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Manipulating Single-Trial Motor Performance in
Chronic Stroke Patients by Closed-Loop

Brain State Interaction
Andreas Meinel , Jan Sosulski , Stephan Schraivogel, Janine Reis, and Michael Tangermann

Abstract— Motor impaired patients performing repetitive
motor tasks often reveal large single-trial performance vari-
ations. Based on a data-driven framework, we extracted
robust oscillatory brain states from pre-trial intervals, which
are predictive for the upcoming motor performance on the
level of single trials. Based on the brain state estimate,
i.e. whether the brain state predicts a good or bad upcom-
ing performance, we implemented a novel gating strategy
for the start of trials by selecting specifically suitable or
unsuitable trial starting time points. In a pilot study with
four chronic stroke patients with hand motor impairments,
we conducted a total of 41 sessions. After few initial calibra-
tion sessions, patients completed approximately 15 hours
of effective hand motor training during eight online ses-
sions using the gating strategy. Patients’ reaction times
were significantly reduced for suitable trials compared to
unsuitable trials and shorter overall trial durations under
suitable states were found in two patients. Overall, this suc-
cessful proof-of-concept pilot study motivates to transfer
this closed-loop training framework to a clinical study and
to other application fields, such as cognitive rehabilitation,
sport sciences or systems neuroscience.
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I. INTRODUCTION

MACHINE learning methods allow for the single-trial
decoding of brain recordings like the electroen-

cephalogram (EEG) to drive real-time applications [1] in
brain-computer interface (BCI) systems. Typically BCI’s
implement a direct decoding of, e.g., left and right hand
tasks [2] or of attended target stimuli and ignored non-
target stimuli [3] to control applications. However, BCI were
also suggested to extract information about background brain
states [4]–[6]. This is closely related to the research field
of passive BCIs [7] where the user’s brain state is used as
an additional input modality for a technical system. A novel
closed-loop system contributing to this branch of research will
be presented hereafter.

Focusing on the field of post-stroke motor rehabilitation,
a variety of BCI systems have been proposed and their
efficacy—as well as the efficiency compared to non
BCI-supported baseline methods—is still under intense inves-
tigation [8]–[11]. In most applications, the BCI system
exploits brain signatures, which are directly informative
about an attempted, executed or imagined movement. Com-
monly, bandpower features of the EEG such as event-related
de-/synchronization (ERD/ERS) are used to close the feedback
loop for the patient by triggering either a simulated hand
movement [12] or a passive movement via an external robotic
device, an active orthesis [13], [14] or functional electric
stimulation [15], [16].

A patient’s ongoing brain signal recording might however
provide information beyond the intended movement, and this
complementary information could add value for the design
of repeated motor tasks as deployed in post-stroke reha-
bilitation, e.g., using the sequential visual isometric pinch
task (SVIPT) for hand motor training [17]. An example of
such complementary information has been reported in our
earlier study with healthy subjects performing the SVIPT [18],
where intra-session performance variations were observed on
two different time scales. While inter-session trends mostly
reflected motor skill acquisition, we found that trial-by-trial
performance variations on the scale of seconds could partially
be explained by the power of pre-trial oscillatory activity.
It was proposed, that oscillatory power fluctuations are corre-
lated with the interaction of various networks—involving the
visual, premotor and motor cortex as well as subcortical and
spinal structures [19]–[21].
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TABLE I
DEMOGRAPHIC AND IMPAIRMENT DETAILS OF FOUR CHRONIC

STROKE PATIENTS INCLUDED IN THE PILOT STUDY

The ability to decode predictive oscillatory brain states in
quasi real-time can in a next step be used to enhance motor
training applications, e.g., with the goal to augment post-stroke
motor learning. The prospective use of BCIs as complementary
tools in clinical applications calls for a reliable decoding
of functionally relevant features. Specifically, the decoding
must be effective also under the challenging conditions posed
by the work with patients. To meet these requirements,
we propose to use the established work flow for individual
single-trial motor performance prediction based on oscillatory
brain signal components [18], but to improve it using an
additional regularization strategy [22]. For the identification
of functionally relevant spatial components, we propose the
data-driven regression approach SPoC (source power comod-
ulation [23]), and enhance the selection of components by a
mining approach [24].

We hypothesize, that selecting suitable and unsuitable start-
ing time points defined by individual oscillatory components
can induce performance variation for a repetitive hand motor
paradigm. We evaluated this hypothesis in a pilot study with
four chronic stroke patients.

II. METHODS
A. Subjects

The demographic and impairment related data of the four
included chronic stroke patients (abbreviated by P1 to P4)
is reported in Tab. I. Here, the term chronic implies that the
stroke dated back at least three months prior to participation
in our pilot study [25]. The inclusion criteria for participation
specified patients between 18 and 80 years that had a first-ever,
unilateral ischemic stroke resulting in a hemiparesis and who
had sufficient cognitive function to allow for written informed
consent and to comply with the task instructions. Patients
were excluded when they had any of the following conditions:
hemorrhagic stroke, cerebellar infarction, hemiplegia, severe
aphasia or neglect, implanted medical devices or intracranial
ferromagnetic objects, skull lesions, epileptic seizures in the
anamnesis, cognitive impairment and medical, neurological or
psychiatric disorders interfering with consistent participation,
extreme ametropia, complete paresis of extremity without
residual function. The hemiparesis was mild to moderate for
P2, P3 and P4, and stronger for P1. Three of the four patients
were naïve to SVIPT. Patient P4 had prior experience with
SVIPT due to the participation in the control group of an

Fig. 1. (A) Study protocol for testing motor performance separability
across eight online sessions. Before and after the online training, a clin-
ical assessment was performed. (B) Scheme for the EEG-gated SVIPT.
Prior to the start of a trial, the patient received real-time feedback about
their brain state by changing vertical cursor positions. The gating strategy
determined the go-cue time point of every trial. For details on the gating
strategy, see Fig. 2.

earlier study [25]. Patient P2 had prior experience with a BCI,
as he completed a 30 hour language training with feedback
based on task-relevant EEG activity [26].

