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Abstract— Sleep stage classification is essential for
sleep assessment and disease diagnosis. Although pre-
vious attempts to classify sleep stages have achieved
high classification performance, several challenges remain
open: 1) How to effectively utilize time-varying spatial and
temporal features from multi-channel brain signals remains
challenging. Prior works have not been able to fully utilize
the spatial topological information among brain regions.
2) Due to the many differences found in individual biolog-
ical signals, how to overcome the differences of subjects
and improve the generalization of deep neural networks is
important. 3) Most deep learning methods ignore the inter-
pretability of the model to the brain. To address the above
challenges, we propose a multi-view spatial-temporal graph
convolutional networks (MSTGCN) with domain general-
ization for sleep stage classification. Specifically, we con-
struct two brain view graphs for MSTGCN based on the
functional connectivity and physical distance proximity of
the brain regions. The MSTGCN consists of graph convo-
lutions for extracting spatial features and temporal con-
volutions for capturing the transition rules among sleep
stages. In addition, attention mechanism is employed for
capturing the most relevant spatial-temporal information
for sleep stage classification. Finally, domain generalization
and MSTGCN are integrated into a unified framework to
extract subject-invariant sleep features. Experiments on
two public datasets demonstrate that the proposed model
outperforms the state-of-the-art baselines.
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I. INTRODUCTION

SLEEP stage classification is important for the assessment
of sleep quality and the diagnosis of sleep disorders.

Sleep experts identify sleep stages based on American Acad-
emy of Sleep Medicine (AASM) standard [1] and observa-
tions recorded in polysomnography (PSG), which includes
electroencephalography (EEG) at different positions on the
head and electrooculography (EOG). The transition rules
among different sleep stages recorded in the AASM standard,
which can assist sleep experts in identifying the sleep stages.
Although these rules provide valuable information, classifying
the sleep stages by human sleep experts is still a tedious and
time-consuming task. Moreover, the classification results are
affected by the variability and subjectivity of sleep experts.

Automatic sleep stage classification can greatly improve
the efficiency of traditional sleep stage classification and has
important clinical value. Many researchers have made great
contributions to automate this classification task. At first,
traditional machine learning methods based on time domain,
frequency domain, and time-frequency domain features are
adopted [2], [3]. However, the classification accuracy of
these methods depends heavily on feature engineering and
feature selection, which require substantial expert knowledge.
Recently, deep learning methods have been widely applied to
automatically classify sleep stage thanks to its powerful ability
of representation learning. For example, Convolutional Neural
Network (CNN) [4] and Recurrent Neural Network (RNN) [5]
are often utilized to learn appropriate feature representations
from transformed data or directly from raw data.

Although the existing methods [6]–[10] achieve high
accuracy for sleep stage classification, these methods have
not sufficiently solved the following challenges: 1) The
spatial-temporal features of sleep stages have not been fully
considered. In particular, the topology among brain regions
has not been effectively employed to capture richer spatial
features. 2) Physiological signals vary significantly across
different subjects, which hinders the generalizability of the
trained classifiers. 3) Most deep learning methods, especially
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related graph neural network models, ignore the importance
of model interpretability to the brain.

There have been several attempts to address the first chal-
lenge [7], [11]–[13]. For example, CNN is usually applied to
extract the spatial features of the brain, and RNN is applied
to capture temporal features during sleep transition. However,
the limitation of these networks is that their input must be
grid data (image-like representations) without utilizing the
connections among brain regions [14]. Due to the fact that
brain regions are in non-Euclidean space, graph is the most
appropriate data structure to indicate brain connection. There-
fore, GraphSleepNet [15] is proposed to classify sleep stages
based on the functional connectivity of the brain network
and using spatial-temporal graph convolution to achieve the
state-of-the-art performance. However, in the brain network
based on functional connectivity, there may not necessarily be
connections among physically adjacent brain regions. In fact,
existing neuroscience research shows that brain regions that
are adjacent to each other at physical distances can influence
each other [16]. However, GraphSleepNet only utilizes the
functional connectivity of the brain to construct the sleep
stage networks, which ignores the importance of the physical
proximity of the brain in space. For the second challenge,
some researchers try to apply transfer learning methods to
improve the generalization of the models [17], [18]. The
existing sleep stage classification models based on transfer
learning are all two-step training paradigms. That is, these
models need to be pre-trained and then fine-tuned to new
subject data. The fine-tuning operation needs to collect sleep
data from specific new subjects or datasets, which is quite
expensive and inconvenient. In addition, the generalization of
transfer learning models that need to be fine-tuned is limited.
These models are designed for specific subjects and may not
show excellent performance on other new subjects. Therefore,
fine-tuning is only applicable to the personalized (subject-
variant) model of the specific subject. And whenever a new
subject needs to be evaluated, the existing model must be
re-collected and re-trained. Therefore, for clinical systems
suitable for unknown users, fine-tuning may become ineffi-
cient. For the third challenge, previous attempts to develop
interpretable CNN or RNN classification models have been
sparse [7], [12], [19]. Specifically, no attempt has been made
to interpret the key modules of graph neural network for sleep
stage classification from the perspective of the brain network.

