not prevent
them from establishing a “mental imagery” of the object
through other compensatory mechanisms [1], [2]. Especially
in supporting spatial behavior, the spatial information encoded
by vision and touch is considered to be functionally equivalent
in promoting the development of modal expression in the
brain [3]. Therefore, the sense of touch can replace vision as
an ideal physiological perception channel for BVI to obtain
spatial information of objects.

The spatial structure features of objects in images, such as
contours and shapes, are the basis for people to recognize
objects through touch [4]. The traditional assistive technol-
ogy to convey image spatial information to BVI is mainly
realized by using touchable devices or materials [5]. These
technologies generally need to first convert a visual image into
a tactile image, and a person’s finger or other area receives skin
irritation corresponding to the image information during the
process of touching the tactile image. In the early days, BVI
mainly used hand-made materials such as embossed paper to
perceive graphic information [6]. To improve the reusable rate
of tactile images, a large number of studies have employed
probes [7], vibrating elements [8], microelectrodes [9] and
other elements as taxels, and designed refreshable tactile
devices that display image information to people through stim-
ulation methods such as tapping, vibration, and current [10].
However, these technologies generally have problems such
as poor portability, high cost, and single function, which are
difficult to be widely promoted and used in daily life.

In recent years, with the popularity of mobile smart devices,
touch screen has become an important medium for people
to interact with virtual environments. The commercialized
touch screen-based mobile smart devices (referred to as touch
screen devices) have the advantages of portability, low cost and
data refreshability, which well solve the problems encountered
by traditional assistive technology and provide an important
interactive carrier for BVI to perceive image information [11].
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Nevertheless, BVI still has great challenges in accessing vari-
ous types of visual information such as maps, graphics, videos
and ordinary images displayed on the touch screen. This is
because, on the one hand, these information cannot be directly
obtained by BVI through other senses except vision, and it is
also difficult to effectively describe to them through sound or
language [10], [12]. On the other hand, as a flat, featureless
surface, the touch screen cannot provide people with meaning-
ful skin stimulation like touching real objects [13]. Therefore,
providing BVI with haptic stimulation corresponding to image
information during touch screen interaction will help them
perceive the image.

Current touch screen devices generally have feedback func-
tions such as sound and vibration. Using these feedbacks, some
studies have introduced methods based on vibration-sound
prompts [12], varying sound intensity [14], and vibration-
kinesthetic feedback [15] to help people access images or
virtual environments non-visually. However, the vibration
prompts provided by daily-used touch screen devices are too
simple to describe the information of complex images, and
sound is considered not as effective as touch in presenting the
spatial information of the image to the BVI [16]. Therefore,
the feedback function of the touch screen device can only be
used to display image with simple 2D geometric shapes.

In order to enhance the haptic feedback ability of touch
screen, some studies have modified the touch screen. For
example, ultrasonic vibration [17], electrovibration [18] and
electroadhesion [19] are utilized to change the friction or
lateral force of a person’s finger sliding on the touch screen.
However, these surface tactile technologies provide global tac-
tile stimulation. Although there are some studies that provide
local haptic feedback for touch screen interaction [20], these
surface haptic techniques still fail to accurately guide the
movement direction of fingers on the touch screen.

When haptically exploring the characteristics of objects,
people generally need to adopt appropriate exploratory pro-
cedures [21], [22]. For example, the continuous following
of the contour line with the finger helps people establish a
mental image of the layout of object. Thus, when the touch
screen is used as the carrier for BVI to perceive image contour
features, it is necessary to provide tactile stimulation with
motion direction guidance function for the movement of hands
or fingers on the touch screen. However, due to the frequent
movement of touch screen devices, the touchscreen interaction
often lacks a stable external reference frame, which cannot
provide BVI with good positioning and guidance functions.
These defects easily lead to BVI losing the tracking of the
contour and shape of the object in the image during the process
of touching the screen.

Based on this consideration, this study adopts a pen-type
haptic device to provide motion direction guidance for BVI’s
movement on the touch screen. Pen-type haptic device is
generally a self-contained system, which can be used as input
or output, and has the advantages of portability and ease of
use. By integrating multiple types of actuators internally, the
pen-type device provides rich haptic stimulation for touch
screen interaction, avoiding the modification of touch screen
devices. Some pen-type devices used to improve the accuracy

of touch screen interaction have been put into commercial
applications, such as the Apple Pencil, the Microsoft Surface
Pen, and the Samsung S-Pen. To achieve more complex touch
screen applications, some researches have integrated actuators
such as vibration tactile array [23], electromagnetic coil [24],
DC motor [25], and magnetorheological fluid actuator [26]
in pen-type device to realize the display of texture, friction,
shape, hardness and other features of image. However, the
existing pen-type haptic devices are still not well used to
display the contour features of image on the touch screen.

