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Recognition of Dementia Biomarkers
With Deep Finer-DBN
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Abstract— The treatment of neurodegenerative diseases
is expensive, and long-term treatment makes families bear
a heavy burden. Accumulating evidence suggests that the
high conversion rate can possibly be reduced if clinical
interventions are applied at the early stage of brain dis-
eases. Thus, a variety of deep learning methods are uti-
lized to recognize the early stages of neurodegenerative
diseases for clinical intervention and treatment. However,
most existing methods have ignored the issue of sample
imbalance, which often makes it difficult to train an effective
model due to lack of a large number of negative samples.
To address this problem, we propose a two-stage method,
which is used to learn the compression and recover rules of
normal subjects so that potential negative samples can be
detected. The experimental results show that the proposed
method can not only obtain a superb recognition result, but
also give an explanation that conforms to the physiologi-
cal mechanism. Most importantly, the deep learning model
does not need to be retrained for each type of disease,
which can be widely applied to the diagnosis of various
brain diseases. Furthermore, this research could have great
potential in understanding regional dysfunction of various
brain diseases.

Index Terms— Alzheimer’s disease (AD), deep learning,
fMRI classification, sample imbalance.

I. INTRODUCTION

ALZHEIMER’S disease (AD), a progressive, irreversible
neurodegenerative disease, is the most common type

of dementia, which accounts for 50% to 80% of dementia
cases [1]. As reported, the incidence of AD doubles every
five years after age 65, and 1 in 85 people will be affected by
this disease by 2050 [2]. Since there is no effective treatment
for AD, the timely and accurate identification of AD and its
intermediate stage (i.e., Mild Cognitive Impairment (MCI)) is
particular important [3], [4].

Functional magnetic resonance imaging (fMRI) [5],
a powerful noninvasive technique for detecting brain activ-
ities, provides unprecedented opportunities for dementia
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research. Due to the high-dimensional nature of neuroimaging
data, existing methods usually use functional partition tem-
plates (i.e., automated anatomical labeling (AAL) template [6])
or select region-of-interest (ROI) to conduct research on
brain functional interaction patterns, and build brain network
models to detect brain disease biomarkers. For example,
Szewczyk-Krolikowski et al. used independent component
analysis (ICA) and dual regression to construct brain func-
tional network, discovering reduced connectivity between
the basal ganglia network and widespread frontal, temporal,
parietal cortical regions in patients compared with healthy
controls [7]. Gorges et al. conducted a seed-to-seed approach
to resting-state fMRI default mode network (DMN) analy-
sis, founding reduced functional connectivity between the
medial prefrontal cortex (PFC) and the posterior cingulate
cortex (PCC) in Parkinson’s disease patients [8]. In addition,
Chen et al. introduced a sliding time-window method to
assess dynamic connectivity changes process between healthy
controls (HCs) and AD, and various unique and additional
biomarkers of disorders are observed which cannot be detected
with static functional connectivity measures [9]. However,
most of the current machine learning paradigms rely on these
manually designed brain networks to detect biomarkers of
brain diseases, such as default mode network [10], Pearson’s
correlation network [9], and sparse brain network[11]. These
manually designed brain models may not fully reflect the
actual laws of brain interaction patterns.

A large number of research results have proved that,
compared with traditional manually-designed brain functional
network models, deep neural networks have unparalleled
advantages in fMRI data characterization and model-
ing [12], [13]. In the field of assisted diagnosis of brain
disease, Wang et al. designed a novel VGG-based atten-
tion network to recognize AD, which can realize accu-
rate diagnosis with various data augmentation methods [14].
Li et al. constructed a dual-branch convolution neural net-
work (CNN) to extract finer features of hippocampal regions
to predict the individual subject’s progression of MCI
to AD, and obtained roughly consistent results with clin-
ical data [15]. Wang et al. proposed a new AD detec-
tion approach based on a single slice. This method
adopted the multilayer perceptron, and finally the accuracy
reached 92.4% [16]. In the field of brain function decoding,
Cui et al. used a novel deep recurrent neural network to
model brain functional networks from task fMRI data, exper-
imental results showed that the proposed model can not only
reconstruct brain functional networks, but also identify more
meaningful brain networks under multiple time scales [17].
Dong et al. adopted a novel sparse deep belief network
(VS-DBN) for modeling the hierarchical brain networks from
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volumetric fMRI data and demonstrated that a large number
of interpretable and meaningful brain network can be robustly
reconstructed in a hierarchical fashion [18].