In order to address the above challenges, we propose
the multi-view spatial-temporal graph convolutional net-
works (MSTGCN) with domain generalization for sleep stage
classification. Figure 1 illustrates the overall architecture of
our model. Specifically, 1) we construct two brain view graphs
based on the spatial proximity and functional connectivity of
the brain, where each EEG channel corresponds to a node of
the graph, and the specific connections among the channels
correspond to the edge of the graph. 2) Then, we utilize
spatial graph convolution to capture rich spatial features.
Temporal convolution is applied for capturing the transition
among different sleep stages. Actually, sleep experts usually
identify the class label of one sleep state according to both
the characteristic EEG waves of the current state and the class

labels of its neighbors. 3) We design a spatial-temporal atten-
tion mechanism to capture the most relevant spatial-temporal
information on the sleep stages. 4) Finally, we apply the
adversarial domain generalization, which is a typical method
of transfer learning without fine-tuning. In the process of
model training, each subject is employed as a specific source
domain for subject-invariant sleep feature extraction. The
subject-invariant sleep feature does not vary with different sub-
jects and is related to sleep stage classification. The advantage
of the domain generalization is that it does not require any
information in the new subjects (target domain).

To the best of our knowledge, it is the first attempt to
apply spatial-temporal graph neural networks with domain
generalization for sleep stage classification. Overall, the main
contributions of the proposed model for sleep stage classifica-
tion are summarized as follows:

• We construct different brain views based on the functional
connectivity and physical distance proximity of the brain.
The complementarity of different views provides rich
spatial topology information for classification tasks.

• We design a spatial-temporal graph convolution with
attention mechanism, which consists of spatial-temporal
graph convolution for spatial-temporal features and
attention mechanism for capturing the most relevant
spatial-temporal information for sleep stage classification.

• We integrate domain generalization and spatial-temporal
graph convolutional networks into a unified framework to
extract subject-invariant sleep features.

• We conduct experiments on two public sleep datasets,
namely ISRUC-S3 and MASS-SS3. Experimental results
demonstrate that the proposed model achieves the state-
of-the-art performance.

• We explore the interpretability of the key modules of the
model. In particular, we present the functional connectiv-
ity obtained through adaptive graph learning. The results
indicate that functional connectivity during light sleep is
more complex than that during deep sleep.

Compared to the Adaptive Spatial-Temporal Graph Con-
volutional Networks (called GraphSleepNet) published in our
preliminary work [15], MSTGCN has the following important
improvements: 1) The brain network based on physical dis-
tance proximity is constructed. It and the preliminary adaptive
functional connectivity brain network form a multi-view brain
network, which can provide rich brain spatial topology infor-
mation for sleep stage classification. 2) Domain generalization
is integrated with spatial-temporal graph convolutional net-
works into a unified framework to improve the generalization
of the proposed model. 3) Experiments are conducted to
evaluate the effectiveness of MSTGCN on two sleep datasets,
of which ISRUC-S3 is not evaluated in our preliminary work.
Moreover, we conduct the ablation experiments to evaluate the
impact of each component of MSTGCN on the performance.
4) The interpretability of the key modules in MSTGCN is
explored and discussed.

II. RELATED WORK

In recent years, time series analysis has attracted the
attention of many researchers [20], [21]. As a typical time
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Fig. 1. The overall architecture of the MSTGCN for sleep stage classification. First of all, two different views on the brain are constructed: the
functional connectivity-based brain graph and spatial distance-based brain graph. Different views reflect different spatial relationships of the brain.
Then, an attention based spatial-temporal graph convolution is designed for the most relevant spatial-temporal features for sleep stage classification.
Finally, a domain generalization with the gradient reversal layer is implemented to improve the generalization of the model. In domain generalization,
each subject in training set is treated as a specific source domain. The advantage of domain generalization over other transfer learning methods is
that this method does not require any information (a small number of labeled samples or unlabeled sample data distribution) from the test set (called
unknown domain or target domain). Therefore, domain generalization improves the generalization of the model and is more suitable for clinical
systems applied by unknown users.

series, physiological signals are used in many fields, such
as motor imagery [22]–[24], emotion recognition [25], [26],
and sleep stage classification [15], etc. With the develop-
ment of deep learning, two popular deep learning models,
CNN and RNN, are widely applied in sleep stage classifica-
tion. Specifically, a fast discriminative complex-valued CNN
(FDCCNN) [27] is proposed to capture the sleep informa-
tion hidden inside EEG signals. A CNN model based on
multivariate and multimodal physiological signals [7] takes
into account the transitional rules of sleep stages to assist
classification. A hierarchical RNN named SeqSleepNet [13]
tackles the task as a sequence-to-sequence classification task.
At the same time, hybrid models are also employed by
some researchers. DeepSleepNet [12] utilizes CNN to extract
time-invariant features, and Bi-directional Long Short-Term
Memory (BiLSTM) to learn the transition rules among sleep
stages. A hierarchical neural network [28] implements com-
prehensive feature learning stage and sequence learning stage,
respectively. Additionally, with the development of attention
mechanisms, a deep Bi-directional RNN with attention mech-
anism is utilized for single-channel sleep staging [29].