Following the declaration of Helsinki, all subjects provided
written informed consent prior to participation. The study
was approved by the local ethics committee of the University
Medical Center Freiburg.

B. Experimental Setup

Each pilot patient completed a high-intensity training with
their affected hand: about 15 hours of effective training
was conducted within three consecutive weeks, comprising
ten (patients P2, P3, P4) or eleven sessions (patient P1)
of the EEG-tracked SVIPT (Fig. 1 (A)). Among these, two
(P2, P3, P4) or three (P1) initial sessions were conducted
offline, i.e., without brain-state dependent gating.

SVIPT requires isometric force control of thumb and index
finger. After a go-cue has been provided, the user is required
to control the horizontal position of a blue cursor (Fig. 1 (B))
through a sequence of target fields as fast and as accurately
as possible. Inaccuracies, i.e., overshoots of the target fields,
result in adding a penalty second to the trial duration per
mistake. Note that the patients trained a specific BCI-SVIPT
version with only two target fields, for details about the setup
see [18].

Except for P1, who had to cope with muscular fatigue
and thus could execute 5–9 runs only in six of his sessions,
a session generally comprised ten runs of 20 trials each. EEG
signals were registered from 63 passive Ag/AgCl electrodes
placed according to the extended 10–20 system recorded using
a BrainProducts BrainAmp DC. If not explicitly noted dif-
ferently, further experimental details of a single EEG-tracked
SVIPT session were identical to those of an earlier offline
study [18]. After each run, an individual high score with the
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best average trial duration per run was displayed to moti-
vate patients to further improve their performance. This trial
duration also included the penalty seconds for inaccuracies,
i.e., overshoots of the target fields, and therefore reflects both
the accuracy and the speed of the patient.

The initial offline sessions were used to calibrate an indi-
vidual performance prediction model, see Sec. II-B1. During
the SVIPT’s get-ready phase a light blue cursor is presented in
the leftmost target field T 0 while patients were asked to fixate
the center of T 0. At online sessions only, the system aimed to
influence the patient’s upcoming performance during this get-
ready phase by: (1) Providing continuous visual feedback—
a continuously updated vertical cursor position—about the
ongoing brain state as sketched in Fig. 1 (B). (2) Depending
on the current brain state estimate, a temporal gating strategy
was realized: A go-cue was elicited either if a user-specific
prediction model indicated a desired brain state or when a
timeout criterion was met (for details see Sec. II-B2).

In offline sessions, patients unknowingly received pseudo-
feedback, as the varying vertical cursor positions were
independent of the true ongoing brain state and instead
reflected brain state estimates recorded earlier from a healthy
subject.

1) Performance Prediction Models: The prediction of
single-trial motor performance from oscillatory EEG can be
realized with the supervised spatial filtering algorithm named
source power comodulation (SPoC) introduced by Dähne and
colleagues [23]. Given Ne band-pass filtered multichannel data
epochs X(e) ∈ R

Nc×Ns , with Ns sample points per epoch and
Nc EEG channels, as well as corresponding continuous labels
z(e) for each epoch e, SPoC learns an optimal spatial filter
w∗ ∈ R

Nc with Nc recorded channels which maximize the
epoch-wise co-modulation between the bandpower of a source
ŝ(e) and the given target variable z(e). Given a single spatial
filter w, the epoch-wise bandpower �(e) of the corresponding
source ŝ can be approximated by its variance:

�ŝ(e) = Var[ŝ(t)](e) = Var[w�x(t)](e) = w� �(e) w, (1)

where �(e) = (Ns − 1)−1X(e)�X(e) denotes the epoch-wise
spatial covariance matrix.

As in our patient scenario training data was extremely lim-
ited, we deployed NTik-SPoC, a variant which uses Tikhonov
regularization in the objective function [22]. By adding an
L2 penalty to the weight vector, the estimated spatial filters
have small weights which prevents overfitting. This form
of regularization has also been successfully applied to the
common spatial pattern (CSP) algorithm [27]. Additionally,
in order to avoid the problem that covariance matrices are
not scale invariant, they are first normalized towards the
matrix trace [28]. The algorithm was trained individually per
patient. Training was conducted on the pooled patient-specific
offline sessions using the first 80% (in chronological order)
per session. The remaining offline session data served to
validate the obtained models and the online performance.1

According to the offline analyses reported by Meinel and

1For patient P1, the model was trained on the first two sessions and
evaluated on the third one.

