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Abstract— Gait tests as part of home monitoring study
protocols for patients with movement disorders may pro-
vide valuable standardized anchor-points for real-world gait
analysis using inertial measurement units (IMUs). How-
ever, analyzing unsupervised gait tests relies on reliable
test annotations by the patients requiring a potentially
error-prone interaction with the recording system. To over-
come this limitation, this work presents a novel algorithmic
pipeline for the automated detection of unsupervised stan-
dardized gait tests from continuous real-world IMU data. In a
study with twelve Parkinson’s disease patients, we recorded
real-world gait data over two weeks using foot-worn IMUs.
During continuous daily recordings, the participants per-
formed series of three consecutive 4 × 10-Meters-Walking-
Tests (4×10MWTs) at different walking speeds,besides their
usual daily-living activities. The algorithm first detected
these gait test series using a gait sequence detection
algorithm, a peak enhancement pipeline, and subsequence
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Dynamic Time Warping and then decomposed them into
single 4 × 10MWTs based on the walking speed. In the
evaluation with 419 available gait test series, the detection
reached an F1-score of 88.9% and the decomposition an
F1-score of 94.0%. A concurrent validity evaluation revealed
very good agreement between spatio-temporal gait para-
meters derived from manually labelled and automatically
detected 4 × 10MWTs. Our algorithm allows to remove the
burden of system interaction from the patients and reduces
the time for manual data annotation for researchers. The
study contributes to an improved automated processing of
real-world IMU gait data and enables a simple integration
of standardized tests into continuous long-term recordings.
This will help to bridge the gap between supervised and
unsupervised gait assessment.

Index Terms— Machine learning, activity recognition,
accelerometer, gyroscope.

I. INTRODUCTION

PARKINSON’S disease (PD) is characterized by move-
ment impairments in general and pathological gait in

particular, including the cardinal symptoms tremor, rigidity,
bradykinesia, and postural instability [1]. For a clinical
assessment of these symptoms, rating scales are being applied,
such as the Movement Disorder Society Unified Parkinson’s
Disease Rating Scale (MDS–UPDRS) [2]. However, those
scales lack objective quantitative measurements to evaluate
motor symptoms and have a limited inter- and intra-rater
reliability [3], [4].

Sensor-based gait analysis using wearable inertial measure-
ment units (IMUs) has increasingly been used in clinical
settings [5] and long-term monitoring in the real world [6] to
provide complementary objective information on movement
impairments. The accuracy of sensor-based gait parameter
estimations has been validated for patients with movement
impairments [7], [8]. Therefore, IMUs provide a compre-
hensive impression of the patient’s condition by means
of continuous digital measures such as walking speed or
stride length [9], [10]. Several studies have demonstrated that
long-term gait recordings have the potential to support moni-
toring of disease progression and symptoms, for example for
the assessment of risk of falling [11]–[13].

Despite the advancements of technology, the translation of
the data collected with wearable sensors into a better clinical
understanding of the disease and enhanced care for patients
remains challenging [14]. The use of standardized protocols
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and validation procedures has been recommended to bridge the
gap between assessments in standardized clinical and unsu-
pervised real-world settings, to achieve better comparability
across studies [15]. Gassner et al. suggested specifically the
integration of standardized gait tests into home-monitoring
study protocols [16]. The standardized tests performed at
home may provide anchor-points during continuous recordings
which represent the established standardized measurements in
clinical settings.

One example for transferring a standardized gait test into
the home environment is the instrumented Timed Up and Go
test (iTUG) [17]. It includes seven IMUs and an algorithm
for automatic detection, separation, and analysis of different
components of the TUG, such as sit-to-stand transitions,
turning, and walking. The feasibility of performing this test
at home was investigated by Zampieri et al., who asessed two
iTUGs performed within 24 hours, once in the clinic and once
in the patient’s home environment [18]. During both tests the
patients were supervised and assisted by a researcher.

The 4 × 10-Meters-Walking-Test (4 × 10MWT ) is another
standardized gait test. Spatio-temporal gait parameters, that
were derived from with foot-worn IMUs, provided clinically
meaning results for PD in a cross-sectional analysis [19].
In a recent pilot study, Gassner et al. found a high corre-
lation between gait parameters recorded during supervised
4 × 10MWTs in the hospital and at home [16]. The PD
patients were instructed by a clinical assessor in both sce-
narios. Contextual factors like the medication or the time of
day were controlled to be similar between the measurements.
Gassner et al. concluded that unsupervised standardized gait
tests should be investigated in future studies as a stepping
stone to an assessment of real-world gait.