The aforementioned methods have confirmed the excellent
feature extraction and activity decoding capabilities of deep
neural networks. However, these case-driven methods ignore
the problem of sample imbalance, which is the most common
phenomenon in the domain of biomedical image analysis.
Currently, deep unsupervised representation learning has pro-
duced new methods in the field of Unsupervised Anomaly
Detection (UAD). The main principle of the work is to obtain
a good feature representation by learning to compress and
recover HCs, so that potential negative samples (e.g., MCI)
with abnormal structures can be detected from erroneous
recoveries. For instance, Baur et al. used unsupervised auto-
encoder to model the brain structure of HCs and found that
trained model can effectively isolate potential pathological
structural abnormalities [19]. Zhao et al. proposed a defect
detection model based on positive sample training without
manual label. The model can automatically repair defects in
regular pattern texture images and give specific locations of
defects [20]. However, features extracted by unsupervised rep-
resentation learning model (e.g., deep belief network (DBN))
are coarse, and may not be able to detect subtle texture
changes [19].

Generally, the application of deep learning in neuroimaging
analysis still suffers from the following challenges. First,
supervised deep learning methods (such as CNN) usually
require a large number of positive and negative paired samples
for training. However, due to personal privacy, low disease
incidence, etc., the number of samples for certain diseases may
be very scarce. Second, although unsupervised representation
learning methods (such as auto-encoders) can be trained with-
out negative samples. However, the coarse-grained features
extracted by them are not conducive to the recognition of sub-
tle changes. Third, it is believed that the brain is hierarchically
organized [18], [21], while many existing methods cannot well
represent the spatial hierarchical relationship of brain.

To overcome these challenges, we propose a novel demen-
tia recognition framework via finer deep belief network
(Finer-DBN), which can simultaneously extract coarse-grained
and fine-grained features for HCs’ data reconstruction. At the
same time, the network model stacked with basic modules can
well represent the hierarchical relationship of brain functions.
Specifically, we design a new basic module called ConvRBM.
The brain signal will be input into two branches at the
same time, one is 1D convolution for extracting fine-grained
features, and the other is the Restricted Boltzmann Machine
(RBM) for extracting coarse-grained features. It is worth
noting that the data we input is voxel-level data of a single
volume, not time series data along the time dimension. On the
one hand, it is more convenient to study the spatial hierarchical
relationship of brain functions by encoding volume signal; on
the other hand, a single volume of standard template brain
has the same amount of voxel data, so the training and testing
of our model will not require the subjects to have the same
sampling time, which will have a broader prospect in practical
application.

In summary, our proposed model has the following advan-
tages: (1) it relieves the need of vast amounts of negative

samples for training deep learning models; (2) it can detect
arbitrary, even rare pathological lesions which may not be
detected by supervised methods (lesions are not included in
the training set) in theory; (3) it can characterize the spatial
hierarchical relationship of brain; (4) it is universal and does
not need to train different deep learning models for different
diseases.

The rest of this paper is organized as follows. In Materials
and Methods section, we introduce the proposed framework
for dementia recognition. Then, we describe experimental
results in Results and Discussion section. Finally, we conclude
this study in Conclusion section.

II. MATERIALS AND METHODS

A. Proposed Framework

The Fig. 1 provides an overview of the proposed framework.
Our objective is to predict the cognitive physiological state of
each individual. In fact, the framework belongs to a two-stage
method which firstly generates representation features and
then uses features during identification. Specifically, the first
stage corresponds to the steps of Fig. 1 (a)-(c), the objective
is to gain a good feature representation of normal subjects
by training the Finer-DBN network with normal subjects’
data [19], [20]. The second stage corresponds to the steps
of Fig. 1 (d)-(e), which is to recognize the dementia cases.
At this stage, we will first input the data of all subjects
(including normal subjects and subjects with brain diseases)
into the Finer-DBN network trained in the first stage to extract
features. Then, we will only need to retrain the subsequent
classifiers for different types of disease, and do not need to
retrain the deep learning model, which undoubtedly has greater
advantages than previous supervised learning methods. The
detailed training steps can be seen from Section III (Model
Training and Complexity).

