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Hierarchical Decoding Model of Upper Limb
Movement Intention From EEG Signals

Based on Attention State Estimation
Luzheng Bi , Senior Member, IEEE, Shengchao Xia, and Weijie Fei

Abstract— Decoding the motion intention of the human
upper limb from electroencephalography (EEG) signals
has important practical values. However, existing decoding
models are built under the attended state while subjects
perform motion tasks. In practice, people are often dis-
tracted by other tasks or environmental factors, which may
impair decoding performance. To address this problem,
in this paper, we propose a hierarchical decoding model
of human upper limb motion intention from EEG signals
based on attention state estimation. The proposed decoding
model includes two components. First, the attention state
detection (ASD) component estimates the attention state
during the upper limb movement. Next, the motion intention
recognition (MIR) component decodes the motion intention
by using the decoding models built under the attended and
distracted states. The experimental results show that the
proposed hierarchical decoding model performs well under
the attended and distracted states. This work can advance
the application of human movement intention decoding
and provides new insights into the study of brain-machine
interfaces.

Index Terms— EEG, brain-computer-interface, attention
states, upper limb motion intention, hierarchical decoding
model.

I. INTRODUCTION

ELECTROENCEPHALOGRAPHY (EEG) signals can
reflect brain activities [1]. Studies have shown that it

is feasible to use EEG signals to decode mental states and
human movement intentions [2]. As one major branch of
human movement intention decoding, upper limb motion
intention decoding has vital values in improving the reha-
bilitation and assistance of upper limb impaired patients.
Researchers have conducted numerous studies on upper limb
movement intention decoding from EEG signals. In 2008,
Hammon et al. [3] were the first to extract and parse infor-
mation related to hand movement from EEG signals and used
this information as a feature to identify hand motion intention
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and direction. In 2012, Eileen et al. [4] used EEG signals
of 0.1-4 Hz to detect the self-paced reaching movement inten-
tion of left and right hands. In 2014, López-Larraz et al. [5]
examined motor intention from the EEG correlation
of 7 different analytical upper limb movements. The percent-
age of correctly anticipated trials ranges from 75% to 40%
(chance level of around 20%). In 2015, Jochumsen et al. [6]
detected and classified movement-related cortical potentials
(MRCPs) associated with hand movement in healthy subjects
and stroke patients and showed the possibility of using the
single EEG channel for detecting hand movement intention.
In 2017, Muddassar et al. [7] used MRCPs as features and
applied a matching filtering technique to detect the intention of
upper limb movement and achieved a classification accuracy
of 75.81%. In 2020, Yunier et al. [8] proposed a shoulder
flexion and extension motion intention recognition system to
transfer control commands to the upper limb robot exoskele-
ton. However, existing studies on upper limb motion intention
decoding do not consider the effect of the attention state on the
decoding of movement intentions. Two attention states, likely
affecting the decoding performance, include alternating and
divided attention. Alternating attention means that attention is
shifted between dual or multiple tasks, whereas the divided
attention means that attention is divided between dual or mul-
tiple tasks. In many cases, a person is in the divided attention
(distracted state) during upper limb movement. The study
reported in [9] showed that the intention detection accuracy
might decrease when a subject is distracted, although the
intention in [9] referred to the visual target detection but
not human movement intention. Furthermore, by requiring
subjects to perform the lower limb movement and oddball
auditory tasks alternately, Aliakbaryhosseinabadi et al. [10]
found that attention alternation decreased the magnitude of the
MRCPs and reduced the detection performance of movement
intentions of lower limbs. However, the studies reported in [10]
do not study the effect of divided attention on the MRCPs
and decoding performance of movement intention and do not
propose a method to address motion intention decoding from
EEG signals when a person may be in the different attention
states. This paper aims to propose a hierarchical decoding
model of the upper limb movement intention (movement
intention means a binary classification of whether a subject
intends to move), which can perform well under the attended
and distracted states. The proposed decoding model includes
two components. First, the attention state detection (ASD)
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component estimates the attention state during the upper
limb movement. Next, the motion intention recognition (MIR)
component decodes the motion intention by using the two
decoding models built under the attended and distracted states,
respectively. The contribution of this paper is twofold: 1) the
work presented in this paper is the first to investigate the
decoding of upper limb movement intention under the divided
attention (distracted state); 2) this paper proposes a hierar-
chical decoding model of upper limb movement intention by
integrating a recognition model of attention states with two
decoding models of upper limb movement intention built under
the attended and distracted states, respectively. This work
can contribute to the research and development of human
movement intention decoding robust to the distracted state
and provide new insights into the study of brain-machine
interfaces. The remainder of the paper is organized as follows.
Section II introduces the method. Section III presents the
experimental results. Section IV describes the discussion and
conclusion.