In this paper, we developed a system that effectively dis-
plays image contour features to BVI on the touch screen
through vibrotactile feedback. The main contributions of this
study include: (1) In response to the limited computing
power of touch screen devices and the real-time interaction
requirements of haptic display, an image smoothing algorithm
based on convolutional neural network (CNN) that can be
quickly run on touch screen devices was designed to improve
the effect of image contour extraction. (2) According to the
exploration strategy used by BVI to perceive object contour
and the characteristics of touch screen interaction, an image
contour display method using vibrotactile feedback to guide
the movement direction was proposed. (3) User experiments
for simple letter images and natural images were performed
separately to test the effectiveness of the image contour
extraction algorithm and the haptic expression method. The
experimental results show that the image smoothing algorithm
based on CNN helps to extract the main contour features of the
image faster and more effectively on the touch screen device.
Meanwhile, the proposed contour display method based on the
motion direction guidance significantly improves the accuracy
of subjects’ recognition of image contour on the touch screen,
and reduces the time spent in the perception process.

The rest of this paper is organized as follows. Section II
introduces the implementation process of CNN-based image
smoothing algorithm in detail, and compares it with four
commonly used algorithms in terms of smoothing effect and
running time. In Section III, we modified the previously
designed MH-Pen to have the function of guiding the move-
ment direction on the touch screen. In Section IV, we applied
the pen-type haptic device to display the contour features of
the image, and verified the effectiveness of the proposed image
contour display system through two user experiments. Finally,
we conclude this paper in Section V.

II. EXTRACT THE CONTOUR FEATURES OF THE IMAGE

A. Image Smoothing Filter Based on CNN
The image usually contains rich feature information such

as object structure (contour and shape) and surface details
(texture and small contour) presented in the form of aliasing.
Too much detailed information not only does not help the
overall perception of the object, but also brings confusion to
the integration of spatial information. Therefore, the image
for BVI perception needs to be smoothed on the surface of
the object while maintaining the structural features, so as to
generate a tactile image that meets the low-bandwidth char-
acteristics of the touch [5], [22]. This requirement coincides
with the goal of image smoothing.
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Fig. 1. The structure of the CNN filter.

Traditional image smoothing methods mainly include local
filtering-based methods and global optimization-based meth-
ods [27]. Among them, the optimization-based methods obtain
the desired image edge recognition and filtering effect by
solving the optimal solution of the objective function com-
posed of the data fidelity term and the regularization term.
For example, according to the different properties shown by
the structure and texture, the relative total variation (RTV) [28]
uses different penalty functions to process the two features in
an optimization framework, which effectively obtains image
with clear structure and smooth surface. However, since the
objective function requires multiple iterative calculations to
obtain the optimal solution, the global optimization-based
methods generally have problems such as high computational
overhead and time-consuming. These shortcomings bring great
challenges to real-time interactive operations. Especially for
the application of this project that needs to display image
contour on the touch screen device through haptic feedback,
the image smoothing algorithm based on global optimization
will be more difficult to implement quickly and effectively.

The main factors that limit the application of image smooth-
ing operations on touch screen devices are the time and
calculations consumed by the smoothing process. In order to
ensure the real-time performance of touch screen interaction,
this research established a simplified image smoothing model
based on CNN under the condition of supervised learning [29].

For a color input image I , a smooth image L(I ) is obtained
under the filtering of the RTV filter, where L() represents
the non-linear filtering process of the RTV. Our goal is that
any input image I can approximate the smoothing effect
of L(I ) through a CNN-based feedforward deep network
FW(I ), where F represents the structure of the CNN, and W
represents the network parameters that control the feedforward
process. Fig. 1 shows the CNN structure that simulates the
smoothing effect of the RTV filter, which is called CNN filter.

In this structure, the input layer is the horizontal and vertical
gradient maps ∂y I and ∂x I of the input image I , where
∂ I represents the gradient map. The convolutional layer 1
contains 256 feature maps, which are obtained by convolving
the gradient map ∂ I by a convolution kernel with a size
of 16 × 16, and then calculating the tanh function. The
function of the convolutional layer 1 is to map each local
color block in the gradient map ∂ I into a 256-dimensional
pixel vector. Then, a convolution kernel with a size of 1 × 1

is convolved with all the feature maps in the convolutional
layer 1, and the convolutional layer 2 is obtained by calculating
the tanh function. Therefore, the convolutional layer 2 also
contains 256 feature maps. The function of this process is to
perform a weighted average of the processed pixel vectors in
the convolutional layer 1 to perform a “smoothing” operation.
Finally, a convolution kernel with a size of 8 × 8 is used to
perform a convolution operation on the convolutional layer 2
to restore sharp edges, that is, “edge recognition” processing,
so as to obtain the final smoothed gradient map.