B. Data Acquisition and Processing

In this study, a total of 334 subjects’ resting state fMRI
data from the publicly available Alzheimer’s disease neu-
roimaging initiative (ADNI) project and Parkinson’s Pro-
gression Markers Initiative (PPMI) are used for testing the
proposed framework, including normal controls (NC), early
MCI (eMCI), late MCI (LMCI), Prodromal (Prod), GenCo-
hortUnaff (GenUf) and GenCohortPD (GenPD). (For more
details about imaging parameters, please see the ADNI
protocols at http://adni.loni.ucla.edu and PPMI protocols at
http://www.ppmi-info.org/), and the detailed information is
shown in Table I.

For fMRI data preprocessing, we apply the standard proce-
dures as follows. First, for magnetization equilibrium, the first
5 volumes of each subject were discarded before preprocess-
ing, and then the remaining volumes were involved in the
subsequent pipeline (https://web.conn-toolbox.org/), was used
to perform functional realignment, motion estimation, slice-
timing correction, outlier detection [22], direct segmentation
and normalization and functional smoothing with a Gaussian
kernel of 8mm full width half maximum (FWHM), etc. Finally,
all subjects are normalized to the Montreal Neurological
Institute’s (MNI) 152 space with 2mm spatial resolution, each
volume contains 228,453 voxels.
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Fig. 1. Illustration of recognizing dementia with Finer-DBN. (a) Each preprocessed fMRI volume data was treated as a single training sample for
Finer-DBN network. (b) The basic module that constitutes the Finer-DBN. It contains two branches for accepting input and extracting features. (c)
Reconstruct the brain volume data by fusing the outputs of two branches of ConvRBM module. (d) Concatenate the coarse-grained (clustering
coefficient of hidden state network) and fine-grained (reconstruction error) features for training classifier. (e) Visualize biomarkers at all stages of
dementia into standard brain space. (f) Analyze the spatial distribution relationship between the features extracted by different ConvRBM modules.

TABLE I
DETAILED INFORMATION ABOUT THE USED DATASET

Fig. 2. Schematic illustration of RBM and DBN.

C. RBM

Restricted Boltzmann Machine (RBM), a generative model
with two layers: visible layer and hidden layer (Fig. 2), can
approximate the potential probability distribution of training
data. RBM can also be interpreted as an undirected probability

graphical model [23], in which the state of the visible layer
and the state of the hidden layer can affect each other. The
visible layer for accepting observations is fully connected
to the hidden layer for extracting features [24], while the
connections are yet to be established within the visible layer
and hidden layer. The joint probability distribution of visible
layer v and hidden layer h is defined as:

P(v, h) = 1

Z
exp(−E(v, h)) (1)

where Z is the sum of e−E(v,h), E is an energy function.
The energy function has different definitions under different
data distributions. When the visible layer and the hidden layer
are both binary distributions, Bernoulli-Bernoulli E(v, h) is
generally used; when the visible layer is real-valued data
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and the hidden layer is binary, Gaussian-Bernoulli E(v, h)
is applied. In the context of fMRI data, the activation of
each voxel is real-valued data and in Gaussian distribution.
Thus, Gaussian-Bernoulli E(v, h) is adopted as the energy
function [25] and the detailed definition is as follows:

E(v, h)=−
∑

i

∑

j

vi

σi
wi, j h j −

∑

i

(bi −vi )
2

σ 2
i

−
∑

j

c j h j (2)

where vi represents the signal strength value at the
i -th position of each volume, h j ∈ {0, 1}, σi is the standard
deviation of i -th visible neuron, wi, j is the weight between vi
and h j , bi is the bias of the i -th visible neuron, and c j is the
bias of the j -th hidden neuron.

The conditional distribution of P(h|v) and P(v|h) is given
by

P(h j = 1|v) = sigmoid(
∑

i

wi, jvi + c j ) (3)

P(vi = 1|h) = sigmoid(
∑

j

wi, j h j + bi ) (4)

where the mathematical definition of sigmoid is
1/(1 + exp(−x)).