II. METHOD

A. Participants

Twelve healthy subjects (aged 21-25, ten males and two
females) participated in the experiment. All of them had
normal or corrected-to-normal vision and no brain disease
history. All subjects signed the informed consent forms.
They were not permitted to take any alcohol, tobaccos,
drugs, or caffeine before the experiment. The study adhered
to the principles of the 2013 Declaration of Helsinki. Power
tables from Cohen were used to evaluate the number of
participants needed to obtain a significant result [11]. Given
two-tailed α = 0.05 and the recommended power level
of 80%, the number of participants needed for significant
results is 9, which justifies the number of subjects in our
experiment.

B. Experimental Paradigm and Procedure

In this experiment, each subject was asked to complete two
sub-experiments, consisting of human upper limb movements
in attended and distracted states. Since all subjects were
right-handed in our experiment, we regarded the right-hand
movement as the upper limb movement task. In each sub-
experiment, subjects were required to sit on a chair about
50 cm away from the computer screen. It was allowable to
adjust the height and distance of the chair according to the
comfort level of each subject. The subjects were asked to
move their upper limbs rightward in a 2-D horizontal plane.
Subjects were required to complete 50 trials in each sub-
experiment. There was a one-minute break between the two
consecutive trials and a five-minute break between the two
sub-experiments. The experimental paradigms are shown in
Figs. 1 and 2. The subjects were given three seconds to relax
before the experiment began. At the 3rd second, a solid block
appeared on the screen, representing the starting position of
right hands. From this time point, subjects were in an idle state.
The solid block became hollow at the 6th second, indicating
that subjects prepared to move their right hands rightward.

Fig. 1. Experimental paradigm of hand movement without distraction.

Fig. 2. Experimental paradigm of hand movement with distraction.

To avoid the visual stimulus effect, we required subjects to
move their right hands in their own paces two or three seconds
after the 6th second. In the sub-experiment of hand movement
in the attended state, subjects were asked to move their upper
limbs rightward to the designated target position. During this
process, subjects were required to pay full attention to the hand
movement task. In the sub-experiment of hand movement in
the distracted state, we required subjects to perform the hand
motion task and a cognitive task simultaneously. We used a
n-back task (in this paper, n = 2) as the cognitive task. The
n-back task has been used as a secondary task of the dual task
studies [12]. The numbers were presented randomly by sound
every two seconds. Participants were required to remember
the most recent two numbers. Eight subjects completed the
experiment according to the above procedure. However, since
human brain signals are likely to be non-stationary [13]–[15],
the experimental results may be purely because of the dif-
ference caused by the non-stationarity of EEG signals rather
than the difference in the attention state. The issue is the well-
known ‘block design pitfall’ pointed out by Li et al. in [16].
Thus, to validate whether the non-stationarity of EEG signals
is a problem in our work, we designed a new experiment
that randomized and interleaved the attended and distracted
trials and let the remaining four subjects perform the new
experiment.

C. Data Acquisition and Preprocessing

Fig. 3 shows the experimental setup. EEG signals were
acquired by a 64-electrode portable wireless EEG amplifier
(NeuSen. W64, Neuracle, China) from the scalp of subjects.
The forehead ground was at AFz and reference was placed
at CPz. The specific locations of fifty-nine channels are shown
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Fig. 3. Experimental setup.