The structure of the above CNN can be expressed as:⎧⎪⎨
⎪⎩

F0(∂ I ) = ∂ I

Fn(∂ I ) = tanh(Wn ∗ Fn−1(∂ I ) + bn), n = 1, 2

FW(∂ I ) = Wn ∗ Fn−1(∂ I ) + bn, n = 3

(1)

where n represents the index of the number of layers. F0(∂ I ),
F1(∂ I ), F2(∂ I ), and FW(∂ I ) represent the input gradient
map, convolutional layer 1, convolutional layer 2, and output
gradient map, respectively. Wn represents the convolution
kernel matrix, bn is the bias parameter, and tanh() is the
hyperbolic tangent function. In order to simplify the network,
the horizontal and vertical gradients share weights, that is, ∂y I
and ∂x I use the same Wn . In addition, no pooling layer is used
in this CNN. This is because the pooling layer may weaken
the location characteristics of the image, which is unfavorable
for maintaining the edge of the image.

As a simulation of the smoothing effect of the RTV
filter, the CNN model in Fig. 1 selects ∂ L(I ) as the
ground-truth of FW(∂ I ). Therefore, for D training image
pairs (I0, L( I0)), (I1, L( I1)), . . . , (ID−1, L( ID−1)) with ideal
smoothing effects, the following energy function is used as the
constraint for training CNN:

1

D

D∑
i=0

{
1

2
||FW(∂ Ii ) − ∂L(Ii )||2 + λ�(FW(∂ Ii ))

}
(2)

where (∂ Ii , ∂ L(Ii )) is a pair of training examples in the gra-
dient domain, and λ is the regularization weight. �(FW(∂ Ii ))
is a regularization term used to sparse the gradient. This item
suppresses the color change while edge-preserving smoothing,
and helps to strengthen the edge and generate decent weight
initialization in the neural network. �() is the Charbonnier
penalty function, and �(x) = √

(x2 + ε2). The stochastic gra-
dient descent method is used to minimize equation (2).

We use the BSD500 [30] image library as the training
sample, and randomly collect one million 64 × 64 image
patches from it. For a given image patch Ii , L(Ii ) is first
obtained by the RTV filter. Then apply the gradient operator
to get ∂ Ii and ∂ L(Ii ). In each training step for one sample,
the weight update process of CNN is:
Wt+1 = Wt − η

{
(FW(∂ Ii ) − ∂L(Ii ))

T

+ λ
(FW(∂ Ii ))

T√
(FW(∂ Ii ))

2 + ε2

}
∂ FW(∂ Ii )

∂W
(3)

where η is the learning rate, which is set to decay from
0.001 during the training process. The gradient is further back
propagated through ∂ FW(∂ Ii )

/
∂W.
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Fig. 2. Comparison of smoothing effects of three images under five algorithms.

The CNN is trained according to the above process, and
the smooth gradient map FW(∂ I ) after training needs to be
reconstructed in the color domain. We use S to represent the
final output color smooth image. Image reconstruction needs
to consider the structural information in the input image to
guide the smoothing in the gradient domain. Therefore, these
two items are put together:
||S − I ||2 + β

{
||∂x S − FW(∂x I )||2 + ||∂y S − FW(∂y I )||2

}
(4)

where ||S − I ||2 is the color confidence that uses the
input image to guide the smoothed image for reconstruction.
||∂x S − FW(∂x I )||2 and ||∂y S − FW(∂y I )||2 represent the sum
of squared gradient errors of the input and output images
in the vertical and horizontal directions, respectively. β is a
parameter that balances the two loss functions. For a given
test image I , it is first converted to the gradient domain, and
∂ I is input to CNN to obtain a smooth gradient map FW(∂ I ).
Then use the best β value to solve the image reconstruction
formula (4), and the final image S can be obtained.

B. The Effect and Speed of CNN Filter for
Image Smoothing

In order to show the smoothing performance of the CNN
filter, we compared it with four traditional algorithms in terms
of smoothing effect and running time. The four traditional
algorithms selected are RTV filter [28], L0 filter [31], fast
WLS [32], and RGF [33]. Each algorithm selects its opti-
mal parameters to acquire the best image smoothing effect.
We selected three different types of images and smoothed them
under five algorithms. The results are shown in Fig. 2.