colleagues on data of normally aged subjects [18], reaction
time (RT) was the performance metric which allowed for
the highest decoding accuracy. In addition, it was found
that RT is correlated to other motor performance metrics of
the SVIPT task. In chronic stroke patients, RT generally is
lower than in controls, e.g., Sheng and Wan observed, that
the RT obtained during wrist flexion and extension tasks
correlates negatively with the Wolf Motor Function Test [29].
Thus RT was selected to provide the continuous labels to
train NTik-SPoC. Accordingly, we aimed to primarily mod-
ulate the upcoming RT in the gated online SVIPT sessions.
As proposed by [24], we embraced the unavoidable spatial
filter variability under different hyperparameter configurations
by training NTik-SPoC components in a large configuration
space. The SPoC spatial filters were trained on narrow-band
filtered data in 2-5 Hz wide intervals between 1 and 48 Hz.
We additionally evaluated time intervals of different lengths
in intervals between −1 s and +1 s relative to the go cue
and different strengths of regularization using the NTik-SPoC
algorithm, as expressed by α values ranging between 10−10

and 10−2. The resulting set of components contains many
similar ones. We obtained functionally reliable representative
components from this set by applying the DBSCAN clustering
approach [30] as proposed for such component data by [24].
The resulting clusters contained components with, e.g., sim-
ilar patterns and envelope dynamics, and the corresponding
cluster representatives were considered candidates for good
components.

Although RT provides continuous labels, we were mainly
interested in determining suitable and unsuitable brain states,
i.e., the gating strategy involves a two-class problem. While
this corresponds to a classification problem, we nevertheless
opted for the regression approach provided by SPoC, as first it
is able to deal with the continuous performance labels, and sec-
ond the continuous output allows to, e.g., differentiate the good
from the very good trials in a post-hoc analysis. However,
a discretization of the continuous SPoC outputs to the suit-
able/unsuitable classes finally had to take place, as described
in Sec. II-B3. To realize this, we split the offline RT data at the
median into an upper and lower half. Based on this, we could
test how well the corresponding two power distributions of
any component would predict the class. The obtained measure
is called z-AUC and has a chance level of 0.5 [18]. All
candidate components considered for the clustering step were
required to have z-AUCmin ≥ 0.6 on the validation data.
Furthermore we required, that they were of neural rather
than artifactual origin, which was expressed by an artifact
probability rating part ≤ 10−5 derived by the automatic
component classification approach MARA (cf. Sec. II-B4 for
details). In a final step, a manual inspection was performed
among the remaining candidates to select one specific oscil-
latory component w per patient for the closed-loop interac-
tion in the following online sessions. Hereafter, this will be
referred to as the selected oscillatory component. For the
manual selection, the following criteria were considered: Rich
envelope dynamics: Driven by the findings of [24], oscillatory
components revealing a rich within-trial envelope dynamics
were preferred. An ERD effect upon get-ready events and/or
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Fig. 2. Online gating: three examples of get-ready periods. The two
upper rows show the continuously sampled power and the displayed
cursor feedback. The lower row illustrates the course of events showing
the get-ready and go-cue time points of these trials. Please note that the
patient only saw the visualization depicted in the second row. Initiated by
the get-ready event (yellow light), the power of the selected oscillatory
component was continuously estimated (black dots) and translated into a
vertical cursor position. The go-cue time point (green light) was triggered
earliest 2s after get-ready and by distinguishing between three cases:
(A) if the power Φ(t) fell below the threshold Φlow, a suitable trial was
elicited. (B) If Φ(t) exceeded the threshold Φup, an unsuitable trial was
initiated. (C) A timeout trial was started, if the power did not exceed either
of the thresholds in the interval [2, 5]s.

the go-cue as well as an ERS upon the events hit 3 or hit 4
substantiate the neurophysiological plausibility of individual
components. Motor-relatedness: Priority was given to motor
components, specifically if their patterns were lateralized over
the patient’s affected hemisphere. Stability: Similarity of pat-
terns (visually inspected) across offline sessions was required
to ensure stability of the target component.

After each of the first three online sessions, our protocol
allowed to refine the selected component. For this purpose
both, the currently selected and potentially novel component
candidates were evaluated on the most recent unseen data.
In case the prediction performance of a candidate component
was clearly outperforming the currently selected one and
if it simultaneously fulfilled the stated criteria, the selected
component and decoding model was updated for upcoming
online sessions.

2) Brain State-Dependent Gating Strategy: The selected
subject-specific spatial filter w was now used in a closed-
loop setting, see Fig. 1 (B). During the get-ready phase and
prior to the go-cue of a SVIPT trial, the component’s log-
bandpower �(t) was evaluated every 40 ms from data sampled
at 1 kHz. For brevity, power estimation hereafter always refers
to log-bandpower estimation. For this, window lengths of
400 ms (alpha) and 300 ms (beta) had been determined based
on data of healthy subjects (not shown), representing trade-offs
between sufficient data to estimate the ongoing power and
short delays to not miss go-cue time points for gating. The
online data were bandpass filtered by a Butterworth filter to
the same frequency band as the training data of the selected
model.