Fig. 4. EEG collection location.

in the Fig. 4. The impedance of the electrodes was kept to
be less than 10 k�. The sampling frequency was 1000 Hz.
The position of the right hand was obtained by the
motion position tracking device FASTRACK at a sampling
frequency of 60 Hz. We used the position information col-
lected by FASTRACK to determine the onset of hand move-
ment and extracted the corresponding EEG data for the
analysis. When the coordinate difference between the two
consecutive sampling points was greater than the threshold
(preset to be 0.015 inches), it was considered the onset of
hand motion. The epoch [−3, 3] s of the determined onset
during each trial was selected for the subsequent analysis
(0 s indicates the movement onset obtained from position
analysis). We first downsampled the data to 100 Hz and
used the baseline correction to remove the baseline inter-
ference signal. Then, we applied the independent compo-
nent analysis (ICA) to remove ocular artifacts. Correlation
coefficients of independent components (ICs) obtained from
EEG signals through ICA and EOG signals were computed.
The ICs with coefficients larger than 0.7 were cleared to
remove the ocular artifact. The remaining ICs were inversely
transformed for clean EEG data. After that, we applied
artifact subspace reconstruction (ASR) to remove move-
ment artifacts [17]. Finally, the common-average-reference
(CAR) was used to filter the common interference of each
channel.

Fig. 5. Architecture of the hierarchical decoding model.

D. Hierarchical Decoding Model of Upper Limb Motion
Intention

The system architecture of the proposed hierarchical decod-
ing model, as shown in Fig. 5, consists of two major com-
ponents: 1) attention state detection (ASD) and 2) motion
intention recognition (MIR). The working procedure of the
proposed method is as follows. The ASD component first
recognizes the attention state of the subject while he/she is
performing an upper limb motor task. Then, according to the
attention state obtained from the ASD, the MIR system uses
the corresponding motion intention decoding model to output
the decoded motion intention. In this way, the whole system
can decode the motion intention from EEG signals given the
different attention states (including attended and distracted
states).

E. ASD Algorithm

1) Preprocessing: Psychological studies have shown that
attention and cognitive task are related to Alpha and Theta
waves [18]–[20]. Three separable brain networks that each
perform three attention functions (alerting, orienting, and
executive control) involve primarily frontal and parietal brain
regions [21], [22]. Fast Fourier transform (FFT) filter was used
to filter EEG signals acquired from frontal and parietal brain
regions in the frequency band [4], [13] Hz. The samples that
we used were the window data from 1s before movement onset
to the movement onset. According to the rule, one hundred
and fifty samples were obtained for each subject under each
attention state.

2) Feature Extraction and Classification for ASD: For each
sample, we calculated the power sum of the frequency
band [4], [13] Hz of EEG signals from each channel as
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a classification feature. The power sums of sixteen channels
(from frontal and parietal brain regions, including Fz, F1,
F2, F3, F4, F5, F6, F7, F8, Pz, P3, P4, P5, P6, P7, P8)
were concatenated into a sixteen-dimension feature vector.
The linear discriminant analysis (LDA) was used to build a
binary classifier to identify the attention state. The 5-fold cross
validation was used to test the classifier. The attention state
decoding models can be written as:

f (x) = ωT x + a (1)

where x = [x1, x2, . . . , xn] is the sample vector, ω =
[ω1, ω2, . . . , ωn] represents the projecting directions of the
classifier, and a represents the threshold of the classifier,
which is determined by receiver operating characteristic
curve (ROC).

F. MIR Algorithm

The motion intention decoding models were established
under each attention state.

1) Preprocessing: MRCP contains information that can
decode the intention of the movement [23], [24]. Fast Fourier
transform (FFT) filter was used to filter EEG signals in the
frequency band [0.01, 4] Hz to get MRCP. The samples with
no intention to move were taken from the preparation stage
before the experiment, that is, 3 to 2 seconds before the start of
the movement. Samples with movement intention were taken
from 0.5 s before to 0.5 s after movement onset. According
to the rule, one hundred and fifty samples were obtained for
each subject under each attention state.