However, the relation between gait parameters measured
in unsupervised gait tests and those measured under clinical
supervision remains unclear. One reason why this has not been
investigated in detail so far, are the logistical and usability
challenges for patients if they need to self-administer these
tests [18]. The acquisition of unsupervised gait test data
requires an interaction of the patients with the recording sys-
tem. They need to start and stop the measurement or set time
stamp annotations during continuous recordings, for example
using a mobile phone app. However, for PD patients, the adher-
ence to study protocols in home monitoring studies includ-
ing wearable sensors and mobile apps is challenging [20].
Elderly, motor-impaired people experience difficulties in han-
dling mobile touch devices [21] which can cause incorrect or
missing time point annotations that require visual inspection
and correction of the labels by an investigator. Thus, it would
be desirable to perform a continuous whole-day recording
and automatically detect performed gait tests during the data
processing without any manual annotations by participants or
researchers. This way participants could specifically focus on
the actual execution of the gait tests and adhere to the study
protocol.

Therefore, the purpose of this work was to develop and
evaluate an algorithm for the automated detection of standard-
ized gait tests from real-world IMU data, where we focus on
series of repeated 4 × 10MWTs. To the best of the authors’
knowledge, this is the first work providing data and algorithms

TABLE I
PATIENT CHARACTERISTICS (N = 12). PARAMETERS ARE GIVEN AS

MEAN ± STANDARD DEVIATION OR COUNTS IN CASE OF THE SEX

for fully automated processing of IMU recordings including
unsupervised daily-living activities and standardized gait tests.
Hence, we also make the very first attempt of an automated
detection of standardized gait tests from real-world gait sensor
data. Due to the expected heterogeneity of the real-world
recordings, data-driven and machine learning methods are
most suitable for this task. After successful preliminary exper-
iments with template matching using subsequence Dynamic
Time Warping (sDTW) on recordings in the laboratory [22],
we also consider sDTW as the core of the approach in this
work. Specifically, sDTW allows template matching including
parts of the template being stretched or squeezed to achieve
an optimal fit [23] and has been successfully applied in gait
analysis (e.g. for stride segmentation [24], [25]).

The presented method removes the burden of interaction
with the recording system from the patients and reduces
manual label inspection and correction work for researchers.
Hence, our work significantly contributes to an improved
automated processing of real-world gait recordings and enables
better comparability across studies by simplifying the imple-
mentation of gait tests in real-world monitoring protocols.

II. METHODS AND PROCEDURES

A. Data Acquisition

A data set including twelve patients with idiopathic PD who
completed the FallRiskPD study (DRKS-ID: DRKS00015085)
was used for the development and evaluation of the pre-
sented algorithm (Table I). The participants were recruited
by the University Hospital Erlangen, the Hospital Rum-
melsberg, and the Ernst von Bergmann Hospital Potsdam.
The study was approved by the local ethics committee
Re-No. 165_18B (Friedrich-Alexander-University Erlangen-
Nuremberg, Germany). All participants gave written, informed
consent, prior to the data collection.

Gait recordings were acquired over two weeks using the
Mobile GaitLab (Portabiles HealthCare Technologies GmbH,
Erlangen, Germany), a wearable sensor system for real-world
gait analysis. The system consisted of two IMUs including a
3-d accelerometer (range ±16g), and a 3-d gyroscope (range
±2000◦/s). The IMUs were synchronized via wireless contin-
uous synchronization as described in [26]. Data was recorded
at a sampling rate of 102.4 Hz. One sensor was mounted on the
instep of each shoe and the same shoe model was used for all
participants in their respective shoe size. The participants wore
the sensor system during their wake time while pursuing their
activities of daily living indoors and outdoors. Single full-day
recordings were transferred from the sensors to a smartphone
during night-time and will be called daily recording in the
following. In total, the data set contained 151 daily recordings.
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Fig. 1. Pipeline overview: Four main processing steps were required to segment 4 × 10MWTs from real-world recordings.