Although CNN and RNN models achieve high accuracy,
their limitation is that the model’s input must be grid data
ignoring the connection among brain regions. As different
brain regions are not in the Euclidean space, grid data may
not be the optimal data representation. Hence, the graph is
the most appropriate data structure. GraphSleepNet [15] is
proposed to utilize graph neural network to model functional
connectivity brain network to achieve the SOTA performance.
However, it only considers the spatial functional connectivity,

and to a certain extent ignores the spatial proximity of brain
regions.

Some previous researchers attempt to solve the subject
difference problem found in physiological signals. Transfer
learning methods are applied to improve the robustness of
deep learning models for individual differences [17], [18].
For example, MetaSleepLearner [18] based on model-agnostic
meta-learning is proposed to overcome the subject difference
problem by training in the source domain and fine-tuning
in the target domain. Although the existing transfer learning
methods for sleep stage classification can achieve improved
results, almost all existing work needs to fine-tune the pre-
trained model for sleep stage classification. That is, these
models require additional fine-tuning operations using part
of the labeled data in the target domain. Therefore, these
transfer learning methods that need to be fine-tuned are only
suitable for the specific subject’s personalized model. In this
case, whenever a new subject needs to be evaluated, data
must be collected again and the existing model must be
fine-tuned again. Therefore, for clinical systems that need to
be adapted to unknown subjects, fine-tuning operations may
become inefficient.

III. PRELIMINARIES

A. Sleep Stage

Polysomnography (PSG) is usually employed for recording
physiological signals during sleep in clinical medicine. The
PSG is segmented into 30-second epochs for sleep stage
classification. Sleep experts usually classify sleep epochs
into different stages based on the sleep staging standard.
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Fig. 2. Multi-view sleep brain network. Left network is the functional
connectivity-based network and right network is the spatial distance-
based network.

Specifically, according to the AASM sleep staging standard,
the human sleep process can be divided into three main
parts: Wakefulness (Wake), rapid eye movement (REM), and
non-rapid eye movement (NREM). Furthermore, the NREM
can be subdivided into three parts: N1 stage, N2 stage, and
N3 stage. In general, sleep experts directly divide the sleep
state into 5 different classes (Wake, N1, N2, N3, and REM).

B. Sleep Brain Network

A sleep brain network is defined as a graph G = (V , E, A),
where V represents the set of vertices and each vertex in
the network represents an electrode on brain; |V | = N is
the number of vertices in sleep brain network; E denotes the
set of edges and indicates the connection between vertices;
A denotes the adjacency matrix of sleep brain network G.
As presented in Figure 2, GFC

t represents sleep brain network
constructed from the functional connectivity and G DC

t repre-
sents sleep brain network constructed from spatial distance.
And a 30s EEG signal sequence St (called a sleep epoch) is
transformed into GFC

t and G DC
t .

C. Sleep Feature Matrix

The sleep feature matrix is the input of the graph neural
network. We define the raw signals sequence as S =
(S1, S2, . . . , SL ) ∈ R

N×Ts ×L , where L is the number of sleep
epochs, Ts represents the time series length of each sleep
epoch Si ∈ S(i ∈ {1, 2, · · · , L}). For each sleep epoch Si ,
we extract the node feature by using a feature extraction
network in Supplementary Material S.1 and define each epoch
Si ’s feature matrix X i = (

xi
1, xi

2, . . . , x i
N

)T ∈ R
N×Fd , where

xi
n ∈ R

Fd (n ∈ {1, 2, · · · , N}) represents Fd features of node
n at epoch i .

D. Sleep Stage Classification Problem

The research goal is to learn the mapping relationship
between the encoded signals and sleep stage classes. The
problem of sleep stage classification is defined as: given S =
(Si−d , . . . , Si , . . . , Si+d ) ∈ R

N×Ts ×Tn identify the current
sleep stage y, where S represents the temporal context of Si ,
y denotes the Si ’s sleep stage class label, and Tn = 2d + 1
is the number of sleep brain networks, where d ∈ N

+ is
temporal context. Specifically, in order to identify the sleep
stage of the current sleep epoch Si , we utilize its previous

d epochs and following d epochs as the context. For each
epoch, we construct G DC and GFC respectively, and they are
employed as the input of our model to identify the sleep stage
y of the current sleep epoch.