During the closed-loop interaction the estimated ongoing
brain state, i.e., the selected component’s power, was translated
into a vertical cursor position (Fig. 2). The online gating
strategy was applied with the goal to manipulate the patient’s
performance during each upcoming trial: go-cue events were
triggered if (according to the spatial filter model) either a par-
ticularly short or long reaction time was expected. Given the

estimate �(t), the go-cue event was triggered by a threshold
scheme as sketched in Fig. 2: a suitable trial was elicited if
the component’s power would deceed a lower threshold �low,
while an unsuitable trial was triggered if �(t) exceeded an
upper threshold �up .2 If none of the thresholds were passed
within 5 s, the go-cue was elicited and the trial was labeled
as timeout. Note that in offline sessions the time teval between
get-ready and go-cue was sampled from the interval [2, 5] s,
based on statistics of pilot online sessions with healthy users.
For consistency, the same timeout limits were applied also for
the online sessions with patients. Any threshold crossed within
the first two seconds was ignored (see Fig. 2 (C)). To make
offline and online sessions as similar as possible, the vertical
cursor position was varied also during offline session, but
based on pre-recorded data.

In online sessions, patients were motivated to explore strate-
gies to lower the vertical cursor position, i.e., to obtain a
more suitable brain state by modulating their brain signals
during the get-ready phase. They were informed that the
cursor position reflected the quality of their general upcoming
motor performance but did not know that RT was the targeted
metric.

As single sessions were strictly limited to 200 valid tri-
als (corresponding to ≈90 min), an online artifact detection
was applied throughout the get-ready phase to reduce the
rate of artifactual trials [31], [32]. Therefore, a min-max
threshold of 100 μV for frontal EEG channels’ activity was
applied after bandpass-filtering to [0.7,45] Hz. In case of a
threshold violation, the trial was immediately aborted. The
patients received visual feedback about this, and the trial was
restarted after 2 s. Aborted trials did not enter the post-hoc
analysis.

3) Online Adaptation of the Prediction Model: We aimed at
triggering p∗

S = 55% suitable trials and p∗
U = 35% unsuitable

trials. This ratio prefers successful, rewarding trials for the
patient while ensuring sufficient data of both conditions for
statistical comparison. In addition, we expected 10% timeout
trials in total. The ratio was controlled by a careful online
adaptation strategy: Switching from offline sessions to an
online session, we expected that a component’s power may
reveal a different distribution [33], an effect commonly known
as covariate shift [34]. Various approaches have been pro-
posed to account for non-stationarity characteristics of neural
signals in closed-loop BCI applications [35]–[38]. In this
pilot study, we decided to fix the selected filter w and to
counter non-stationarity by adapting the decision boundaries,
namely the gating thresholds �low and �up during online
sessions.

In the first online session, the gating thresholds were initial-
ized by the 5th and 95th percentiles of the power distribution
of the selected component w as determined on the offline
training data. Further on, we performed an adaptation every
five trials, a so-called update block of trials. To reach an

2This example assumed a negative correlation of power �(e) with motor
performance z(e). The sign of the correlation R(z,�(w))) is obtained from
training data.
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intended gating ratio while also coping with non-stationarities,
we implemented two update mechanisms:

a) Coarse unsupervised adaptation: Aimed to counter poten-
tial large fluctuations of oscillatory power between sessions
(or after a long break within a session). Typically, it was
used during the first run of a novel session. We assumed a
stable power fluctuation width across sessions and that only the
average power level shifts from session j to j +1, as observed
for CSP components [39]. Based on the median of the sampled
power �m( j + 1) of the new session, the last available
upper threshold from the previous session j was updated
by:

�up( j + 1) = �up( j) + (�m( j + 1) − �m( j)) (2)

�low( j + 1) was updated correspondingly. The respective
power medians in Eq. (2) were estimated from data kept in a
session-specific ring buffer. It contained up to 1000 power
estimates of the latest time windows. If the experimenter
recognized a need for faster adaptation, its size could be
reduced to between 500 and 100 entries, which became
effective with the next session. In each novel session this
ring buffer was initialized and filled, and the coarse unsu-
pervised strategy was deployed throughout the first run of
each online session. The adaptation took place after every
update block only. The buffer was updated with samples
collected from between 1.5 s after get-ready and the go-cue
only, as earlier samples would have introduced a systematic
bias due to get-ready triggering an ERD effect in most
components.

b) Refined supervised adaptation: Started with the second
run. Applied supervisedly after each block, it aimed at reach-
ing the intended gating ratios during online sessions. To this
end, the sampled probabilities pS and pU of the suitable
and unsuitable gating conditions were evaluated on the latest
60 trials and used as labels. The iterative adaptation was
proportional to the signed square of the condition-related
probability deviation δpU = (pU − p∗

U ) to penalize strong
deviations from the expected label distribution. In addition,
the update was performed relative to the absolute distance
of the threshold �up(i) used in the last iteration i to the
power median �m based on the previously mentioned ring
buffer of the current session j + 1. These steps are executed
analogously for pS . Together, this translated to the following
adaptation from update block i to i + 1 for the upper gating
threshold:
�up(i + 1)

= �up(i) + η · sgn(δpU ) · (δpU )2 · |�up(i) − �m | (3)

with a fixed learning rate η = 2 determined on earlier pilot
data. �low(i + 1) was updated analogously. To account for
noisy estimates, threshold updates were executed only, if the
class-related probability deviations δpU and δpS exceeded an
absolute tolerance level of δptol = 0.05. After each run,
the experimenter received feedback about the component’s
within-session power time course and the selected thresholds.
Experiencing severe non-stationarities, e.g., when noisy EEG
channels had to be fixed, the experimenter could resort to an

additional coarse unsupervised adaptation (see Eq. (2)). This
happened in four sessions of P2 and four of P4.