In addition to activities of daily living, the participants
were asked to perform unsupervised standardized gait tests
three times a day: in the morning after the start of the daily
recording, at around noon, and in the evening before stopping
the recording. These tests comprised a set of three 4×10MWTs
performed subsequently with short resting periods in between.
One 4×10MWT consisted of walking along a straight walkway
of 10 m and performing a 180◦ turn, followed by returning
the walkway and another 180◦ turn. This procedure was then
repeated one more time to complete four 10 m passes. The
three 4 × 10MWTs were executed in different speed levels:
Deliberately slow (Slow), preferred self-selected (Preferred),
and comparably fast (Fast). No particular order was specified
for the three walking speeds. The sets of three consecutive
tests will be referred to as gait test series in the following.

According to the study protocol, the following assumptions
were made:

1) Within every 4 × 10MWT, a 180◦ turn was performed
after each 10-meter walk.

2) A 180◦ turn was performed after each 4 × 10MWT,
resulting in a total of twelve turns in a gait test series.

3) Resting periods could occur between successive
4 × 10MWTs, but were shorter than 15 s.

There might not always have been a path of exactly 10 m
available for the test due to different spatial conditions depend-
ing on the participant’s environment at the time of test exe-
cution. Therefore, the participants were instructed to always
choose a straight path with a length as close to 10 m as
possible for the test execution. For manual annotations of the
start and end times of the gait test series, the participants used
an adapted version of the PatientConcept (NeuroSys GmbH,
Ulm, Germany) smartphone application.

B. Gait Sequence Detection

All IMU raw signals were calibrated to yield physically
meaningful units using the method of Ferraris et al. [27]. The
superior-inferior sensor axis was aligned to gravity using static
signal windows. To detect the 4 × 10MWTs in the daily
recordings, the sensor data were analyzed in four processing

steps, namely gait sequence detection, preprocessing, gait test
series detection, and gait test series decomposition (Fig. 1).

To increase the pipeline efficiency by only considering those
parts of the recorded data containing gait, a gait sequence
detection was applied first. For this purpose, we used an
algorithm proposed in our recent work, where the frequency
spectrum of the gyroscope signal of the medio-lateral axis of
both foot-worn sensors is investigated regarding harmonic fre-
quency patterns [28]. As resting periods shorter than 15 s could
occur between single 4 × 10MWTs, adjacent gait sequences,
that were not more than 15 s apart, were concatenated. This
ensured a gait test series to be entirely included in a single
gait sequence.

C. Gait Test Series Detection

The detected gait sequences were further investigated
regarding the occurrence of gait test series. Characteristic
features of 4 × 10MWTs, differentiating them from daily-
living movements, were found to be the regular pattern of
turns followed by straight walking periods. The duration of the
walks could differ between gait test series. Therefore, the turns
were determined to be the most valuable feature, represented
by peaks in the superior-inferior gyroscope axis signal (gyrsi ).

1) Preprocessing: To enhance the turning-related peaks,
an adapted version of our previously introduced preprocessing
pipeline for the detection of gait tests from IMU recordings in
the laboratory environment [22] was applied to the gyrsi signal
(Fig. 2). A 4th order Butterworth low-pass filter with a cutoff
frequency of 0.5 Hz was used to only retain the turning-related
signal features with frequencies beneath the straight walking
human locomotion band [11]. Afterwards, the signal was
smoothed using a median filter with a window size of 2 s.
Finally, the resulting signal was squared to enhance the turning
peaks and to obtain only positive values regardless of the
direction of rotation. A uniform scaling of the signal values
to the range of [0, 1] was achieved by min-max normalization
per gait sequence (Fig. 2).

Subsequently, the signal was down-sampled by factor 50 to
2.048 Hz using linear interpolation resulting in the final pre-
processed signal gyrpre. Considering the previously applied
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Fig. 2. Top: The raw gyrsi signal of a gait sequence containing a gait
test series. Bottom: The resulting signal gyrpre after the preprocessing
pipeline including low-pass filtering, smoothing, squaring, normalization,
and downsampling. This signal will be the input for the template matching.

Fig. 3. The template used for the sDTW-based gait test series detection.
The basic turning peak shaded in grey was concatenated twelve times
to represent the expected number of turns in a gait test series.

Butterworth low-pass filter, the filtered signal contained negli-
gible energy in frequencies above 1 Hz. Therefore, the reduced
sampling rate was sufficient for storing all necessary informa-
tion and helped to decrease the computational effort of the
following template matching by factor 50.