RBM was trained to maximize the log-likelihood of visible
neurons v, the probability of visible neurons v inferred from
the model is

P(v) =
∑

h

exp(−E(v, h))/
∑

v

∑

h

exp(−E(v, h)) (5)

To update the model, the results from the log probability
regarding the weights are as follows

∂ log P(v)/∂wi, j =< vi h j > v− < vi h j >model (6)

The update rule for the weights follows the gradient of the
log likelihood is

�wi, j = α(< vi h j >data − < vi h j >model) (7)

where α is the learning rate. However, it takes exponential
time to calculate the exact value of the term < vi h j >model.
The contrastive divergence (CD) [26] algorithm can be used
to approximate the gradient to complete the calculation. The
new update rule can be set as

�wi, j = α(< vi h j >data − < vi h j >recon) (8)

where the term < vi h j >recon represents the expectation
of reconstructions generated by initializing the data from
the hidden neurons and then updating the hidden neurons
according to the visible layer data.

D. ConvRBM
Modeling fMRI with temporal features has already been

explored in massive literature [27], [28]. However, the inter-
subject variability is more associated with the volatile time
courses rather than the spatial volumes under different imaging
sessions. In this case, it appears that taking volumes as input
possibly works better than time series in eliminating the inter-
subject variability factors [29]. In this paper, a volumetric
learning scheme was applied where each volume from the
fMRI data was taken as a sample. Thus, after preprocess-
ing, the volumes of all subjects were concatenated along

time dimension and shuffled for further group-wise training.
As shown in Fig. 1(a), each fMRI volume at a time point was
used as a training sample and the Finer-DBN was trained in
an unsupervised fashion.

In addition, in order to obtain more refined features,
we designed a novel basic module ConvRBM for recon-
structing fMRI data. As shown in Fig. 1(b), it is a dual-
branch structure module, including a 1D convolution branch
and an RBM branch to extract features from the input data
simultaneously. Specifically, the dimension of the input data
is 228,453, which corresponds to the number of voxels in
MNI-152 space of 2mm spacing. The 1D convolution branch is
constructed by a convolution layer with kernel size 3, yielding
outputs with the same size of input by padding operation. The
visible layer of RBM model is constructed with 228,453 nodes,
and hidden layer nodes are set as 100 based on previous
prior knowledge [18], [30]. The parameters of weight W and
weight W’ are shared, where W’ is the transpose of W.

The reasons for using this structure can be explained from
the following three aspects. First of all, the form of data input
in our method is the brain volumetric signal, which is a vector.
Therefore, the 1D convolution structure is more compatible
with the form of the input data. Secondly, convolution is
widely used for feature extraction. We maintain the input
and output sizes consistent in order to avoid losing subtle
information during the process of extracting features. Finally,
because the parameters of RBM are optimized by the principle
of maximum likelihood estimation, it is more attractive in
terms of model interpretability [23].

E. Model Training and Complexity
The framework is a two-stage method and the specific

implementation process for dementia identification can be
divided into the following three steps:

• train the Finer-DBN network with the data of normal
subjects;

• input the data of all subjects (including normal subjects
and subjects with brain diseases) into the Finer-DBN
model trained in the previous step to extract features;

• train different classifiers for identifying different types of
disease;

The first stage corresponds to the first step of the execution
process, and the objective is to obtain the feature represen-
tation of volumetric data. The second stage corresponds to
the last two steps during the execution process. The main
principle of the proposed method is to obtain the feature
representation by learning to compress and recover volumetric
data of normal subjects, so that potential negative samples
(e.g., dementia cases) with abnormal data distribution can be
detected from erroneous recoveries. In general, the biggest dif-
ference between the proposed method and the traditional deep
learning method is that the feature extraction and classification
are divided into two stages and executed separately. Relatively
speaking, our method may be more suitable for practical
application. For example, we want to judge whether a subject
is healthy or suffering from a certain disease. In the traditional
CNN-based method, we may need to input sample data into
various disease detection models (such as AD detection model,
MCI detection model, Parkinson’s detection model) before we
can conclude that the sample is healthy or has a certain disease.



1930 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021

TABLE II
TIME AND SPACE COMPLEXITY OF DBN AND FINER-DBN

But it is almost impossible to obtain diagnosis models for all
diseases. In contrast, our method is to directly judge whether
the sample is healthy or not according to the difference
between the reconstructed data and the original data, and does
not need to go through the testing of multiple models.