In Fig. 2, the Image 1 is a pattern composed of multiple
small tiles. The contour of the image has clear edges, but there
are obvious gray changes around each tile. By comparing the
overall and details of the smoothing result, it can be seen that
the RTV filter removes fine texture features very well, and
makes the contour of the entire image complete and clear,
thus obtaining the best smoothing effect. The smoothing effect

of the L0 filter is not ideal. It has problems such as unclean
texture removal, excessive smoothing of local contours, and
significant color shift. The fast WLS algorithm also has the
problems of unclean texture removal and excessive smoothing
of local contours. The RGF algorithm maintains the integrity
of the contour very well, but there are problems with unclean
texture removal and blurred image. The CNN filter obtains
an image smoothing effect similar to the RTV filter, which
removes the texture relatively cleanly, while maintaining the
integrity and clarity of the contour. Image 2 contains a texture
with obvious directionality inside. It can be seen from the
smoothing effect that the texture removal effect of the L0
filter and the fast WLS algorithm is poor, and both have the
problem of excessively smoothing the contours. Both the RTV
filter and the RGF algorithm effectively remove the texture,
but the image will have a certain blur effect. Image 3 is
a natural landscape image, and the two areas in the image
have strong contrast. Both the L0 filter and the fast WLS
algorithm can smooth the dark green areas in the image, but
they still cannot remove the texture well. The RGF algorithm
makes the original image more blurred, but it does not get a
good smoothing effect. The RTV filter obviously filters out
the texture very well and keeps the two regions producing
a significant contrast difference, which is very beneficial for
contour extraction.

Through the comparison, it can be seen that the RTV filter
extracts the structural features of the image very well, and
has a good filtering effect on fine textures. Although the L0
filter and the fast WLS algorithm have a certain removal effect
on randomly distributed textures, they both have the problem
of excessively smoothing of the contours. In particular, the
L0 filter also causes the color shift of the image. The RGF
algorithm as a whole is to blur the original image. The CNN
filter obtains a smoothing effect similar to the RTV filter
in these three images. Nevertheless, the CNN filter still has
unique advantages for this research.

During the smoothing process of each image using each
algorithm, we also recorded the time consumed for smoothing.
The results of the time statistics are shown in Fig. 3.
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Fig. 3. The time spent to smooth the three images using five algorithms.

The configuration of the server used to run the five algorithms
includes i7-6900K CPU and NVIDA TITAN Xp GPU. The
sizes of Image 1, Image 2, and Image 3 are 1600 × 1067,
720 × 576, and 481 × 321, respectively.

As shown in Fig. 3, the fast WLS algorithm has the fastest
image smoothing speed, while the RTV filter and L0 filter
take longer. The smoothing time of the CNN filter is only
about one-tenth that of the RTV filter. Since the image can
be smoothed quickly, and a good image smoothing effect can
be obtained, the CNN filter has a significant advantage over
the other four algorithms. Especially for touch screen devices,
their computing power is much lower than the server currently
used to run these five algorithms. Therefore, if the CNN filter
is transplanted to a touch screen device to run, it can not only
obtain a good image smoothing effect, but also meet the real-
time requirements of haptic interaction.

C. Extract Contour Features From Smoothed Image

After training and testing on an external server, we trans-
planted the proposed CNN model to a touch screen device
based on the Android system, and employed the Sobel operator
to extract the image contour. Sobel operator is a simple
edge detection method with small amount of calculation, fast
calculation speed and good edge positioning effect, which
is very suitable for running on smart devices. The image
processed by the Sobel operator also needs to be binarized
in order to convert the grayscale image into a black and
white image. The selection of the threshold in this study is
automatically determined by the Otsu algorithm [34].

Fig. 4 shows the contour extraction effect of Sobel operator
and Otsu algorithm on Image 3. It can be seen that the contours
obtained by directly processing the original image are chaotic,
while clean and continuous contour features can be extracted
after smoothing by CNN filter.

III. IMPROVEMENT OF THE PEN-TYPE HAPTIC DEVICE

When perceiving the contour of an object through touch,
people need to combine kinesthetic feedback to form a “mental
imagery” as the fingers follow the contour. For haptically
perception of the image contour displayed on the touch
screen, it is necessary to add tactile feedback to the finger or
tool-mediated contour following process. However, the lower
spatial resolution of the finger reduces the bandwidth of the
displayable image information [35]. One way to enhance the
ability of tactile perception is to use multiple fingers to touch
at the same time [36]. Therefore, we improved the previously

Fig. 4. Contour of Image 3 extracted by Sobel operator and Otsu
algorithm.

Fig. 5. Prototype of the MH-Pen2.

designed MH-Pen [26] (called MH-Pen2 in this paper, and the
prototype is shown in Fig. 5). MH-Pen2 embeds a disc-type
piezoelectric actuator on each of the four faces of the Shell II,
which provides vibrotactile feedback to the four fingers when
a user holds the pen with one hand. This layout enlarges
the image information in the small area where the pen tip
contacts the touch screen, and provides directional guidance
for the user’s movement on the touch screen. The size of the
piezoelectric actuator (PowerHap 2.5G, TDK Corp., Japan) is
9 × 9 × 1.25 mm3, and the maximum vibration acceleration is
about 1.68 g (g = 9.81 m

/
s2).