2) Template Matching: After preprocessing, the characteris-
tic turning peak pattern in gyrpre was detected using template
matching. As the 4 × 10MWT duration varied due to the
different self-selected velocities, and the path length that could
deviate from 10 m, we used sDTW for this work [23].

a) Template generation: Data of few participants was suf-
ficient to create a representative template for gait test detec-
tion [22]. Therefore, one 4×10MWT each from three different
participants was chosen randomly. The respective gyrsi signals
were preprocessed according to the procedure explained above
and averaged sample-wise after resampling to their average
duration. We selected a single 180◦ turning peak from the
resulting signal as the basic component and concatenated
it twelve times subsequently for the final gait test series
template T (Fig. 3).

b) Subsequence dynamic time warping: In summary, a dis-
tance matrix D was calculated, where each matrix entry
D(m, n) contained the Euclidean distance between the respec-
tive values of the template T and the preprocessed signal
gyrpre, as described in [24]:

D(m, n) =
√

(T [m] − gyrpre[n])2 (1)

The overall cost for warping T completely to gyrpre
in the cheapest way, was then computed using an accu-
mulated cost matrix C based on the implementation of
subsequence_cost_matrix by tslearn [29]. The upper

Fig. 4. Top: Example for the gait test series detection given the input
signal gyrpre with the expected number of twelve turning peaks. Bottom:
Using sDTW resulted in the cost function Δ. The local minima of the cost
function below Θ were determined (only one in the example), and the
gait test series borders were calculated from the corresponding warping
path.

row of C contained the accumulated costs for warping the
complete template T to gyrpre and can be interpreted as a
discrete cost function � (Fig. 4). Local minima of � below a
cost threshold � indicated end points of matches between T
and gyrpre and hence gait test series candidates (gyrcand ).

To determine the beginning of the gait test series candidates,
the warping paths starting from the minima were reconstructed
from the cost matrix C , where the beginning of the warping
path corresponded to the beginning of the match [24]. In case
� never reached values below the threshold �, the algorithm
rejected the gait sequence from containing a gait test series.
The sDTW approach described above was performed sepa-
rately using the signals from the two sensors and the results
were merged in an additive manner.

3) Postprocessing: Due to turnings directly before and after
the gait test series, there could be several local minima
in the cost function and cause overlapping matches. The
postprocessing included further checks for each gait test series
candidate. Two requirements needed to be fulfilled for the
gyrcand signals of both sensors to be confirmed as a gait test
series:

1) gyrcand had an adequate duration between the thresholds
for the minimum (κmin ) and maximum (κmax) allowed
duration of a gait test series.

2) gyrcand had a number of turning-related peaks in the
range of the minimum and maximum allowed number
of peaks of a gait test series, [ηmin , ηmax ] (Fig. 4).

To determine the number of turning-related signal peaks,
the find_peaks function by SciPy [30] was applied to the
gyrcand signal. The values for κmin and κmax were calculated
based on the durations of the gait tests in the data set, whereas
ηmin and ηmax were determined data driven using a grid search
(see III. Evaluation Study). For remaining overlapping matches
after these postprocessing steps, the match with the lowest
costs according to the cost function was selected.

D. Gait Test Series Decomposition

In the final step of the pipeline, the individual test bor-
ders were determined and the speed levels assigned to each
4 × 10MWT in a gait test series. To calculate the gait speed
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Fig. 5. Edge detection for gait test border calculation. Top: The stride
speed v over one gait test series. Bottom left: Smoothing of v resulted
in the filtered gait speed function vfilt. Bottom right: Derivation, absolute
value calculation and normalization yielded the function vderiv. Note: vfilt
and vderiv are defined as functions over strides, hence the two peaks in
vderiv represent the test border strides sborder .

per stride, first the single strides were segmented from the
gait test series signal using the algorithm of Barth et al. [24].
Spatio-temporal gait parameters were then computed using the
gait event detection algorithm and double integration approach
of Rampp et al. [8]. The stride speed as the quotient of stride
length and stride time given was described as a function v
over the single strides si in the gait test series with a speed
value v[si ] in [m/s] for every stride (Fig. 5).