2) Feature Extraction and Classification: According to [10],
[23], [25], two hundred and thirty-six temporal features (four
features/channel∗fifty-nine channels) were extracted from sin-
gle trials of MRCP. The four features of each channel included
the minimum peak negativity, the slope, the amplitude variabil-
ity, and the amplitude mean. The slope was computed as the
slope of the linear regression of EEG data in the time interval
[−0.5 0.5] s (0 indicates the movement onset obtained from
position analysis). The amplitude variability was defined as
the standard deviation of the EEG signal amplitude of each
sample. The amplitude mean was defined as the average value
of EEG signal amplitude of each sample. LDA was used to
establish the classification model, and a 5-fold cross-validation
method was used to compute the accuracy of the algorithm.
The motion intention recognizing models under two attentional
states can be written as:{

yi = fi (x) = ωT
i x + ai

i = 1, 2
(2)

where y1 is the output of the motion intention decoding models
under the attended state, and y2 is the output of the model
under the distracted state.

III. RESULTS

A. The Effect of Distraction on Motion Intention Decoding

To validate whether the attention state can affect motion
intention decoding, we first used the data obtained under

Fig. 6. The effect of distraction on movement decoding performance
among S1 to S8.

the attended and distracted states in our original experiment
to build the motion intention decoding model. Then, tests
were performed with data in the attended and distracted
states, respectively. Note that all subjects completed the
2-back task with accuracies of nearly 96%, suggesting that
the primary motion task was indeed distracted. Fig.6 shows
the motion intention decoding results under the attended
and distracted states. We can see that the average accuracy
of motion intention decoding under the attended state was
73.14%±4.86% and higher than that under the distracted state
(69.86%±5.34%). Wilcoxon test showed that the accuracy
difference between the two states was statistically significant
(p = 0.035 < 0.05), which indicated that the distracted state
might deteriorate the decoding performance, and we need
to address this problem. Furthermore, the true positive rate
(TPR) was 84.90%±12.27% under the attended state, whereas
the TPR was 80.27%±15.54% under the distracted state.
Wilcoxon test showed that the TPR difference between the
two states was non-significant ( p = 0.225 > 0.05). The false
positive rate (FPR) was 39.55%±5.05% under the attended
state, whereas FPR was 43.88%±6.87% under the distracted
state. Wilcoxon test showed that the FPR difference between
the two states was non-significant ( p = 0.237 > 0.05). The
Kappa Index was 0.5802±0.0569 (0.4 < Kappa Index < 0.6:
moderate consistency) under the attended state, whereas Kappa
Index was 0.5453 ±0.0530 (0.4 < Kappa Index < 0.6:
moderate consistency) under the distracted state. Wilcoxon
test showed that the Kappa Index difference between the two
states was statistically significant (p = 0.05). These metrics
also indicated that the distracted state might deteriorate the
decoding performance. To test the possible confounding factor
of the ‘block’ experimental design, we applied data from our
new experiment that randomized and interleaved the attended
and distracted trials to complete the same analysis. Fig. 7
shows the accuracy across four subjects. Table I shows the
performance comparison between the block and interleaved
designs. We found that there was performance degrading from
the block design to interleaved design, suggesting the non-
stationarity of EEG signals. Furthermore, we found consistent
results between the original and new experiments. That is,
the results of the two experiments showed that the distrac-
tion might degrade the decoding performance. For the new
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Fig. 7. The effect of distraction on movement decoding performance
among S9 to S12.