In order to guide the user to correctly follow the contour
of the virtual object, the interactive system also needs to
detect the posture of the MH-Pen2 to drive the piezoelectric
actuator in the corresponding position to vibrate. Therefore,
we added a posture detection circuit in MH-Pen2. In recent
years, low-power, high-sensitivity, and small-sized micro-
electromechanical systems (MEMS) have been widely used
in 3D motion tracking and attitude capture [37]. MEMS
consists of a three-axis accelerometer, gyroscope, and mag-
netometer. It measures the user’s posture by sensing gravity,
angular velocity, and geomagnetic field. In this study, a com-
mercial inertial measurement unit (IMU) called MPU6050
(InvenSense, USA) is integrated in the MH-Pen2 to track the
pen’s posture.

IV. IMAGE RECOGNITION EXPERIMENTS

We performed two types of user experiments to test the
effectiveness of the proposed contour display system.

A. Participants and Apparatus

Twenty healthy right-handed subjects (six visually impaired
people, seven females, Age: 22.55 ± 2.68, mean ± SD)
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participated in the experiment. All subjects gave informed
consent and were paid for their participation. Six visually
impaired subjects were completely blind, two of them were
congenitally blind, and the other four were adventitiously blind
after the age of 10. This study invited 14 subjects with normal
vision to participate in the experiment to expand the number of
samples. Some studies have shown that there is no statistically
significant difference between blindfolded-sighted subjects and
blind people in learning, integrating, and representing graphi-
cal information [6], [38]. Therefore, it is generally accepted in
the field to use blindfolded-sighted subjects in the preliminary
efficacy test of assistive technology. All subjects had at least
received high school education, no subjects reported any
defects in their tactile perception ability, and they did not know
the purpose of the study. All subjects need to wear eye masks
in both experiments, requiring them to perceive the contours
of objects only through vibrotactile feedback and kinesthetic
feedback. This experimental procedure was approved by the
ethics committee of our university.

Experimental apparatus includes the MH-Pen2 and a Sam-
sung Tablet PC. The touch screen has a diagonal length of
10.1 inches, an optical resolution of 2560 × 1600 pixels, and
a screen pixel density of 299 pixels/inch. To reduce the loss
of contour tracking when the subject’s finger slides on the
touch screen, current studies generally set the display width of
the detection line on the screen to 0.35 inches (about 9 mm)
[13], [14]. However, due to the limited space of the touch
screen, a line width of 9 mm will significantly reduce the
effective resolution of the touch screen and the complexity of
the displayable image. To this end, the literature [39] specifi-
cally studied the influence of parameters such as line width and
parallel line interval on the BVI perception of vibrating tactile
lines on touch screen. They found that for a single simple line
detection task, a detection line with a width of 1 mm achieves
a resolution similar to a wider detection line. For two detection
lines displayed in parallel, a line width of 2 mm and a line
spacing of at least 4 mm should be maintained. In addition,
literature [40] found that since the diameter of the stylus tip is
smaller than the fingertip, when a user tries to touch a small
target on the screen, the pen gets higher perceptual accuracy
than the fingertip. These research conclusions show that for
different types of interaction methods and tools, the setting of
the line width is variable, and the use of a pen with a smaller
tip diameter to interact with the touch screen improves the
perception accuracy. Therefore, for the MH-Pen2 with a pen
tip diameter of about 4 mm, we set the width of the detection
line to 2 mm.

In the process of continuous or piecemeal touch, BVI
combines the kinesthetic information prompts to gradually
integrate the extracted information in the brain, thereby estab-
lishing a mental image of the object layout. Discontinuous
contours or missing traced contours will affect the recognition
and understanding of objects. However, in Fig. 4(b), the width
of the contour line extracted by the Sobel operator is very
narrow, which does not meet the requirements. For this reason,
we thicken the contour line to about 2 mm through dilation
operation, as shown in Fig. 6(a).

Fig. 6. Follow-up processing of Fig. 4(b). (a) Thickened contour after
dilation operation. (b) A raised line map made by hand with thermoplastic
material.

In addition, when the pen tip of MH-Pen2 slides along the
contour of the object, it will form a contact circle with
the contact point as the center and a diameter of 4 mm in the
touch screen. When working, the touch screen detects the
sliding direction of the pen tip in real time. According to
the direction of the contour line falling inside the contact
circle and the posture of the MH-Pen2 detected by the IMU,
the system drives one or more piezoelectric actuators at the
corresponding positions to generate vibration prompts that
are consistent with the direction of the contour line and the
direction of the user’s movement. The subject adjusted the
sliding direction according to the vibration prompts during
the contour following process.