The following steps were applied on v to separate the
three tests. To smoothen the gait speed variability within the
individual 4×10MWTs, we employed a Gaussian filter kernel
resulting in the filtered stride speed signal v f ilt (Fig. 5). The
optimal width w of the Gaussian bell was determined in a
grid search (see III. Evaluation Study). We then computed
the first derivative of v f ilt where the extrema of the resulting
vderiv indicated the points of strong changes in the gait speed.
These were related to the changes in the speed level between
the three gait tests. As the type of the extrema was irrele-
vant, the absolute values of vderiv were determined and the
function was then min-max normalized. The two peaks with
maximum height were determined using the SciPy function
find_peaks [30]. The peaks represented the strides sborder

that constituted the borders between the three 4 ×10MWTs in
the gait test series (Fig. 5).

Finally, to assign the speed labels to the respective
4 × 10MWTs, the medians of the stride speed values in each
of the three determined sequences were computed. The gait
test speed levels were assigned to all respective strides of the
segmented tests in the order Slow, Preferred, and Fast after
sorting the median values from low to high. Hence, the borders
between the individual 4 × 10MWTs were determined by the
strides following a change of the speed level (Fig. 6).

III. EVALUATION STUDY

A. Manual Gait Test Annotations

To provide ground truth information for the evaluation, all
4 × 10MWTs in the data set were manually labeled with start
and end time stamp by two trained human annotators after

Fig. 6. The final 4 × 10MWT borders and assignment of speed labels
to each test.

visual inspection of the raw IMU data. The annotations set
by the participants with the smartphone application served as
assistance, where the sensor signals in the area of ±1000 s
around each annotation were visually inspected. The ground
truth gait test series started with the beginning of the first
4 × 10MWT and ended with the end of the last of three
consecutive 4 × 10MWTs.

B. Gait Test Series Detection

1) Evaluation: The evaluation of the gait test series detection
was performed participant-wise. The evaluation metrics (i.e.
precision, recall, and F1-score) were determined for every
participant by summing up the true positives, false positives,
and true negatives over their daily recordings. The perfor-
mance of the gait test series detection was investigated on
two different levels of granularity. On the coarse level (area-
based evaluation), we asserted whether a gait sequence either
contained a gait test series or not. If at least one sample of a
detected gait test series was overlapping with a ground truth
gait test series, the detected gait test series was considered
as a true positive. Every detected gait test series not fulfilling
this condition was treated as false positive.

On a finer level of evaluation, we compared detected and
ground truth gait test series based on single strides (stride-
based evaluation). Two lists of strides were created by running
the stride segmentation algorithm by Barth et al. [24] on the
detected and ground truth gait test series, respectively. If a
stride of a detected gait test series was also included in a
ground truth gait test series, it was counted as true positive.
All strides in detected gait test series that were not included in
the ground truth list of strides were counted as false positives.

2) Parameter Optimization: The cost threshold � and the
turns threshold range [ηmin , ηmax ] were tunable parameters
and optimized using a grid search. For the turns threshold
range, symmetric interval borders around the expected amount
of twelve detected turnings were used as parameter options
for the grid search (Table II). To get an unbiased estimate of
the final performance, the optimization was evaluated using
a 4-fold cross validation. The data was split on a participant
level. Thus, in each fold, all data of nine participants were
used as training set and the data of the three remaining
participants as test set. Per fold, the grid search was performed
on the training data and the parameter combination with the
best F1-score was applied on the test set to calculate the
performance metrics for this fold. The final generalization
performance was computed as the average over the test sets
in all folds.

The duration thresholds κmin and κmax for each fold were
determined based on the manually labeled 4×10MWTs in the
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TABLE II
VALUE RANGE OF THE PARAMETERS FOR THE GRID SEARCH IN THE

Gait Test Series DETECTION

respective training data sets as follows: The shortest possible
duration of a gait test series, κmin , was defined as three times
the shortest Fast 4 × 10MWT. The multiplication by three
represented the three consecutive tests in a gait test series.
We calculated κmax analogously, using three times the duration
of the longest Slow 4×10MWTs in the respective training set.

C. Gait Test Series Decomposition

1) Evaluation: To evaluate the gait test series decomposition
independently of the influence of previous pipeline steps, only
the IMU signals of the manually labeled gait test series were
used as input to the algorithm. Given the pre-segmented gait
test series data, only the decomposition into the three single
4×10MWTs was performed, including finding the test borders
and assignment of the speed levels.