4) Data Preprocessing: For post-hoc evaluation, linear
Butterworth filters of fifth order were applied: the raw EEG
signals were low-pass filtered at 100 Hz, sub-sampled to
500 Hz sampling rate before high-pass filtering at 1 Hz.

Per session, noisy channels were removed. First, the vari-
ance of single epochs and channels was computed. Based on
the pooled statistics, channels were removed, if they exceeded
the 90th percentile or undershot the 10th percentile by at least
two times the [10, 90] range. Considering also the influence of
outlier epochs, more channels could be removed in a second
step: The Nrej out of all Nall epochs which exceeded the a
min-max threshold on any channel were marked for rejection.
Then channels responsible for (a) more than 0.1 · Nrej outlier
epochs and (b) for at least 0.05 · Nall outlier epochs were
removed. Finally, we updated the list of outlier epoch by
re-running the min-max test and removed those that, despite
the meanwhile reduced channel list, were still marked for
rejection.

Artifact cleaning was done using an independent component
analysis (ICA) decomposition of pooled data of the active
trial phase—from get-ready to trial end—of each session.
For the calculation of the ICA, we used the FastICA algo-
rithm [40]. To restrict the computational effort for the ICA,
only one randomly selected run was included per session.3

The obtained ICs were rated for artifactual origin with the
automated artifact detection framework MARA [41]. For the
post-hoc offline analysis, based on MARA ratings, a maxi-
mum number of 10 artifactual ICs were removed from the
EEG data before projecting it back into the original sensor
space.

Based on the force sensor recordings, different single-trial
motor performance metrics such as force jerk or force path
length were extracted per trial, see [18] metrics. For the
post-hoc analysis of behavioral data, the first ten trials per ses-
sion were omitted due to the ramp-up phase of the threshold
adaption at session start.

III. RESULTS

A. Effect of Uncorrelated Feedback

We analyzed if brain state independent vertical cursor posi-
tion at the go-cue could potentially suffice to explain observed
reaction time changes. We could evaluate this for P3 and
P4 only, as cursor positions during the offline sessions of
P1 and P2 were not logged. Per patient, a two-sided Wilcoxon
signed rank test determined whether the RT distributions were
different between up or down cursor positions. Additionally
we calculated the median difference, i.e., median reaction time
at cursor up position minus the median reaction time at cursor
down position. The difference for P3 was −26 ms with a mean
absolute RT deviation (MAD) of 106 ms. For P4 we obtained a
difference of +8 ms with a MAD of 56 ms. For neither P3 nor
P4 did we find a significant difference in the RT distributions
between cursor positions (P3: p = 0.056, P4: p = 0.541).

3For P1, the sessions 1 and 2 were excluded for ICA training due to
instabilities in the resulting decompositions.
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Fig. 3. (A) The box plot for each patient reports the component power
(pooled over online sessions, but separately for gating conditions) that
triggered a go-cue event. Stars mark statistically significant differences
between the effects of the suitable (blue) and unsuitable (orange)
gating strategies (two-sided Wilcoxon rank-sum test, p < 0.01). Each
box shows the quartiles of the underlying data, whiskers refer to two
interquartile ranges. (B) The achieved frequencies of gating conditions
across all sessions.

As this observation is based on limited data, it can only be a
first indication that reaction time separation might not depend
on the cursor position.

B. Brain State-Dependent Gating

Separately per patient, but pooled across their online
sessions, Fig. 3 (A) reports the mean single-trial power distri-
butions (after post-hoc artifact rejection) observed immediately
before the go-cue for the selected oscillatory components.
A Wilcoxon rank-sum test determined significance of the
power contrast between suitable and unsuitable trials.

As intended by our gating strategy, a significant split
between the suitable and unsuitable power distributions could
be observed for each of the four patients. In addition, the mean
log-power values of timeout trials ranged between those of
the suitable and unsuitable conditions. Fig. 3 (B) reports the
achieved trial ratios across gating conditions. As targeted by
the adaptation parameters p∗

S and p∗
U (see Sec. II-B3), all

four patients could be trained with a majority of suitable
brain states. Furthermore, the gating statistics of P2 to P4
demonstrate that the desired gating ratios were reached up to
small deviations.

C. Single-Trial Motor Performance Caused by Different
Gating Strategies

1) Effect on Single-Trial Reaction Time (RT): Fig. 4 visualizes
the behavioral results separately for suitable and unsuitable
brain states at go-cue per patient and across all online sessions.
In two of four pilot patients we found that RT distributions
separate significantly in at least half of the online sessions.
Interestingly, in the best case (P4) a significant difference
throughout all eight online sessions was achieved. Even though
the online framework was tested with a heterogeneous patient
group regarding their initial hand motor impairment (UEFM
score ranges: 27–58), on pooled data across all online sessions
a significantly shorter RT for suitable trials could be observed
for all of them (see Fig. 5 (A)).

Fig. 4. Behavioral results: development of the RT distributions for
suitable and unsuitable trials across all online sessions. A star refers
to single sessions with a significant difference (two-sided Wilcoxon rank-
sum test, p < 0.05 with Holm-Bonferroni correction) between conditions.