Before the formal experiment, each subject was familiar
with the use of the entire interactive system through training
examples. The training examples utilized images similar to but
different from the formal experiment for subjects to perceive.
For sighted subjects, they can first see the shape and contour
of the image displayed on the touch screen. Then, with visual
participation, sighted subjects employed the MH-Pen [26] with
no direction prompt function and the MH-Pen2 shown in
Fig. 5 to slide along the contour of the object, respectively.
The subjects were able to feel the difference in vibrotactile
feedback between the two pen-type devices, and learned to
combine kinesthetic feedback to gain an understanding of
the contours of objects. Finally, as in the formal experiment,
sighted subjects were blindfolded and the training example
was repeated. For visually impaired subjects, we printed the
contour of the image used for training on white paper, and
hand-made the raised line map with thermoplastic material,
as shown in Fig. 6(b). At the same time, we presented the
image contour corresponding to the raised line map on the
touch screen. During training, a visually impaired subject can
repeatedly touch the raised line map with both hands, or slide
along the contour line on the touch screen with MH-Pen
and MH-Pen2 respectively, and can ask the experimenter for
help at any time. After all subjects confirmed that they were
familiar with the use of the two devices, the characteristics
of vibrotactile feedback, and the image contour perception
process, the training process ended.

B. Experiment 1: Letter Recognition Task

The purpose of this experiment was to test the effect
of direction guidance function on contour perception. Two
vibrotactile feedback modes were exploited to display the
contours of objects. The Mode 1 uses only the linear resonant
actuator integrated in the MH-Pen to express the contact state
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TABLE I
STATISTICS OF THE CORRECT RATE OF LETTER RECOGNITION (�)

of the pen tip and the contour, that is, vibration occurs as long
as the pen tip contacts with the contour, but this mode cannot
provide directional hints. The Mode 2 uses the MH-Pen2 to
provide directional guidance prompts. In the experiment, eight
capitalized English letters with regular shapes and familiar to
the subjects were selected as the sensing objects. They are A,
B, D, E, F, H, P, and R. The constituent elements of these
letters include basic shapes such as straight lines, diagonal
lines and arcs, and some letters also have certain similarities,
such as A and H, F and P, etc.

All twenty subjects participated in the experiment. The
subjects were told in advance that the objects they perceive
were capitalized English letters, but they did not know which
letters they were. During the experiment, the tablet computer
was placed horizontally on the table, and a subject was sitting
in front of the table wearing a blindfold and earphones that
play white noise. When the subject’s posture was fixed, he/she
was taught to place his/her left hand on the left side of the
tablet to form an external reference frame. In the Mode 1,
the subject held the MH-Pen with his/her right hand and
judged the contact state with the contour line according to the
vibration prompt. In the Mode 2, the subject’s right thumb,
index finger, middle finger and ring finger respectively held
the four piezoelectric actuators on the MH-Pen2. When the
subject’s right hand holds the MH-Pen2 and slides on the touch
screen, his/her left hand moves within a small range to help
the right hand form an understanding of the contour relative
to the reference frame of the left hand.

First, the Mode 1 was chosen for experimentation. In one
trial, a letter was randomly displayed on the touch screen, and
the line width of the letter was displayed as 2 mm. The subject
could touch the letter multiple times within 3 minutes, and then
tell the experimenter what he/she perceived. The experimenter
recorded the subject’s answers and comments on the perceived
effects, and gave a neutral reply. Each subject needed to
complete the perception of eight letters in a row. After each
trial, the subject could rest for a few minutes. After all subjects
used the Mode 1 to perceive the eight letters, the experiment
chose the Mode 2 to continue the above experimental steps
until the end of the comparison experiment. Table I shows
the experimental statistical results of the correct rate of letter
recognition in the two modes.

As shown in Table I, Mode 2 achieves a significantly higher
recognition accuracy rate than Mode 1. Then, we quantitatively
studied the difference between the two modes through paired

TABLE II
PAIRED SAMPLES STATISTICS OF LETTER RECOGNITION ACCURACY

TABLE III
PAIRED T-TEST OF LETTER RECOGNITION ACCURACY

T-test analysis. Table II shows the paired samples statistics of
letter recognition accuracy, among which the average recog-
nition accuracy rates of Mode 1 and Mode 2 are 65% and
94.38%, respectively. Table III shows the results of the paired
T-test analysis of the correct rate of letter recognition. It can be
seen that the statistical significance is p < 0.001. The results
in Table II and Table III indicate that the two modes have
a highly significant difference in the recognition accuracy of
letters, and the recognition accuracy of Mode 2 is significantly
better than Mode 1.

C. Experiment 2: Natural Image Recognition Task

In addition to displaying simple images with regular contour
features such as letters, the experiment further tested the
performance of MH-Pen2 in helping subjects identify natural
image contours. Natural images generally have irregular con-
tour features, such as the contour shown in Fig. 4. We selected
eight natural images, as shown in Fig. 7. Each image is
first smoothed with the CNN filter, and then the contours in
the smoothed image are extracted and the line width of the
contours is increased to about 2 mm.