The gait test series decomposition was a three-class classi-
fication task and evaluated on the granularity of single strides.
In the decomposition algorithm, each stride was assigned to
one of the speed level classes, resulting in three separate
4 × 10MWTs. For determining the ground truth speed labels,
the median speed values of the strides within the manually
labelled 4×10MWTs were calculated and sorted in ascending
order. The single strides of the respective 4 × 10MWTs were
then labelled as Slow, Preferred, and Fast. Based on these
ground truth labels and the algorithm predictions, the perfor-
mance was assessed using stride-by-stride comparisons of the
speed labels. The performance parameters (precision, recall,
and F1-score) were again calculated participant-wise.

2) Parameter Optimization: The width w of the Gaussian fil-
ter window for smoothing the stride speed function v was opti-
mized using a grid search. Values for w ∈ {18, 24, 30, 36, 42}
were tested. As described above, the optimization was evalu-
ated using a 4-fold cross validation. The mean F1-score of all
speed level classes was used as optimization criterion. In each
fold, the value of w providing the highest F1-score in the
training set, was applied to the test set to determine the per-
formance. The final performance parameters were calculated
as the average of the four test set performance results.

D. Concurrent Validity

Additionally to the evaluation of the two individual algo-
rithm components, a performance assessment of the entire
pipeline was done in the form of a concurrent validity analy-
sis [31]. To test the overall validity of the gait test series
detection and decomposition, we compared gait parameters
derived from the detected and decomposed 4 × 10MWTs with
those from the ground truth 4 × 10MWTs.

As the proposed algorithm could potentially produce false
negatives or false positives during the gait test series detection,
a one-to-one comparison between detected and ground truth

TABLE III
PERFORMANCE MEASURES OF THE Gait Test Series DETECTION AS

MEAN (SD) IN THE 4-FOLD CROSS-VALIDATION IN [%]. THE

CONCEPTS OF STRIDE-BASED AND AREA-BASED EVALUATION ARE

EXPLAINED IN DETAIL IN SECTION III-B

gait tests was not feasible. Therefore, average gait parameters
for detected and ground truth gait tests in Preferred, Slow, and
Fast speed were computed and compared per daily recording.
Gait tests with less than 30 strides were excluded to ensure a
sufficient recording of gait variability [32].

We assessed the concurrent validity of five spatio-temporal
gait parameters (stride time, swing time, stance time, stride
length, and gait speed) by calculating Pearson’s correlation,
mean error (ME), mean absolute error (MAE), and the relative
absolute error (RAE).

IV. RESULTS

A. Gait Test Series Detection

In total, the data set contained 419 manually labeled gait
test series including 87088 analyzed strides. The parameter-
optimized gait test series detection reached an F1-score of
88.9% (±3.0%), averaged over the test data sets in the
4-fold cross-validation (Table III). In three of the four folds,
� = 2.5 was identified as the optimal cost threshold, and in
three folds [ηmin , ηmax ] = [10, 14] was determined as optimal
turns threshold range. The average area-based F1-score was
93.3% (±4.3%).

Higher precision was observed for lower � and a more
narrow turns threshold range, whereas the recall was increased
for a higher cost threshold and a broader range. Consequently,
the highest F1-score was found in the central part of the
two-dimensional parameter grid search space.

B. Gait Test Series Decomposition

The gait test series decomposition reached an average
F1-score of 94.0% (±3.8%) over the four folds, with an
average precision of 94.2% (±3.8%) and an average recall
of 94.0% (±3.8%). In all four folds, the filter kernel width of
w = 30 was found as the optimal parameter. The distribution
of correct and false predictions for the different speed levels
is displayed in the confusion matrix in Fig. 7.

C. Concurrent Validity

Mean and standard deviation (SD) values of the investi-
gated gait parameters from 151 daily recordings, as well as
agreement measures are given in Table IV. Good agreement
between gait parameters derived from detected 4 × 10MWT
labels compared to ground truth 4 × 10MWT labels was
observed for all gait parameters in all speed levels.