The deep learning model Finer-DBN is implemented by
the tensorflow framework. The optimizer adopts the Adam
optimizer with a learning rate of 0.001 and a batchsize of 4,
and the epoch is set as 50. The detailed training steps of Finer-
DBN are as follows:

Finer-DBN is a hierarchical structure composed of multiple
stacked ConvRBM modules. First, train the first ConvRBM
module based on the sample-normalized volumetric data of
all normal subjects. Next, fix the parameters of the first
ConvRBM module and use the output of the first ConvRBM
as the input of the second ConvRBM module. Then, train
the second ConvRBM module with the first ConvRBM output.
By analogy, after fixing the parameters of the previous layer is
obtained for the input of the next layer. Finer-DBN repeats the
above training process for each sample in layer-wise fashion.
Specifically, each ConvRBM module was gradually optimized
by minimizing the error between the original data and the
reconstructed data, that is

lossi = M SE(yi − xi ), i ∈ {1, 2, 3, 4, 5} (9)

where MSE is the mean-squared loss. xi is the input of i -th
ConvRBM module, and yi is the output of i -th ConvRBM
module.

After finishing Finer-DBN training, the support vector
machine (SVM) [31] with RBF kernel was introduced as the
classifier for disease identification. SVM seeks a maximum
margin hyperplane to separate the samples of one class from
those of the other class. The empirical risk on training data
and the complexity of the model can be balanced by the hyper-
parameter C, thereby ensuring good generalization ability on
unseen data. In this work, we use 10-fold cross-validation
strategy to evaluate the generalization performance of SVM
classifier. As the performance of SVM classifier (RBF kernel)
is dependent on the hyperparameters C and gamma. We use a
nested 10-fold cross-validation procedure to determine optimal
values for the two hyperparameters in the following ranges:
C∈[0.1, 0.2, . . . , 1.0], gamma ∈[0.1, 0.2, . . . ,1.0].

Based on the algorithm training process of DBN and Finer-
DBN, we derive their total floating point operations (FLOPs)
and space complexity for each iteration, the detailed informa-
tion is shown in Table II. The 1D convolution branch leads
to a slight increase of time complexity (approximately 1.48%)
and space complexity (approximately 3.95%).

F. Feature Extraction and Evaluation Criteria

The dual-branch ConvRBM module extracts two types of
features, which RBM branch is used for coarse-grained feature
extraction and 1D convolution branch is used for fine-grained

voxel-level feature extraction. For each subject, the hidden
layer outputs h ∈ Rt×N of the RBM branch can be obtained,
where t represents the time points of data acquisition, and
N is the number of neurons in the hidden layer. We regard
each neuron in the hidden layer as a node, and then con-
struct the correlation matrix hidden state network (Fig. 1(c),
HSN ∈ RN×N ) to characterize the temporal-interaction
between neurons in the same layer. The results of a large
number of previous studies have proved that the clustering
coefficient has great advantages in characterizing brain net-
work differences, and has been widely used as the core feature
in the classification of neurological diseases [32]–[34]. Thus,
we extract the clustering coefficients of HSN to act as the
coarse-grained features, the specific definition is as follows:

C = 1

N

N∑

i=1

2Ei

di(di − 1
) (10)

where N is the number of nodes in the hidden layer, di is
the degree of node i , Ei is the number of edges connected to
node i . In addition, we treat the input and output reconstruction
errors of the corresponding ConvRBM module of each subject
as fine-grained features, and finally obtain voxel-level features
with a size of t × 228, 453.

To quantitatively evaluate the performance of the Finer-
DBN framework in recognizing dementia disease, accuracy
(ACC), sensitivity (SEN), specificity (SPE), and F1 score [35]
were calculated based on 10-fold cross-validation to increase
the confidence level of the recognition results. Before giving
the specific definition of the above evaluation criteria, it is
necessary to introduce the following definitions:

Positive samples: subjects from NC
Negative samples: subjects from eMCI or LMCI or other

dementia disease
� True positive (TP): the number of subjects correctly

labeled positive samples
� True negative (TN): the number of subjects correctly

labeled negative samples
� False positive (FP): the number of negative samples

incorrectly labeled as positive samples
� False negative (FN): the number of positive samples

incorrectly labeled as negative samples
Based on the above definitions, ACC, SEN, SPE and

F1 score can be defined as:

ACC = T P + T N

T P + T N + F P + F N
(11)

SE N = T P

T P + F N
(12)

S P E = T N

T N + F P
(13)

F1score = 2 × TP

2 × TP + FP + FN
(14)