TABLE II
ESTIMATES OF EXPLAINED IQR (A MEASURE OF EFFECT SIZE, SEE

FULL-TEXT FOR DETAILS) FOR EACH PATIENT USING TWO DIFFERENT

METHODS FOR CALCULATING THE INTERQUARTILE RANGE

To quantify the effect size of an intervention, one typically
relates the differences between conditions’ means to the stan-
dard deviation of the distribution(s), the so-called standardized
mean difference (SMD). As the RT is not normally distributed,
we prefer to use explained IQR over SMD. It replaces the
mean estimates of the suitable and unsuitable conditions by
the more robust median estimates and the standard deviation
by the interquartile range (IQR) of observed RT values, i.e., the
distance between the 25th and the 75th percentile.

It is not straight forward to estimate the true RT distribution
or its IQR, as applying the gating strategy corresponds to
an intervention which may influence the RT values. While
timeout trials are intervention free and could deliver the IQR
in principle, their number is too small for a robust estimate.
We mitigate this problem by estimating the IQR in two
ways: IQR estimate 1 is calculated by first subtracting the
median of each condition before pooling the data of both
conditions. It most likely underestimates the true IQR and
thus overestimates the explained IQR. IQR estimate 2 directly
pools the data of both conditions. It will overestimate the
true IQR and underestimate the explained IQR. Thus the true
explained IQR will likely be between these two estimates.
Luckily we observed, that the over- and underestimated values
differ slightly only (range: 0.92%–3.41%) when computed for
each session individually and then averaged across sessions
(see Table II).

2) Indirect Transfer to Other Motor Performance Metrics: The
NTik-SPoC model was optimized for predicting the metric
RT based on data collected immediately before the go-cue.
It is interesting to see, if brain states predictive for RT may
also be predictive for other motor performances, specifically
for metrics that integrate over longer within-trial periods.
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Fig. 5. Comparison of four behavioral performance metrics. From left
to right, the temporal integration ranges after go-cue increase from
short range (few hundred milliseconds) to long range (few seconds):
(A) reaction time, (B) cursor path length up to hit 1, (C) time to hit 1
and (D) full trial duration (session-wise median subtracted). Each row
refers to a single patient. Per patient, data of the online sessions
has been pooled. For each of the four metrics, significant differences
between conditions suitable (blue) and unsuitable (orange) are reported
after Holm-Bonferroni correction for values of p < 0.01 (**) and
p < 0.05 (*).

On pooled data of all online sessions, Fig. 5 reports the
individual distributions of different single-trial performance
metrics. Their arrangement from (A)–(D) show an increasing
temporal integration along the trial. While the metric RT
typically takes into account a few hundred milliseconds after
go-cue, the cursor path length (CPL) and duration (DUR)
were calculated based on the time interval required to fulfill
hit 1, which corresponds to approximately 40% of the full
trial time. Both metrics were standardized per session and
hit sequence and subsequently pooled. In a previous study,
the metrics RT, CPL and DUR have been found to be mostly
uncorrelated [42]. For the trial duration metric (TDUR),
which integrates multiple seconds, the session-wise median
was subtracted before pooling to eliminate session-to-session
differences. Significance between conditions was tested by
a two-sided Wilcoxon rank-sum test with Holm-Bonferroni
correction for multiple tests.

While on pooled individual RT data a homogeneous picture
in terms of a distinct separation was noticed in all four patients,
the brain state-dependent gating translates only partially to
the metrics which integrate performance over longer time
intervals. Interestingly, for two out of four pilot patients a
significant effect on trial duration was induced, even though
the decoding model of the BCI system had not been trained
on these labels.

TABLE III
PER PATIENT, THE HYPERPARAMETERS AND THE INITIAL DECODING

ACCURACY ARE REPORTED FOR THE Selected SPATIAL FILTER

MODEL. AS FOR P1 AND P3 THE MODEL WAS SWITCHED ONCE

DURING ONLINE TRAINING, INFORMATION FOR BOTH MODELS IS
PROVIDED IN SEPARATE ROWS, WITH BRACKETS CONTAINING THE

RANGE OF SESSIONS A MODEL WAS APPLIED

D. Across-Session Feature Stability

A spatial filter model to extract an oscillatory subspace had
been defined during early sessions and was kept fixed during
all (P2, P4) or most (P1, P3) of the online training sessions.
We expected the subspace components to be stable across
sessions with similar spectra and ERD/ERS characteristics.
This robustness expectation can now be investigated by a
post-hoc analysis of the recorded EEG data across training
sessions, where the online sessions serve as unseen datasets to
validate the robustness expectation. Details about the selected
oscillatory components are summarized in Tab. III. Here-
after, various stability aspects regarding the used oscillatory
subspace components are reported over the course of the
training.

Spectral and Spatial Feature Analysis: The robustness of
individually selected components—under scarce training data
and across multiple sessions—was an important characteristic
for this pilot study. During the decoding and selection of
components, we for this reason applied procedures that would
prefer robust components and were known to compensate
label noise and small training data sets well. Besides regular-
ization of SPoC, these procedures comprised a clustering of
overcomplete decompositions as described in detail in earlier
contributions [22], [24] in order to select a spatial component.
Note that during early sessions of the rehabilitation training
for P1 and P3, we noticed that the selected component was not
performing well enough. Therefore, we re-trained the model
and selected a new component for the remaining rehabilitation
sessions. For the re-training for P1 we used the data of the first
three sessions, and validated the obtained component on the
fourth session during the re-training, whereas for P3 we used
the first 80% of the data obtained from sessions 1-5 for training
and the remaining data for validation. We limit the analyses
presented in this section to these finally selected components,
as they had been used for at least the second half of the
sessions.