TABLE I
COMPARISON OF PERFORMANCE BETWEEN BLOCK

DESIGN AND INTERLEVED DESIGN

experiment, the average accuracy of motion intention decoding
under the attended state was 69.75%±7.33% and higher than
that under the distracted (64.11%±3.88%). Wilcoxon test
showed that the accuracy difference between the two states
was marginally significant (p = 0.05 < 0.068 < 0.1).
Furthermore, the TPR was 79.13%±22.97% under the
attended state, whereas TPR was 75.02%±16.64% under
the distracted state. Wilcoxon test showed that the TPR
difference between the two states was non-significant
(p = 0.285 > 0.05). The FPR was 40.13%±10.66% under the
attended state, whereas FPR was 46.81%±10.43% under the
distracted state. Wilcoxon test showed that the FPR difference
between the two states was marginally significant ( p =
0.05 < 0.068 < 0.1). The Kappa Index was 0.5401±0.0837
(0.4 < Kappa Index < 0.6: moderate consistency) under
the attended state, whereas Kappa Index was 0.4735±0.0393
(0.4 < Kappa Index < 0.6: moderate consistency) under the
distracted state. Wilcoxon test showed that the Kappa Index
difference between the two states was marginally significant
(p = 0.05 < 0.068 < 0.1).

B. Non-Stationarity Analysis of EEG Signals Between
Attended and Distracted States

Since we did not consider the confounding factor
(i.e., non-stationarity of EEG signals) of the ‘block’ exper-
imental design in our original experiment, to further test
the confounding factor, we extracted the first 3-second EEG
signals (i.e., epochs) of subjects in the idle state in each trial of

Fig. 8. Analysis results of the first 3-second of idle state.

two sub-experiments. Furthermore, we took epochs from the
sub-experiment of hand movement in the attended state as one
class and epochs from the sub-experiment of hand movement
in the distracted state as the other class. We built a model to
distinguish the two classes by using LDA with EEG magnitude
as features. Experimental results from eight subjects showed
the average classification accuracy of 55.47±1.19% (chance
level of 50%), suggesting that the non-stationarity of EEG
signals was a confounding factor in our original experiment but
the effect was not significant. The detailed results are shown
in Fig. 8.

C. MRCP

Figs. 9 (a), (b), and (c) show the average MRCPs of all
subjects at Channels Cz, C3, and C4 in the attended and
distracted states, respectively. As shown in Fig. 9, for the
right-hand movements under the attended and distracted states,
the negative-going trend of MRCPs appeared at around −1 s,
declined rapidly after −0.5 s, and finally reached the min-
imum peak negativity (MPN) at around 0 s, which is the
actual movement onset. The solid black line represents the
average MRCP in the attended state, and the dotted red line
denotes the average MRCP in the distracted state. The shadows
mean the standard deviation of MRCPs over all participants.
We found that the MPN at Cz under the attended state
was larger than that under the distracted state (9.83 μV
VS 7.17 μV), and the statistical test was significant
(p = 0.012 < 0.05). The rebound rate (RR) at Cz, computed
as the slope between the time of peak negativity (TPN) and
1 s after this point, in the attended state was larger than that
in the distracted state (13.48 μV/s VS 9.56 μV/s), and the
statistical test was significant (p = 0.05). The MPN and
RR showed similar results at C3 and C4 to those at Cz.
At C3, the MPN in the attended and distracted states was
8.82 μV VS 5.81 μV, and the statistical test was significant
(p = 0.012 < 0.05). The RR in the attended and distracted
states was 12.32 μV/s VS 9.23 μV/s, although the statistical
test was non-significant (p = 0.484 > 0.05). At C4, the MPN
in the attended and distracted states was 8.45 μV VS 4.92 μV,
and the statistical test was significant (p = 0.012 < 0.05).
The RR in the attended and distracted states was 11.76 μV/s
VS 8.11μV/s, although the statistical test was non-significant
(p = 0.484 > 0.05).
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Fig. 9. MRCPs at the channels Cz, C3, and C4 under the attended
and distracted states. The shadows shown in figures are the standard
deviation of MRCPs over all participants. Note that 0 S means the onset
of the actual movement.