IV. MULTI-VIEW SPATIAL-TEMPORAL GCN

The overall architecture of the proposed model is exhibited
in Figure 1. We summarize four key ideas of the proposed
MSTGCN model: 1) Construct multiple views of the brain
connection to fully indicate the spatial information of the
brain. 2) Combine spatial graph convolution and temporal
convolution to extract both spatial and temporal features.
3) Employ a spatial-temporal attention mechanism to automat-
ically pay more attention to valuable spatial-temporal informa-
tion. 4) Integrate domain generalization and spatial-temporal
GCN in a unified framework to extract subject-invariant sleep
features. The overall architecture is designed to accurately
identify sleep stages.

A. Multi-View on Brain Graph

In this section, we introduce two different views from the
brain graph: the functional connectivity-based brain graph
and spatial distance-based brain graph. Different views reflect
different spatial relationships of the brain. Specifically,
the functional connectivity-based brain graph can present the
collaboration of different brain regions in space. The actual
physical locations of these brain regions may not be adjacent.
However, existing neuroscience studies have presented physi-
cally adjacent brain regions also interact. Therefore, these two
views on brain have a certain degree of complementarity and
can fully demonstrate the spatial relationship of the brain.

1) Functional Connectivity-Based Brain Graph: Functional
connectivity is usually constructed based on correlations
or dependencies among physiological signals [30]. Pearson
Correlation Coefficient (PCC) [31] and Mutual Information
(MI) [32] are two common methods to determine the func-
tional connectivity of the brain. Due to the limited understand-
ing of the brain, it is still challenging to determine a suitable
graph structure in advance for sleep stage classification. Hence,
we propose a data-driven graph generation for functional
connectivity. This data-driven approach constructs the func-
tional connectivity graphs adaptively for different sleep stages
based on the feature correlation between nodes as displayed
in Figure 3. We define a non-negative function AFC

mn =
g (xm, xn) (m, n ∈ {1, 2, · · · , N}) to represent the functional
connectivity between nodes xm and xn based on the input
feature matrix X i = (

xi
1, xi

2, . . . , xi
N

)T ∈ R
N×Fd . g (xm, xn)

is implemented through a layer neural network, which has the
learnable weight vector w = (

w1, w2, . . . , wFd

)T ∈ R
Fd×1.

The learned graph structure (adjacency matrix) AFC is defined
as:

AFC
mn =g(xm,xn)= exp(ReLU(wT|xm −xn|))∑N

n=1 exp
(
ReLU

(
wT |xm −xn|

)) (1)

where rectified linear unit (ReLU) is an activation function
to guarantee that AFC

mn is non-negative. The softmax operation
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Fig. 3. The adaptive sleep graph learning to generate functional
connectivity for sleep stage classification. xm and xn represent the
features of two nodes respectively, w is learnable weight. The more
similar the node features, the greater the probability of establishing a
connection.

Fig. 4. The spatial distance-based brain graph for sleep stage classifi-
cation.

normalizes each row of AFC . The weight vector w is updated
by minimizing the following loss function,

Lgraph_learning =
N∑

m,n=1

||xm − xn||22 AFC
mn + λ

∣∣∣
∣∣∣AFC

∣∣∣
∣∣∣
2

F
(2)

That is, the larger distance ||xm − xn ||2 between xm and
xn , the smaller AFC

mn is. Due to the brain connection structure
is not a fully connected graph, we utilize the second term in
the loss function to control the sparsity of graph AFC , where
λ = 0.001 is a regularization parameter.

The proposed graph generation mechanism automatically
constructs the neighborhood connection of the nodes. To avoid
the trivial solution (i.e., w = (0, 0, · · · , 0)), which is due
to minimizing the above loss function Lgraph_learning indepen-
dently, we utilize it as a regularized term to form the loss
function.

2) Spatial Distance-Based Brain Graph: Previous studies
have presented that adjacent brain regions affect each other and
the strength of the impact is inversely proportional to the actual
physical distance [16]. That is, the closer the distance between
brain regions, the greater the impact. Therefore, we construct a
spatial distance-based brain graph for sleep stage classification,
as illustrated in Figure 4.

B. Spatial-Temporal Attention

The attention mechanism is often utilized to automatically
extract the most relevant information. In this study, we employ
a spatial-temporal attention mechanism [15] to capture valu-
able spatial-temporal information on the sleep brain network.
The spatial-temporal attention mechanism contains spatial
attention and temporal attention.