G. Spatial Hierarchical Relationship

In order to interpret the features learned by Finer-DBN,
we need to map out which areas of the brain help to distinguish
different dementia stages. There are several ways [36]–[38]
to visualize a deep neural network, we choose the most
commonly used layer activation method [36] for visualization
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TABLE III
RECOGNITION PERFORMANCE OF DIFFERENT MODELS IN OUR NINE TASKS

due to its easy implementation and generalization. The basic
idea is if the input is relevant, a slight variation will cause
high change in the layer activation. This can be characterized
by the gradient of the output given the input, the positive
gradients indicate that a minor change to the input signals
increases the output value. To visualize the gradients, we add
small perturbation to the raw fMRI data to observe the gradient
change of the reconstruction data, and then reconstruction data
gradients will be mapped back into the original 3D brain
image space, which is the inverse operation of masking in
preprocessing steps.

To compare the activation maps derived by Finer-DBN
different layers, the spatial overlap rate is defined to measure
the similarity of layer-wise activation maps [18]. The specific
definition of overlap rate (OR) is as follows:

O R(Mi , M j ) =

N∑
v=1

|Mi
v∩ M j

v |
N∑

v=1
|Mi

v ∪ M j
v |

(15)

where Mi is the i -th layer activation map, N is the number
of voxels of standard brain space.

III. RESULTS

A. Recognition Results

We evaluate the proposed method on the ADNI and PPMI
database with a 10-fold cross-validation strategy. The trained
model not only should be tested on the corresponding data
sets, but also should be used for classification task across
data sets. Specifically, the following nine binary classification
tasks are conducted: i .e., NC vs. eMCI, NC vs. LMCI, eMCI
vs. LMCI, NC vs. Prod, NC vs. GenUf, NC vs. GenPD,
Prod vs. GenUf, Prod vs. GenPD and GenUf vs. GenPD.

Table III summarizes the recognition performances of mod-
els trained on different datasets, where the best scores are
highlighted in bold. It is worth noting that when we evaluate
the classification performance of the trained model, we may
encounter the problem of imbalanced data category. For exam-
ple, when we classify the NC of PPMI and Prod of PPMI. The
Prod category contains 41 subjects, while the NC category
only includes 22 subjects. For this kind of classification task
with obvious imbalanced data problem, we will randomly
select the same number of samples as another category from
the category with more sample size to test and evaluate the
model. The above process will be performed ten times and
averaged to obtain a relatively fair result. The proposed frame-
work is compared with DBN (Fig. 2(b)) under three different
training situations, including model trained with ADNI NC
data, model trained with PPMI NC data and that is trained with
fusion NC data from ADNI and PPMI. DBN and Finer-DBN
set the same training hyper-parameters in all cases to avoid
the influence of parameter differences on the model prediction
results. Parameters details are as below: the learning rate
is 0.001, the number of epochs is 50 and the batch size
is 4.

As shown in Table III, compared with DBN, our proposed
framework has achieved the best classification performance
in all nine tasks. This proves that our model can extract finer
features after adding a branch, which can significantly improve
the classification performance. It can also be clearly observed
that there are still some differences between the same models
trained on different data sets for the same classification task.
On the one hand, this may be caused by the difference in
data acquisition parameters. On the other hand, it may be due
to the difference in the data size of the data set. Intuitively,
a model trained on the corresponding data set can often obtain
better classification performance for the data set, for example,
Finer-DBN1 for ADNI and Finer-DBN2 for PPMI.
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Fig. 3. Effects of Finer-DBN using different time window ratios. (a) The
recognition results on ADNI dataset. (b) The recognition results on PPMI
dataset.

Secondly, compared with DBN, the gap between the best
and worst classification performance of Finer-DBN is smaller
on most tasks. It could be attributed to the 1D convolution
branch that extracted more features. For different classification
tasks, it is not hard to find that the best performance of
tasks without NC category is higher than that of tasks with
NC category. This demonstrates that different biomarkers
may exist in different stages of dementia. There may be
fixed imaging differences between NC and dementia cases
at a specific stage, while the biomarkers between dementia
cases at distinct stages may not be fixed in the same brain
regions, resulting in more imaging differences. Thus, it will
be more conducive to distinguish cases of dementia at distinct
stages. Therefore, those classification tasks that do not include
NC category can accomplish superior result.