D. Performance of ASD

To address the negative impact of the distracted state on
decoding performance, we proposed a hierarchical decoding
model. Table II shows the performance of the ASD compo-
nent of the hierarchical decoding model across all subjects.
We found that the average accuracy of the ASD com-
ponent was 80.95%±9.90%. Furthermore, the TPR was
77.74%±11.01%. The false FPR was 17.17%±12.39%. The
Kappa Index was 0.6937±0.1399 (0.6 < Kappa Index < 0.8:
high consistency). These metrics showed that the ASD com-
ponent performed well.

E. Performance of MIR

Table III shows the performance of the MIR component of
the hierarchical decoding model across all subjects. We saw

Fig. 10. Comparison of the decoding performance between the pro-
posed model and conventional model.

that the average accuracy of the MIR component for the
attended state was 78.11%±5.26%, whereas the average accu-
racy under the distracted state was 73.77%±5.05%. Fur-
thermore, the TPR was 86.08%±10.21% under the attended
state, whereas TPR was 82.42%±14.07% under the dis-
tracted state. The FPR was 31.86%±8.53% under the attended
state, whereas FPR was 39.76%±6.62% under the distracted
state. The Kappa Index was 0.6366±0.0815 (0.6 < Kappa
Index < 0.8: high consistency) under the attended state,
whereas Kappa Index was 0.5806±0.0691 (0.4 < Kappa
Index < 0.6: moderate consistency) under the distracted state.
All metrics showed the effectiveness of the MIR component
under the attended and distracted states.

F. Decoding Performance of Hierarchical Decoding
Model

To better show the merit of the proposed hierarchical
decoding model, we compared the performance of the pro-
posed model with that of the decoding model (hereafter we
called it conventional model) built by using the conventional
method reported in [10], [23], [25] based on the samples
collected under the attended and distracted states. All models
were tested by the five-fold cross-validation method. Fig. 10
shows the accuracy comparison results between the two mod-
els across all subjects. We saw that the proposed model
outperformed the conventional model. Furthermore, the pro-
posed model obtained an average accuracy of 75.99%±5.31%.
In comparison, the average accuracy of the conventional
model was 69.97%±5.32%. Wilcoxon test showed that the
accuracy difference was statistically significant ( p = 0.003 <
0.05). Furthermore, the TPR of the propose model was
87.07%±9.19%, whereas the TPR of the conventional model
was 80.75%±14.82%. Wilcoxon test showed that the TPR
difference was statistically significant ( p = 0.041 < 0.05).
The FPR was 36.07%±7.28% using the propose model,
whereas FPR was 42.30%±6.27% using the conventional
model. Wilcoxon test showed that the FPR difference was
marginally significant (p = 0.071 > 0.05). Kappa Index
was 0.6163±0.0692 (0.6 < Kappa Index < 0.8: high con-
sistency) using the proposed model, whereas Kappa Index
was 0.5441 ±0.0587 (0.4 < Kappa Index < 0.6: moderate
consistency) using the conventional model. Wilcoxon test
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TABLE II
PERFORMANCE OF ATTENTION STATE DETECTION ACROSS ALL SUBJECTS

TABLE III
MOTION INTENTION DECODING PERFORMANCE UNDER ATTENDED AND DISTRACTED STATES

Fig. 11. Comparison of performance between the proposed model and conventional method under different concentration states.

showed that the difference in Kappa index was statistically
significant (p = 0.003 < 0.05). Fig. 11 shows performance
comparisons between the results of the proposed and con-
vention models under two states of attention. Under the
attended state, the decoding accuracy of the proposed model
is 78.08%±5.79%. In comparison, the decoding accuracy
of the conventional method is 72.01%±5.7%. Wilcoxon test
showed that the accuracy difference was statistically significant
(p = 0.012 < 0.05). Under the distracted state, the decod-
ing accuracy of the proposed model is 73.89%±5.68%.

In contrast, the decoding accuracy of the conventional model
is 67.94%±5.5%. Wilcoxon test showed that the result dif-
ference was statistically significant (p = 0.008 < 0.05). The
comparison results show that the proposed model has better
performance in both attentional states than the conventional
states.