1) Spatial Attention: In the spatial dimension, different
regions have different effects on the sleep stage which are
dynamically changing during sleep. To automatically extract
the attentive spatial dynamics, we utilize a spatial attention
mechanism, which is defined as follows (take the spatial
attention based on the functional connectivity view as an

example):

P = V p · σ((X (l−1)Z1)Z2(Z3X (l−1))T+bp) (3)

P ′
m,n = softmax(Pm,n) (4)

where X (l−1) = (
X1, X2, . . . , XTl−1

) ∈ R
N×Cl−1×Tl−1 is the

l-th layer’s input. Cl−1 represents neural network channel’s
number of each node, i.e., l = 1, C0 = Fd . Tl−1 denotes the
l-th layer’s temporal dimension. V p, bp ∈ R

N×N , Z1 ∈ R
Tl−1 ,

Z2 ∈ R
Cl−1×Tl−1 , Z3 ∈ R

Cl−1 are learnable parameters, σ
denotes the sigmoid activation function. P represents spatial
attention matrix, which is dynamically computed by current
layer’s input. Pm,n represents the correlation between node
m and n. The softmax operation is utilized to normalize the
attention matrix P . In the proposed model, when the graph
convolution is performed, the learned adjacency matrix AFC

and spatial attention matrix P can dynamically adjust the
update of nodes.

2) Temporal Attention: In the temporal dimension, there
are correlations among neighboring sleep stages, and the
correlations vary in different situations. Therefore, a temporal
attention mechanism is utilized to capture dynamic temporal
information among sleep brain networks.

The temporal attention mechanism is defined as follows:
Q = V q · σ(((X (l−1))T M1)M2(M3X (l−1)) + bq) (5)

Q′
u,v = softmax(Qu,v ) (6)

where V q , bq ∈ R
Tl−1×Tl−1 , M1 ∈ R

N , M2 ∈ R
Cl−1×N ,

M3 ∈ R
Cl−1 denotes learnable parameters. Qm,n denotes the

strength of correlation between sleep brain network Gu and
Gv . Finally, the softmax operation is utilized to normalize
the attention matrix Q. The input of the MST-GCN is tuned

by the temporal attention: X̂ (l−1
) = (X̂1, X̂2, . . . , X̂Tl−1 ) =

(X1, X2, . . . , XTl−1) Q′ ∈ R
N×Cl−1×Tl−1 to pay more attention

to informative temporal information.

C. Spatial-Temporal Graph Convolution

Spatial-temporal graph convolution is a combination of
spatial graph convolution and standard temporal convolution,
which is utilized to extract both spatial and temporal features.
The spatial features are extracted by aggregating information
from neighbor nodes for each sleep brain network and the
temporal features are captured by exploiting temporal depen-
dencies from neighbor sleep stages.

1) Spatial Graph Convolution: We employ graph convolution
based on spectral graph theory to extract spatial features in
the spatial dimension. For each sleep stage to be identified,
the adjacency matrices AFC and ADC are provided for graph
convolution. In addition, we employ the Chebyshev expan-
sion of graph Laplacian to reduce computational complexity.
Chebyshev graph convolution [33] using the K − 1 order
polynomials is defined as:

gθ ∗G x = gθ (L)x =
K−1∑
k=0

θkTk(L̃)x (7)

where gθ denotes the convolution kernel, ∗G denotes the graph
convolution operation, θ ∈ R

K is a vector of Chebyshev
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coefficients and x is the input data. L = D − A is Laplacian
matrix, where D ∈ R

N×N is degree matrix. L̃ = 2
λmax

L − I N ,
where λmax is Laplacian matrix’s maximum eigenvalue and
I N is an identity matrix. Tk(x) is the Chebyshev polynomials
recursively.

The information of neighboring 0 to K − 1 order neigh-
bors centered at each node is extracted via the approximate
expansion of Chebyshev polynomial.

We generalize the above definition to the nodes with
multiple neural network channels. The l-th layer’s input is

X̂ (l−1
) = (X̂1, X̂2, . . . , X̂Tl−1) ∈ R

N×Cl−1×Tl−1 , where Cl−1
represents neural network channel’s number of each node,
Tl−1 denotes the l-th layer’s temporal dimension. For each
X̂ i , we obtain gθ ∗G X̂ i by using Cl filters on X̂ i , where
� = (

�1,�2, . . . ,�Cl

) ∈ R
K×Cl−1×Cl is the convolution

kernel parameter [33]. Hence, the information of the 0 ∼ K −1
order neighbors is aggregated to each node.

2) Temporal Convolution: To capture the sleep transition
rules, which are utilized by sleep experts to classify the current
sleep stage in combination with neighboring sleep stages,
we employ CNN to perform convolution operation in the
temporal dimension. Specifically, after graph convolution oper-
ation has sufficiently extracted the spatial features from each
sleep brain network, we implement a standard 2D convolution
layer to extract the temporal context information of the current
sleep stage. The temporal convolution operation on the l-th
layer is defined as:
X (l) = ReLU(� ∗ (ReLU(gθ ∗G X̂ (l−1

)))) ∈ R
N×Cl ×Tl (8)

where ReLU is the activation function, � denotes the convo-
lution kernel’s parameters, * denotes the standard convolution
operation.

After the multi-view ST-GCN extracts a large number of
features, we employ the concatenate operation to perform
feature fusion on X FC and X DC :

X = X FC ‖ X DC (9)

where X FC , X DC represent the features respectively extracted
from functional connectivity and spatial distance based view,
‖ is the concatenate operation.