V. DISCUSSION

In this study, we were able to automatically detect
4 × 10MWTs in real-world IMU gait recordings of PD patients
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TABLE IV
COMPARISON OF THE SPATIO-TEMPORAL PARAMETERS OF THE DETECTED AND THE GROUND TRUTH GAIT TESTS BASED ON DAILY AVERAGES

(N = 151 Daily Recordings). SHOWN ARE THE MEAN PARAMETERS (SD), PEARSON CORRELATION COEFFICIENT r, MEAN ERROR (ME), MEAN

ABSOLUTE ERROR (MAE) AND THE RELATIVE ABSOLUTE ERROR (RAE)

Fig. 7. Confusion matrix for the gait test series decomposition.

with a novel algorithmic pipeline. The detection algorithm
makes use of the periodic pattern of recurring turning move-
ments followed by straight walks. This pattern is captured by
the superior-inferior gyroscope axis signal (gyrsi ) and can be
found during continuous recordings using template matching
based on sDTW.

A major challenge for detecting standardized unsupervised
gait tests are deviations from the predefined study protocol
resulting in non-compliant gait tests. For instance, the walkway
length cannot be expected to be exactly 10 m, resting periods
between individual 4 × 10MWTs were omitted in many cases,
and the order of speed levels in consecutive 4 × 10MWTs
varied between and within participants.

These boundary conditions required a higher algorithmic
complexity and advancements compared to our previously
presented algorithm for the detection of 4 × 10MWTs from
short, supervised recordings in the laboratory [22]. Hence,
a substantially extended pipeline consisting of two separated
parts for the detection and decomposition of gait test series
was developed and evaluated on real-world data.

A. Gait Sequence Detection

A previously reported challenge were very short resting
periods between single gait tests that lead to several tests
being included in one gait sequence [22]. In our unsupervised
study, the existence of resting periods between the single
4 × 10MWTs in one gait test series could not be ensured.
In fact, we observed that some participants performed no or

only very short resting periods. To achieve a generalizable
solution for all participants, we decided to always merge
successive gait sequences separated by short breaks. This
concatenation ensured a robust processing, independent of the
resting period duration between individual 4 × 10MWTs in a
gait test series. Consequently, a gait test series was expected
to be entirely captured in one gait sequence.

B. Gait Test Series Detection

The sDTW approach for the template matching allowed the
detection of gait test series with 4×10MWTs of different speed
levels using a uniform template based on the replication of a
single turning peak (Fig. 3). Due to the ability to stretch or
squeeze the template to achieve an optimal fit with the probe
signal, also potential deviations from the path length of 10 m
could be handled successfully.

After the sDTW, a postprocessing pipeline was applied
focusing on determining gait test series borders as precisely
as possible. Due to the unsupervised scenario, resting periods
were not only often missing between subsequent 4×10MWTs,
but also directly before and after a gait test series. Therefore,
gait sequences detected in real-world data could include a gait
test series, but in addition also other gait signals. Possible
reasons are, that participants were walking to prepare an
obstacle-free straight walkway and the smartphone for operat-
ing the annotation app. This is in contrast to the standardized
clinical recordings in [22], where no other gait movements
besides the 4 × 10MWT were contained in an observed gait
sequence. Hence, the gait sequence borders could directly be
used as the test borders. Therefore, in this study, all gait
test series candidates were undertaken turning and length
checking, leading to precisely set borders (Fig. 4).

One reason for the errors observed in the study can be found
in the static template with a preset amount of twelve turning
peaks. In case of non-compliant tests that were performed
with a reduced number of passes and turnings, matches could
be missed during the template matching. Non-compliant tests
with an increased number of turnings could be detected, but
the borders only covered a part of the true gait test series.
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The predicted gait test series borders were not directly
compared with the ones from the ground truth. However,
we consider the comparison of lists of strides from detected
and ground truth gait test series more valuable, as it gives
an estimate for the expected accuracy for an automated
stride-based analysis of gait parameters (Table IV). Therefore,
it was important to evaluate if the predicted gait test series bor-
ders contain all strides that belong to the corresponding tests.

We also computed the area-based performance, which
helped to understand if the algorithm was generally able to
detect the regions of interest independently of the accurate
determination of the test borders (Table III). A high area-based
accuracy allows to avoid timestamp annotations performed by
the patients. Our algorithm can predict the coarse regions
of the gait tests within the IMU data and thus assist a
researcher during the manual test annotation when a fully
automated processing is not desired. An overlap of one sample
is sufficient, as the larger signal region in the range of minutes
can then be displayed to the human annotator, who may verify
or correct the test borders manually. Given the area-based
F1-score of 93.3%, it can be concluded that the presented
algorithm provides a reliable assistance for an annotation tool,
where the performance could also be further tuned towards an
improved recall, by adapting the thresholds accordingly.