This experiment uses the same two vibrotactile feedback
modes as Experiment 1. The experimental scene is shown
in Fig. 8. The upper part of the touch screen displays the
selected eight natural images, and the lower part displays
the bold contours corresponding to the selected image. The
subject does not know the information of the perceived image
in advance. The experiment randomly divided the subjects
into two groups with 10 subjects in each group. Each group
included 1 congenital blind person and 2 adventitious blind
persons. Since each group of subjects only uses one mode
to perceive the contours of the image, this grouping method
effectively prevents the subjects from memorizing the contours
of the image.

During the experiment, the tablet computer was placed
horizontally on the table, and a subject was sitting in front
of the table wearing a blindfold and earphones that play white
noise. The experimenter randomly selects one of the eight
images for the subject to touch, and the perception process
is similar to Experiment 1. The subject can use the MH-Pen
or the MH-Pen2 to repeatedly touch the contour of the image
displayed on the touch screen during the experiment. After the
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Fig. 7. Eight natural images for contour display.

subject confirmed that the contour on the touch screen has been
recognized, the experimenter guided the subject to touch the
four raised line maps made of thermoplastic materials with
both hands, and asked the subject to choose one of them that

Fig. 8. The experimental scene of Experiment 2.

Fig. 9. Four raised line maps provided for the subject to perceive the
contour of Image 10.

Fig. 10. The correct rate of recognizing the contours of eight natural
images in the two modes.

he/she thought was consistent with the contour displayed on
the touch screen. Among the four raised line maps, one is
exactly the same as the contour of the image displayed on the
touch screen, which is the correct answer. The other two have
similar contours to the correct answer but also have distinctly
different features. The contour of the last one is completely
different from the previous three. For example, Fig. 9 shows
four raised line maps provided for the subject to perceive the
contour of the Image 10. After the subjects repeatedly touched
the four raised line maps and made selections, they could
comment on the characteristics of the contour and the difficulty
of recognition. The experimenter recorded the answers and
comments of the subjects and gave a neutral reply. We will not
limit the exploratory strategy used by the subject and the time
spent. However, the time it takes for the subject to perceive the
image contour to when he/she makes a choice will be recorded.
Each subject needed to continuously complete the perception
of eight image contours. After each trial, the subject could
rest for a few minutes. After all subjects have completed the
perception of image contours, the entire experiment is over.
Fig. 10 shows the accuracy of the subjects’ recognition of
eight natural image contours in the two modes.

It can be seen from Fig. 10 that Mode 2 still achieves
a better recognition accuracy rate than Mode 1. Next, we
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TABLE IV
PAIRED SAMPLES STATISTICS OF NATURAL

IMAGE RECOGNITION ACCURACY

TABLE V
PAIRED T-TEST OF NATURAL IMAGE RECOGNITION ACCURACY

Fig. 11. The average time the subjects spent perceiving each natural
image in the two modes.

quantitatively studied the difference between the two modes
through paired T-test analysis. The results of the analysis are
shown in Table IV and Table V. It can be seen from the two
tables that the average recognition accuracy rates of Mode 1
and Mode 2 are 61.25% and 87.5% respectively, and the
statistically significant is p < 0.001. The results show that
there is a highly significant difference in the accuracy of the
subjects’ recognition of the eight natural image contours in
the two modes, and the recognition accuracy of Mode 2 is
significantly better than Mode 1.

In addition, we also counted the time it took for each
subject to perceive each image. Fig. 11 shows the average
time the subjects spent perceiving each natural image in the
two modes. It can be seen that it generally took less time
for the subjects to perceive image contours in Mode 2 than
in Mode 1. Further, Fig. 12 shows the distribution of the time
spent by subjects perceiving images in the two modes. First of
all, we conducted a two-way analysis of variance (ANOVA) on
the time spent with the mode and image as factors. The results
showed that both the mode (F(1, 144) = 65.849, p < 0.001)
and the image (F(7, 144) = 29.157, p < 0.001) have a
highly significant effect on the time spent. Then, a one-way
ANOVA was performed on the mode to determine which
images the subjects perceive were significantly affected by the
mode differences. The results show that the mode difference
has a certain effect on the subject’s perception of Image 5
(F(1, 18) = 5.661, p = 0.029) and Image 10 (F(1, 18) =
7.431, p = 0.014), has a significant effect on the subject’s

Fig. 12. The distribution of the time spent by subjects perceiving images
in the two modes. The marks (∗), (∗∗), (∗ ∗ ∗) denote a significance of
p < 0.05, p < 0.01, p < 0.001, respectively.

perception of Image 7 (F(1, 18) = 11.392, p = 0.003),
and has a highly significant effect on the subject’s perception
of Image 6 (F(1, 18) = 17.37, p < 0.001) and Image 9
(F(1, 18) = 25.52, p < 0.001).