D. Domain Generalization

In order to reduce the influence of individual differences,
we exploit an adversarial domain generalization method to
enhance the robustness of our model. Figure 5 presents the
intuitive idea of the adversarial domain generalization. Specif-
ically, this method aims to make it impossible to distinguish
which source domain the sample data originated from during
model training. At the same time, it aims to improve the sleep
stage classification performance as much as possible. This
means that all subjects’ common features (subject-invariant
features) related to sleep stage classification are extracted. For
example, the model cannot distinguish that the samples of
Domain 1 are the data belonging to its own domain, but it
can still accurately identify the sleep stages. This presents that
the model did not learn personalized features (F-1) belonging
to Domain 1, but some common features related to sleep

Fig. 5. The intuitive idea of the adversarial domain generalization to
extract subject-invariant features. Each subject is treated as a specific
domain. F-Common means that all subjects have common features
for sleep stage classification. F-1, F-2, and F-3 represent some of the
subjects’ unique features related to sleep stage classification. Domain
generalization makes the model unable to distinguish which subject the
sample comes from. At the same time, as much as possible to improve
the model performance for sleep stage classification. This means that
some unique features of subjects are not learned by the model, but some
common subject-invariant features (F-Common) related to sleep stage
classification are extracted. Therefore, the generalization of the model is
improved through domain generalization.

stage classification. In fact, previous studies have presented
the advantages of adversarial domain generalization [34], and
theoretically this method aligns the marginal distribution of
different domains. Specifically, domain generalization includes
three parts: feature extractor G f , domain classifier Gd and label
predictor Gy . The feature extractor G f maps the input data to
a domain-invariant feature space,

G f
(
X; θ f

) = X (10)

where X is the input feature matrix, θ f is the trainable
parameter and X is the transferred feature matrix.

The transferred features are put into label predictor Gy and
domain classifier Gd with softmax function:

ŷi = exp
(
wyXi + by

)
∑N

i=1 exp
(
wyXi + by

) (11)

d̂i = exp (wdXi + bd)∑N
i=1 exp (wdXi + bd)

(12)

where Xi denotes the transferred features of sample i . ŷi and
d̂i are the predicted results of Gy and Gd , respectively. Both of
the Gy and Gd are multi-class classifier, we employ the cross
entropy as the loss function:

Ly = − 1

L

L∑
i=1

Ry∑
r=1

yi,r log ŷi,r (13)

Ld = − 1

L

L∑
i=1

Rd∑
r=1

di,r log d̂i,r (14)

where Ly is the cross entropy loss function of the multi-
classification task, L denotes the number of samples, Ry and
Rd denote the number of classes and the number of domains,
respectively. y is the true label and ŷ is the value predicted by
the model. d is the true domain and d̂ is the value predicted
by the model.
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Fig. 6. Comparison of the designed variant models to verify the
effectiveness of different modules in MSTGCN.

Besides, a special layer called Gradient Reversal
Layer (GRL) is implemented between feature extractor G f and
domain classifier Gd to form an adversarial relationship [35].
Compared with other methods that usually require training
classifier and discriminator in separate steps, GRL can
integrate feature learning and domain generalization in a
unified framework and execute backpropagation algorithms.
The optimization process is defined as:

(
θ̂ f , θ̂y

)
= arg min

θ f ,θy
L

(
θ f , θy, θ̂d

)

(
θ̂d

)
= arg max

θd
L

(
θ̂ f , θ̂y, θd

)
(15)

where θd , θy are the parameters to minimize the loss of Gd and
Gy , respectively. θ f is the parameters of G f to minimize the
loss of Gy and maximize the loss of Gd at the same time. The
aims of feature extractor G f and domain classifier Gd are exact
opposite. The feature extractor G f aims to make the domain
classifier Gd can’t classify the right domain and the domain
classifier Gd aims to correctly classify the domain that the data
comes from.

The whole loss function of the domain generalization is
defined as:

LDG = − 1

L

L∑
i=1

Ry∑
r=1

yi,r log ŷi,r + β
1

L

L∑
i=1

Rd∑
r=1

di,r log d̂i,r

(16)

By optimizing the loss function, the feature extractor G f

can achieve the goal of finding the domain-invariant feature
space.

V. EXPERIMENTS AND DISCUSSIONS

A. Dataset and Experiment Settings

Two publicly available datasets are employed in our experi-
ments: 1) ISRUC-S3 dataset [36] contains 10 healthy subjects
(9 male and 1 female). Each recording contains 6 EEG
channels, 2 EOG channels, 3 EMG channels, and 1 ECG
channel. In addition, the experts classify these PSG recordings
into five sleep stages according to AASM standard [1]. 2)
MASS-SS3 dataset [37] contains 62 healthy subjects (28 male
and 34 female). Each recording contains 20 EEG channels,
2 EOG channels, 3 EMG channels, and 1 ECG channel.