C. Gait Test Series Decomposition

In the second part of the proposed pipeline, the begin-
ning and end of individual 4 × 10MWTs were determined
and corresponding speed levels were assigned (Fig. 6). The
algorithm detected macroscopic changes of the gait speed
within a gait test series, to determine the transitions between
the 4 × 10MWTs (Fig. 5). Within every gait test series,
the three 4×10MWTs were sorted according to the respective
median gait speed. Thus, pre-determined speed thresholds
were avoided, considering that the self-selected gait speeds
can considerably differ between patients in different disease
stages [19].

The gait test series decomposition had a performance with
an F1-score of 94.0% (±3.8%). The low standard deviation in
the cross-validation, as well as the consistent value for the opti-
mized hyper parameter w indicate a good generalizability of
the results. Errors could occur, when the differences between
the three speed levels were not very pronounced. This could
either cause the borders to be shifted by some strides or even
the switch of an entire speed level between tests.

D. Concurrent Validity

In addition to the performance evaluation of the gait test
series detection and decomposition against the ground truth
annotations, we investigated the spatio-temporal gait parame-
ters derived from the gait tests. The calculated parameters are
in agreement with values previously measured for patients with
PD [33]. The results of the concurrent validity study further
show a very good agreement between the gait parameters
derived from gait tests detected by the proposed algorithm
and the parameters derived from the ground truth gait tests
(Table IV). The error ranges are below differences that are

clinically relevant, for example for the distinction of patients
with different PD disease stages [19]. The good agreement of
the gait parameters is a direct consequence of the similarity
of the lists of strides contained in the detected and the ground
truth gait tests. Hence, these findings underline the good
performance of the proposed algorithmic pipeline.

E. Limitations

The separate evaluation of the gait test series decomposition
was only feasible using data from the ground truth gait test
series where always three subsequent 4 × 10MWTs were
performed. The performance for potentially detected gait test
series with too many or too few 4×10MWTs was not explicitly
investigated. However, gait test series with an unusual number
of passes, like 2 × 10MWTs or 6 × 10MWTs, were present
in the data set and did not decrease the accuracy, as the gait
speed changes were still present. Nevertheless, the results of
the concurrent validity study are promising and indicate that
the entire pipeline consisting of gait test series detection and
gait test series decomposition is robust for real-world gait data.

VI. CONCLUSION AND OUTLOOK

We developed and evaluated a novel method for the auto-
matic detection of unsupervised standardized 4 × 10MWTs
in real-world IMU recordings of PD patients. First, gait test
series of subsequently performed 4×10MWTs of different gait
speeds, were detected and extracted. Second, these series were
decomposed into single gait tests and the corresponding gait
speed levels were assigned. Finally, we performed a concurrent
validity study, proving that our algorithm is able to provide
digital mobility outcomes that are similar to those calculated
from manually labeled tests.

The proposed method works well for series of three subse-
quent 4 × 10MWTs, as they contain a characteristic pattern of
turnings, that is different from typical real-world movements.
The reliable detection of single 4 × 10MWTs or shorter tests
such as the TUG is potentially more challenging and might
require advanced techniques to detect them while preventing a
high false positive rate. Hence, in future research, the detection
of other gait tests should be further investigated considering
more complex machine learning methods.

In this study, we used a sensor setup with two sensors
attached to the shoes. However, a single sensor at the lower
back is often used in real-world monitoring. The presented
algorithm focusing on turnings is potentially also applicable
for a single sensor setting including a gyroscope, which should
be investigated in future research. Initial experiments beyond
the scope of this study already showed promising results.

From a clinical point of view, further research is required
to interpret and understand the outcomes of unsupervised gait
tests with respect to standardized tests in the hospital on
one hand and to fully unsupervised real-world gait on the
other hand. Our algorithm provides a reliable tool to support
clinicians and patients with the recording and processing of the
required data, which is potentially also applicable to other dis-
eases with motor impairments. To the best of our knowledge,
this is the first study presenting an algorithm for the detection
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of unsupervised standardized gait tests within real-world data.
Therefore, we make and essential contribution to the field of
real-world gait analysis, enabling further clinical research for
a better understanding and treatment of movement disorders.
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