IV. DISCUSSION AND CONCLUSION

In this paper, to address the effect of the attention state on
the decoding performance of the upper limb motion intention,
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we proposed a hierarchical decoding model of the upper
limb motion intention by integrating a recognition model of
attention states with decoding models of upper limb movement
intention built under the attended and distracted states, respec-
tively. The experimental results showed that the proposed
model performed well under the attended and distracted states.
This work is the first to investigate the decoding of upper
limb movement intention under the distracted state. It can
contribute to the research and development of human motion
intention decoding (including other kinematic parameters, like
velocity and position) from EEG signals. Furthermore, it can
advance the application of human motion intention decoding
in improving the rehabilitation and assistance of upper limb
impaired patients. As shown in Fig. 9, MRCP results showed
that the MPN of MRCP in the distracted state was smaller than
that in the attended state. This may be due to the interference
between the firing of neurons in brain regions [26]–[28]
associated with movement and those associated with atten-
tion [29], [30]. According to [31], another reason might be
the loss of the mental source to the upper limb motion task in
the distracted state. Smaller MPN may cause lower accuracy
in the detection of MRCP (i.e., the decoding of movement
intention) in the distracted state. As shown in Figs. 6 and 7,
the distraction impaired the motion decoding performance.
To overcome the negative effect of the distraction on motion
decoding, we proposed a hierarchical decoding model of the
upper limb motion intention. The proposed decoding model
includes two components. First, the attention state detection
component estimates the attention state during the upper limb
movement. Then, the motion intention recognition component
decodes the motor intention by using the decoding models
built under the different attention states. As shown in Fig. 10,
the proposed model performed well under the attended and
distracted states. Another possible method to overcome this
problem is to build the decoding model (conventional model)
by using the EEG data collected under both the attended
and distracted states. In this paper, according to this strategy,
we adopted the conventional method reported in [10], [25]
to build a decoding model by using the EEG data collected
under the attended and distracted states. To show the advantage
of the proposed model, we compared the performance of the
proposed model with that of the conventional model. As shown
in Fig. 11, the proposed decoding model outperformed the
conventional model across all subjects under both the attended
and distracted states. Furthermore, the average accuracy of the
proposed model was 6.02% higher than that of the conven-
tional model. Our original experimental design suffers from
the well-known ‘block design pitfall’ pointed out in [16].
That is, we did not consider one possible confounding fac-
tor (i.e., non-stationarity of human EEG signals reported
in [14], [15]) of our original experimental design. Thus,
the differences observed in the results may be purely because
of the differences caused by the non-stationarity of EEG sig-
nals rather than the difference in the attention state. To address
this problem, we added four subjects to perform a new exper-
iment that randomized and interleaved the attended and dis-
tracted trials. The two experiments showed consistent results
that the distraction might degrade the decoding performance.

This paper has some limits that need to be further handled
in our future work. First, in this work, we used twelve
(ten males and two females) young and healthy subjects.
To further validate the findings, we need to apply more
subjects, especially more old people, females, and people
with disabilities. Second, although the proposed decoding
model performed well, there is still a gap between the current
performance and the desired one for the application. Since the
hierarchical decoding model consists of the ASD and MIR
components, we can improve the decoding performance by
increasing the accuracies of the ASD and MIR components.
For example, we can apply other kinds of features and non-
linear classifiers to improve the ASD and MIR components.
Third, the motion task in this paradigm was the subjects’
movement to the right. To better validate the proposed decod-
ing model, we should consider movements in other directions.
Fourth, we proposed a hierarchical decoding model to decode
whether a person intends to move under the attended and dis-
tracted states. Whether the hierarchical strategy performs well
for decoding other kinematic parameters under the attended
and distracted states still needs to be validated. We will
focus on handling these mentioned-above limitations, includ-
ing adding the number of subjects, validating the findings
for old people, females, and people with disabilities, further
improving the decoding performance, validating the proposed
model for movements in other directions, and developing other
hierarchical decoding models for decoding other kinematic
parameters.
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