Finally, we can find that both DBN and Finer-DBN can
obtain similar results in cross-data classification tasks. This
shows that the design idea of our paper is feasible, that is,
a good feature representation can be obtained by learning to
compress and reconstruct the data of normal subjects, so that
potential negative samples with abnormal data distribution can
be detected from the error recovery. The requirement of the
classifier SVM for the amount of data is significantly lower
than that of deep learning model, which can well solve the
problem of sample imbalance. In summary, the superior results
in Table III demonstrate the feasibility of our method for
dementia recognition.

B. Ablation Study
The temporal sensitivity of Finer-DBN was evaluated by

progressively increasing the duration ratio of fMRI time
windows (Fig. 3). It can be seen from Fig. 3(a) and (b)
that the classification accuracy of the two data sets (ADNI
and PPMI) gradually improves with the increase of the time
window ratio, and the standard deviation of the classification
effect gradually stabilizes. The main reason possibly that more
effective features are drawn from fMRI data with the increase
of time window ratio, which promotes the improvement of

Fig. 4. The Finer-DBN recognition effect by fusing features of different
layers. (a) The recognition results on ADNI dataset. (b) The recognition
results on PPMI dataset.

Fig. 5. Brain activation maps of averaged ADNI NC group data learned
by Finer-DBN 1st layer.

classification effect. The time window ratio rises from 20%
to 40%, the classification effect of the two data sets improves
fastest, and when the ratio reaches 60%, most classification
tasks are very similar to the optimal results. It can still be
observed that under different time window ratios, the best
performance of tasks without NC category is higher than that
of tasks with NC category.

The layer-feature sensitivity of Finer-DBN was also evalu-
ated by fusing the features of different layers (Fig. 4). From
Fig. 4(a) and (b), it can be discovered that the classification
accuracy of the two datasets (ADNI and PPMI) gradually
improves with the increase of the number of fusion feature
layers, and the standard deviation of the classification effect
gradually tends to be stable. The reason for this may be
that higher-level network layer-features can provide extra
features, thereby helping to steadily enhance the performance
of the classifier. It is also quite easy to find that when the
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Fig. 6. The hierarchical relationship and spatial similarity of NC group data revealed by Finer-DBN. (a) The hierarchical relationship of brain activation
maps. (b) The averaged spatial similarity of ADNI NC group data. (c) The averaged spatial similarity of PPMI NC group data.

first three layers of features are fused, it seems that the
classification effect has reached saturation, and there is no
significant improvement in the classification effect by adding
the features of subsequent layers. It is worth noting that the
best performance of tasks without NC category is higher than
that of tasks with NC category.

IV. DISCUSSION

A. Activation Maps

Besides good classification accuracy, good interpretability is
also vital for clinical application. In this section, we randomly
intercepted a part of the averaged time series data of the
NC group to visualize what Finer-DBN 1st layer learned.
In Figure 5, purple dots are real fMRI signal data, and the
blue line is the signal data reconstructed by Finer-DBN.
Meanwhile, brain activation maps at the turning point of the
reconstructed curve are also visualized by the layer activation
method [36]. These red activated brain regions indicate that the
reconstructed value is significantly different from the actual
value, the yellow regions represent that there is no significant
error between the reconstructed value and the real value, and
the blue regions are between the above two.

Comparing these five brain activation maps, we can sum-
marize that the size of the yellow regions does not vary
significantly over time, maintaining a relatively stable resting
state. However, red regions and the blue regions have relatively
large changes, not only in the area of the regions, but also
in the intensity of the color. Specifically, the larger real
value is, the blue area is larger and the red area is smaller.
Meanwhile, the blue area color is darker while the red area
is lighter. When the actual value is small, it is just the

opposite of the above phenomenon. As can be viewed, the blue
regions are mainly concentrated in the left frontal lobe, part
of the right frontal lobe and the right parietal lobe. The red
regions with larger reconstruction error are concentrated in
the left frontal lobe. Interestingly, we found that these red
and blue regions contain many brain regions of the default
mode network (DMN) [39], such as posterior cingulate gyrus,
right hippocampus, angular gyrus, left inferior temporal gyrus
and medial prefrontal lobe. These results demonstrate that the
proposed framework not only has excellent data representation
ability, but also has good physiological interpretability.