D. Discussion

In this section, two experiments were performed to test the
influence of directional vibrotactile feedback on the subject’s
perception of image contour information on the touch screen.
The Experiment 1 uses capital letters that are familiar to the
subjects and have regular shapes as the sensing objects. The
purpose is to find out how the motion direction guidance
helps the subjects to better recognize the contour of the
image. According to the subject’s comments, Mode 2 has
the following advantages over Mode 1 in contour tracking:
(1) The guidance function of Mode 2 makes it easier for
subjects to follow the contour lines. (2) Mode 2 helps subjects
better understand the geometric relationship between adjacent
lines, such as whether two lines intersect, and how the direc-
tion of the contour line changes after the intersection. (3) The
contour felt by the subjects through Mode 2 is not easy to
change with respect to the external reference frame of the left
hand, which makes it easier to form a clear mental image. The
above three advantages are essential to correctly perceive the
contour of the image on the touch screen.

As mentioned above, the common commercial touch screen
is a flat, featureless surface. These limitations make it easy
for Mode 1 to lose the following of the contour, especially
when following arcs or intersecting lines, subjects are prone
to make mistakes. Loss of following contours, probing in
multiple directions after reaching the intersection point, and
random changes in the left-hand reference frame all increase
the difficulty of temporal and spatial integration of tactile
information, and bring confusion to the formation of mental
image. The result of Experiment 1 shows that the motion guid-
ance function of MH-Pen2 effectively helps people perceive
and understand the image contours on common commercial
touch screens.

In Experiment 2, the average recognition accuracy rate of
87.5% shows that MH-Pen2 can be used to help subjects
recognize the contours of complex images. The results in
Figures 10-12 show that the contour complexity of the image
and the content of the image will affect the perception of the
subject. For Images 4, 8 and 11, the simple contours enable the
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subjects to obtain a higher recognition accuracy rate in both
modes and spend less time. For Images 5 and 10 with more
complex contours, the mode difference has a certain effect on
the time spent for the subject to perceive the image. However,
the recognition accuracy of the two images in different modes
is significantly different. The “human shape” in Image 5 and
the “bear” in Image 10 are the contours familiar to the subjects,
but the detailed features of the “bear” are more complex than
the “human shape”. In addition, it takes longer on average for
the subjects to perceive Image 10 than Image 5 (see Fig. 11).
These results indicate that, firstly, the time spent by subjects
in the two modes is affected by the contour complexity of
the image; secondly, for the contour familiar to the subjects,
the more complex the contour is, the more Mode 2 helps the
subjects better identify object through association.

Similar to Image 10, Images 6 and 9 also have complex con-
tours, and the subjects’ recognition accuracy of the two images
is also significantly different in the two modes. However,
the mode difference has a highly significant effect on the
time spent for subjects to perceive Images 6 and 9. Although
Image 6 is more complicated than Image 10 (see Fig. 7),
it takes more time for subjects to perceive Image 6 than
Image 10 in Mode 1, and less time in Mode 2. This indicates
that the time spent in Mode 1 increases with the increase of
image complexity, but the time spent in Mode 2 is not entirely
determined by the image complexity. Observing Image 6 and
Image 9, we can see that the contents in them are letters and
numbers that are easy to understand. As long as the subjects
follow the contours of the two images correctly, they can
quickly build a correct mental image without paying too much
attention to details. This further illustrates the advantages of
Mode 2 to improve the image recognition rate and reduce the
time spent by helping the subjects understand the image.

For Image 7, the recognition accuracy of the subjects in
the two modes is not much different, but the average is
only 70%, and the mode difference has a significant effect
on the time spent for the subjects to perceive the image. This
may be because the subject cannot accurately understand the
object represented by the contour in Image 7, although its
complexity is not great. Even so, Mode 2 still helped the
subjects to recognize the contours of the image faster and
better. In general, the complexity and content of the image
contour have a significant impact on the result of tactile
perception, and the higher the complexity of the image and
the easier to understand the content of the image, the more
obvious the advantages of Mode 2 over Mode 1.

V. CONCLUSION

Based on the human’s tactile physiological characteristics,
this study proposes a new method for BVI to effectively
perceive image contour information by applying deep learning
and haptic display techniques to daily-used touch screen
devices. This paper first uses CNN-based image smoothing
filter to remove detailed features in the image that are unhelp-
ful for contour perception. The CNN filter can well meet the
application on touch screen devices and ensure real-time image
processing. Then, the contour information of the smoothed
image is extracted and converted into a form suitable for

expression through vibration. Finally, two user experiments
are used to verify the effectiveness of the motion direction
guidance function in helping subjects to quickly and accurately
identify the contours of the image. In general, the image
contour display system proposed in this paper makes full use
of the portability, easy accessibility and data refreshability of
touch screen devices, solves the defects of touch screen devices
in conveying image contour information to BVI, and provides
a more convenient way for the barrier-free communication
between BVI and the digital world.
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