To evaluate the robustness of these finally selected indi-
vidual spatial filters w, Fig. 6 displays their spectral content
separately per session, including training and online ses-
sions, and—in case of P1 and P3—also those initial online
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Fig. 6. Per patient, the pre-go power spectra of the finally selected
subspace components are visualized. Please note, that the spectra are
provided also for the offline sessions and for early online sessions of
P1 and P3 which had used different components during the training.
The gray shaded area in each power spectrum refers to the frequency
band to which the data had been filtered to train the model. In addition,
the individually selected spatial filters and corresponding pre-go spatial
activity patterns averaged across all sessions are displayed.

sessions, during which another component had originally been
selected.

The spectra were calculated on non-frequency filtered data
but after projection to the selected subspace and using data
segments prior to the go-cue only. In addition to the spectra,
the filters and spatial patterns are provided.

We observed, that within each patient the power spectra
are highly similar across sessions and reveal the well-known
spectral 1/ f decaying characteristic with distinct α- and/or
β-modulations. This observation is a strong first indica-
tor for the across-session robustness of the finally selected
components.

An additional neurophysiological introspection is provided
by assessing the spatial activation patterns of an oscillatory
component and the average event-related (de-)synchronization
of each component relative to events. As documented
in Fig. 1 of the supplementary, the selected oscillatory com-
ponents revealed mostly stable pre-go activity patterns over
the course of the multi-session training. Figure 2 of the
supplementary reveals a stable ERD-/ERS characteristic over
sessions.

IV. DISCUSSION

This work presented a novel brain state-dependent closed-
loop interaction protocol. It was exemplified in a pilot study
for a repetitive hand motor training task with four chronic
stroke patients. Even though a total number of 41 experimental
sessions were executed, we are aware of the limitation, that the
following discussion will be based on data of four individuals
only. In the future, a randomized controlled clinical trial shall
allow to critically review these first observations.

The training protocol was designed to influence a patient’s
motor performance observed for repetitive trials of the training

task. For this purpose, an individually optimized oscillatory
feature was determined from EEG recordings, which allowed
to discriminate between suitable and unsuitable brain states
w.r.t. executing the hand motor task well. Using this infor-
mation, the start of each training trial could be gated. The
gating protocol was implemented in a closed-loop system,
which operated at an update rate of 40 ms. In every trial of
the online BCI-gated SVIPT motor task, the system strived for
selecting specifically suitable or (less frequently) unsuitable
starting time points.

A. Successful Performance Manipulation

Despite potentially patient-related challenges, we found
clear evidence that the online gating strategy not only suc-
ceeded in separating the average oscillatory power between
conditions but also that the proposed protocol manipulated
single-trial reaction times in all four chronic stroke patients:
Trials started during suitable brain states resulted in improved
motor performance metrics compared to trials started during
unsuitable brain states. Specifically, this intervention explained
up to 44% of individual variability (measured by IQR)
observed for the reaction time.

On the level of single sessions (Fig. 4), performance differ-
ence was observed for the 4×4 online sessions, which formed
the second half of the online trainings. These 16 sessions
uniformly display a shorter average reaction time under suit-
ably gated trials, with 9 of these session showing significant
difference. This might be driven by the time the patients
required to learn the reliable down-modulation of the pre-trial
power.

Comparing our results to the recent literature, it is worth
noting that our protocol is capable to exploit spontaneous
power fluctuations and that it has not explicitly trained patients
up to use volitional modulation of pre-trial power. Norman
and colleagues instead performed an explicit SMR training
over multiple sessions prior to the online phase [43]. In their
pilot robot-assisted hand motor training with 8 chronic stroke
patients, only 4 of them achieved the required reliable SMR
control. In their online training spanning 3 sessions, finally
in 3 out of 8 patients shorter reaction times were found if
pre-trial oscillatory activity had been low. Overall, the compar-
ison of our study with [43] shows that we have performed more
than the double amount of online motor training sessions—
which supports a robust validation of our BCI-supported
gating concept. In addition our protocol minimizes the number
of preparatory sessions and maximizes a patient’s effective
training time on the motor task, however at the price of a
potentially reduced volitional control over pre-trial component
power. Which of the two strategies should be preferred with
an optimized rehabilitation efficiency in mind remains subject
to further studies.

Three earlier studies by groups around Norman, McFarland
and Boulay [43]–[45] have introduced protocols for perfor-
mance manipulation. They succeeded in at most half of the
subjects, while our novel protocol achieved the performance
manipulation in all four patients. This finding encourages us
to explore the proposed data-driven framework for building
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the performance predictors of future closed-loop training
systems.

In accordance with three studies is our finding that a
reduced SMR power immediately before the go-cue, correlates
with shorter reaction times. Interestingly, this relation has by
now been established in at least four different motor tasks
(including SVIPT) and even though the four substantially
varied in their underlying complexity.