B. Hierarchy: Spatial Similarity

In this section, we conduct research on the relationship
between brain activation maps learned by different network
layers, and the specific results are shown in Figure 6. Among
them, Fig 6(a) gives the hierarchical relationship between
brain activation maps of different layers, Fig 6(b) and Fig 6(c)
are the averaged spatial similarity matrix of NC group data
in the ADNI and PPMI dataset, respectively. Specifically,
we divide the brain into 3 levels according to the spatial
similarity index. The basic level is the brain activation map
numbered 1-28 in the Fig. 6(a), which corresponds to the
features learned by the 1st layer of the network. The middle
level is the brain activation map numbered 29-48 in the
Fig. 6(a), which corresponds to the features learned by the
2nd layer of the network. The high-level is the brain activation
map numbered 49-60 in the Fig. 6(a), which corresponds to
the features learned from the third to the fifth layer of the
network. The reason for combing the features of the last three
layers into the same level is that there is no obvious difference
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Fig. 7. Dementia-related brain maps of ADNI data. (a) NC vs eMCI.
(b) NC vs LMCI. (c) eMCI vs LMCI.

among the features of the 3rd, 4th and 5th layer, and their
average spatial similarity is more than 80%.

For the hierarchical relationship, we found that some high-
level brain activation maps are comprised of multiple low-level
brain activation maps. For example, the 33rd brain activation
map is composed of the 11st and the 20th brain activation
map, the 42nd brain activation map is composed of the 13rd

and the 15th brain activation map and the 51st brain activation
map is composed of the 33rd and the 3rd brain activation
map. Such phenomenon may indicate that the brain function
is organized hierarchically, and the brain may includes many
known or unknown basic level activation maps, which are
the basic components of higher-order functions. These basic
brain activation regions cooperate with each other to complete
various complex tasks.

For spatial similarity between features learned by differ-
ent layers, we give the average spatial similarity matrix of
NC group data from different datasets. The two matrices
are compatible in many aspects. First, the closer of the two
layers are, the larger spatial similarity between them. Second,
the higher-level layer has the larger averaged spatial similarity.
The reasons for this phenomenon can be accounted for from

two aspects. For one thing, Finer-DBN is trained layer by
layer with the output of the shallow layer as the input of the
subsequent layer, which makes the spatial similarity between
the adjacent layers larger. Secondly, the neurons of the higher-
layer composite larger receptive fields, the small changes in
local regions may have limited impact on high-level neurons.
This may be for the reason that the higher the layer, the higher
the averaged spatial similarity.

C. Dementia-Related Feature Visualization
After multiple encoding and decoding, Finer-DBN can

obtain more consistent brain function data by reconstruction.
We believe that those regions with great differences between
different types of reconstruction data play a major role in the
classification task between them. Figure 7 gives the dementia-
related visualization results, where the red and blue regions
have greater influence on their classification results.

Comparing the results of the three images, we can note
that the left prefrontal lob and occipital lobe have always
played important roles in the classification task at each stage.
In the early stage of dementia, the difference in the right
hippocampus is not significant, but in the late stage of demen-
tia, the importance of the right hippocampus increased sig-
nificantly compared with the early stage. Therefore, the right
hippocampus may be a very effective biomarker in identifying
the stage of dementia. The above research results are basically
consistent with the results of many previous studies [4],
[9], [40], reflecting that our model not only has good data
characterization abilities, but also has excellent interpretability.

V. CONCLUSION

In this paper, we proposed a novel dementia recognition
framework based on the Finer-DBN. With massive experi-
ments across datasets, the Finer-DBN model shows its promis-
ing capability of characterizing fMRI data under a hierarchical
structure. Feature visualization based on the layer activation
method validated that activation maps learned by Finer-DBN
are meaningful and can be well interpreted. With the layer at
higher levels in the Finer-DBN structure, the activated brain
regions tend to be large and the reconstructed data of the
same category is more consistent. It can be observed that
some basic-level brain activation maps merge into higher-level
brain activation maps, which indeed suggests the hierarchi-
cal architecture of brain function. Besides, the experimental
results show that the left prefrontal lobe and occipital lobe
play an important role in discriminating dementia at all stages.
Moreover, the right hippocampus may be very effective as a
biomarker to determine the stage of dementia. In the future
work, we will apply the proposed model to more auto-encoder
networks, and further investigate the specific relationship of
activation maps between different hierarchical levels. Fur-
thermore we will focus on interpreting the corresponding
neuroscientific meanings of the hierarchical organization of
the brain functions in both healthy and diseased brains.
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