We compare our MSTGCN with 7 baselines, which are
described in detail in Supplementary Material S.3. For a fair
comparison, we employ the same experimental settings for

Fig. 7. Comparison of different adjacency matrices. GL: the pro-
posed Graph Learning approach for brain functional connectivity. Full:
Fully Connected Adjacency Matrix; KNN: K-Nearest Neighbor Adja-
cency Matrix; PCC: Pearson Correlation Coefficient Adjacency Matrix;
PLV: Phase Locking Value Adjacency Matrix; MI: Mutual Information
Adjacency Matrix.

all models. Specifically, we employ 10-fold cross-validation
and 31-fold cross-validation to evaluate the performance of all
models on ISRUC-S3 dataset and MASS-SS3 dataset, respec-
tively. In addition, we adopt the subject-independent strategy
for cross-validation. We implement the proposed model using
TensorFlow. In addition, the code is released on Github.1

B. Comparison With the State-of-the-Art Methods

We compare the proposed model with the other base-
line models for sleep stage classification on the ISRUC-
S3 and MASS-SS3 as presented in Table I and Table II. The
results present that our proposed model outperforms the base-
line methods on multiple overall metrics (overall Accuracy,
F1-score, and Kappa) for ISRUC-S3 and MASS-SS3. Specif-
ically, the traditional machine learning methods (SVM and
RF) cannot learn the complex spatial or temporal features
well. However, existing deep learning models such as CNN
and RNN [7], [11]–[13] can directly extract the spatial or
temporal features. Therefore, their performance is better than
the traditional machine learning methods.

Although CNN and RNN achieve high accuracy, their limi-
tation is that the model’s input must be grid data ignoring the
connection among brain regions. Due to brain regions are in
non-Euclidean space, graph is the most appropriate data struc-
ture to indicate the connections. Therefore, the proposed model
and ST-GCN can often achieve optimal or suboptimal overall
results, especially on the MASS-SS3 dataset. In addition,
the proposed model extracts both spatial and temporal features
based on multi-view brain graphs and integrates domain gen-
eralization to learn subject-invariant features. Hence, the pro-
posed model achieves the state-of-the-art performance.

For different sleep stages, MSTGCN can accurately iden-
tify most of the corresponding stages. Specifically, in the
ISRUC-S3 dataset, the classification accuracy of Wake and
N3 stages is the highest. In the MASS-SS3 dataset, the clas-
sification accuracy of the REM and N2 stages is the highest.
However, the classification performance of the N1 stage does
not meet expectations on the two datasets, like other baseline
models. It may be because the N1 stage is a transitional
period between the Wake stage and the N2 stage, and the

1https://github.com/ziyujia/MSTGCN
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TABLE I
THE PERFORMANCE COMPARISON OF THE STATE-OF-THE-ART APPROACHES ON THE ISRUC-S3 DATASET

TABLE II
THE PERFORMANCE COMPARISON OF THE STATE-OF-THE-ART APPROACHES ON THE MASS-SS3 DATASET

sample number of N1 stage is relatively small. Therefore,
as Figure S.2 in Supplementary Material shows, N1 stage is
mistakenly divided into other sleep stages, such as Wake stage
and N2 stage. Nevertheless, the classification performance of
MSTGCN for the N1 stage is still higher than most baseline
models. Table II presents that MSTGCN has the highest
F1-score for N1 stage on the MASS-SS3 dataset, which is
4% higher than the sub-optimal result.

C. Experimental Analysis and Discussion

1) Ablation Experiment: To validate the effect of each mod-
ule in our model, we design some variant models. First, we use
the spatial graph convolution with spatial distance brain graph
as the basic model to gradually stack the remaining modules
to form a whole branch. Then, we add another whole ST-GCN
branch with functional connectivity brain graph to form a
multi-view ST-GCN. Finally, we integrate the domain gen-
eralization method to form the proposed model. The specific
process is described as follows:

• variant a (Spatial Graph Convolution (Base Model)): We
utilize a spatial graph convolution network with spatial
distance brain graph as the base model.

• variant b (+ Temporal Convolution): We add temporal
convolution to form a spatial-temporal graph convolution
network.

• variant c (+ Attention Mechanism): We add attention
mechanism both on spatial and temporal dimension.

• variant d (+ Multi-view Fusion (Add Another View)):
We add another whole ST-GCN branch based on the
functional connectivity brain graph to form a multi-view
ST-GCN.

• variant e (+ Domain Generalization): A multi-view
ST-GCN with domain generalization (our MSTGCN).

Figure 6 presents that the key modules in our model are
effective for sleep stage classification, especially variant c,
variant d, and variant e. Specifically, the attention mechanism
helps to capture valuable spatial-temporal features to improve
the classification performance of our model. The designed
multi-view on brain provides complementary information for
sleep stage classification. In addition, domain generalization
is integrated into the multi-view ST-GCN to extract subject-
invariant features, which helps to improve the model gener-
alization. In summary, the ablation experiment presents the
effectiveness of each module in our model.

2) Adaptive Functional Connectivity Graph: To further inves-
tigate the effectiveness of the adaptive functional connectivity
graph learning, we design five fixed functional connectivity
graphs to compare with it. These graphs are defined as
different adjacency matrices. The last three graphs are con-
structed by functional connectivity methods commonly found
in neuroscience.

• Fully Connected Adjacency Matrix: A matrix whose ele-
ments are all 1. It represents that there are all connections
among all nodes and each node also has self-connection
in the graph.

• K -Nearest Neighbor (KNN) Adjacency Matrix [38]:
A matrix, which represents a k-nearest neighbor graph.
That is, each node has k neighbor nodes.

• Pearson Correlation Coefficient (PCC) Adjacency
Matrix [31]: A matrix generated by the pearson
correlation coefficient between each pair of nodes.
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Fig. 8. The learned adjacency matrix visualization of five sleep stages (N1 Stage, N2 Stage, N3 Stage, Wake Stage, and REM Stage).

Fig. 9. Temporal attention visualization. The current sleep stage T always
keeps the most attention weights. The adjacent sleep stages keep some
attention weights for this classification task.

• Phase Locking Value (PLV) Adjacency Matrix [39]:
A matrix generated by the PLV method between each
pair of nodes.

• Mutual Information (MI) Adjacency Matrix [32]:
A matrix generated by measuring the mutual dependence
between each pair of nodes.

Figure 7 illustrates that the adaptive (learned) adjacency
matrix achieves the highest accuracy for sleep stage classifi-
cation. In addition, the adjacency matrix combined with prior
neuroscience knowledge also achieves a suboptimal effect,
such as the PCC, PLV, and MI adjacency matrix. The fully
connected adjacency matrix does not work well because the
brain network is not a fully connected graph. In general,
the adjacency matrix can significantly affect the classification
performance. The proposed adaptive functional connectivity
graph for classification tasks is superior to the fixed functional
connectivity graphs.

To present the interpretability of the adaptive functional
connectivity graph, we visualize the brain adjacency matrices
obtained by adaptive learning for different sleep stages. These
matrices reflect the brain functional connectivity in different
sleep stages as illustrated in Figure 8. Specifically, there are
more functional connectivity in the Wake stage and N1 stage.
On the contrary, the functional connectivity of the N3 stage
is the least. These findings are consistent with existing neuro-
science research [40], [41]. N3 stage is a typical deep sleep
period, and the brain is usually in an inactive stage. In contrast,
the N1 stage is a light sleep period, and the brain is relatively
active. Therefore, the functional connectivity of the brain in
the N1 stage is relatively complicated.

3) Attention Mechanism: To explore the interpretability of
the attention mechanism, first we visualize the learned weight
of temporal attention mechanism to indicate the importance of
different sleep epochs for classification. The higher the weight,

Fig. 10. Spatial attention visualization to present the contribution
of various EEG channels for sleep stage classification. The attention
weights of C3 channel and C4 channel is always the highest for different
sleep stages.

the higher the degree of attention. Figure 9 illustrates that the
weight of the current sleep stage T is the largest. Previous and
following sleep epochs received similar but lower attention.
That is, this stage has received the most attention, which is
consistent with the AASM sleep standard [1]. In fact, sleep
experts mainly judge the current sleep stage type based on the
characteristics of the current sleep state and appropriately refer
to the adjacent sleep state. Therefore, the temporal attention
mechanism has learned expert knowledge to a certain extent.

In addition, we also visualize the learned weight of spatial
attention mechanism for EEG channels. Figure 10 illustrates
that our model pays different attention to EEG channels
in different sleep stages, which may caused by the EEG
patterns of different sleep stages are different. The attention
weights of F3 and F4 are always the lowest. In contrast,
the attention weights of C3 and C4 have always been the
highest for different sleep stages. The results indicate that
C3 and C4 may be the most informative EEG channels for
sleep stage classification. Generally, the C3 and C4 channels
are located in the middle of the scalp, which may have richer
EEG information and be less affected by external factors.

VI. CONCLUSION

In this paper, we propose a novel deep graph neural network
MSTGCN for sleep stage classification. In MSTGCN, we pro-
pose effective approaches in modeling the dynamics of sleep
data along both the spatial and temporal dimensions, as well as
considering the subject differences in sleep data. Specifically,
we design different brain views based on the functional
connectivity and physical distance proximity of the brain.
The complementarity of different views provides rich spatial
topology information. We develop a spatial-temporal graph
convolution with attention mechanism to simultaneously cap-
ture the most relevant spatial-temporal features for sleep stage
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classification. Moreover, to extract subject-invariant sleep fea-
tures, we integrate domain generalization and spatial-temporal
graph convolutional networks into a unified framework. Exper-
iments on two public sleep datasets demonstrate MSTGCN
achieves the state-of-the-art performance. Finally, our pro-
posed approach provides a general-framework for multivariate
physiological time series.
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