The selected decoding model was optimized for reaction
time, but we are aware, that reaction time may not be the
metric clinically identified as most relevant for post-stroke
motor learning even though shorter reaction time should serve
as a useful useful basic building block for the successful
execution of many higher-level sensorimotor tasks. However,
we also observed, that the training under suitable brain states
partially translated also into significant enhancement of addi-
tional metrics like the trial duration, which integrates SVIPT
performance over a range up to multiple seconds (Fig. 5). This
is interesting, as intuitively one may expect that the more
behavioral information is integrated by a metric along the
duration of a single trial, the less influence can be traced back
to the brain state at go-cue time point. This finding is also in
accordance with studies by [43], [44] in which a behavioral
performance split for metrics with longer integration intervals
was observed only in a smaller fraction of subjects. However,
in our data we observed a separation on trial duration for
those two patients (P2 and P3) which also showed the largest
SVIPT motor learning effects along the training (see Fig. 4 in
the supplementary). Again, however, data from more patients
shall be acquired by future studies in order to investigate
this.

B. Calibration of the Prediction Model

The calibration of a robust decoding model to predict
upcoming single-trial motor performance is challenged by a
low amount of available training data. We thus decided to
use an online artifact detection pipeline already at the pre-
go phase, which restricted the loss of data points for model
training after EEG preprocessing to a minimum.

Earlier parameter studies on the regularized NTik-SPoC
method [22] showed, that saturated decoding performance
requires about Ntrain ≥ 200 trials. Thus, two offline sessions
of 200 trials each were conducted for the initial calibration
with a chronological train/test-split to select an individual
oscillatory component. A retraining of the model on all
available labeled data after each session was not performed
to maintain feature introspection and avoid coping with rank
instabilities [18]. For patients P3 and P4 an initial training
of the spatial filter models on all available channels resulted
in a large fraction of artifactual components. As a mitigation
strategy we removed frontal channels from the training of
NTik-SPoC and observed an increased ratio of neural com-
pared to artifactual components.

Even though we used single predictive and functionally rele-
vant components, from a machine learning perspective it could
be beneficial to combine multiple regularized SPoC features
obtained from across multiple frequency bands—comparable

to the filterbank CSP approach [46]. This fusion of features
could be realized by an additional regression model and may
allow for enhancing the trial-wise performance prediction.
Similarly, the combination of predictors obtained for different
performance metrics might serve to gain an overall enhanced
predictive power or a model that serves a more generalized
notion of SVIPT performance.

C. Careful Adaptation of the Prediction Model

As non-stationary effects in recorded brain activity can
impede a robust decoding [39], a careful online adaptation
was applied. While the selected spatial filter model was fixed
after the initial calibration, we adaptively compensated for
continuous power changes by adapting the gating thresholds.
This allowed us to reach the targeted gating ratio across the
full training for each individual patient despite the power
fluctuations of the component over and within sessions. The
control over this ratio is of specific importance if the influence
of different gating strategies on post-stroke motor learning
shall be studied in future experiments. As previously argued
by Biasiucci and colleagues [47], a repeated re-calibration
during the BCI training, such as realized by, e.g., Ang
and colleagues [48], might over time translate into differ-
ent oscillatory components. In case they reflect diverging
efferent pathways, the change of these components may
hinder training-induced plastic changes. Overall, the details
and the degree of model adaptation over the course of a
closed-loop training is an ongoing debate and requires further
investigation.

D. In-Depth Introspection and Monitoring Over Sessions

Individually derived oscillatory components allow for mon-
itoring a training progress over sessions. The combination
of spectra, of ERD/ERS characteristics (e.g. contrast and
latencies relative to events) and of spatial patterns can provide
the clinical expert with in-depth introspection, which may
complement functional assessments over the course of the
training. As an example, see the envelope characteristics of
P2 as shown in the supplementary in Fig. 3.

E. Applicability of Brain State-Dependent Gating

The proposed brain state-dependent gating concept is com-
plementary to most existing BCI-based systems in the field
of post-stroke motor rehabilitation [12], [13]. These systems
focus on the direct decoding of movement intentions, while
the gating concept is taking trial-wise brain state fluctuations
into account which influence upcoming motor performance.
Thus, the gating concept could be combined with and prove
beneficial for most other repetitive motor paradigms in post-
stroke rehabilitation.

Conceptually, the proposed gating concept can be seen as
a sample application for brain state-dependent experiment-
ing [5]. As our framework is based on a data-driven decod-
ing model without prior assumptions about the underlying
cortical network, it is not limited to a specific application.
It only requires single-trial labels of behavioral variability
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to identify a corresponding neural correlate. Thus, there are
various application fields beyond motor rehabilitation. As an
example, we foresee that the brain state-dependent gating con-
cept could be beneficial in cognitive rehabilitation scenarios.
Moreover, sports science could profit from the consideration
of ongoing brain states [49], specifically for the development
of training concepts in which single-trial performance should
be optimized. These aspects might play an important role in
disciplines such as archery, darts or ski jumping.

V. CONCLUSION

In a nutshell, this paper presents the feasibility study for
an online temporal gating strategy to influence upcoming
single-trial motor performance in a post-stroke training pro-
tocol. The performance influence was demonstrated in a pilot
multi-session hand motor training with four chronic stroke
patients which revealed strong trial-to-trial motor performance
variations. Even under challenging conditions with patients,
we could identify robust and predictive brain states that
allowed the gating of suitable pre-trial starting time points
of an upcoming motor task. Those elicited an improved motor
performance. Particularly, single-trial reaction times were sig-
nificantly reduced—ranging from 23 to 47% of the individual
reaction time variations—for suitable trials compared with the
unsuitable trials. As this framework on real-time brain state
interaction is not exclusively designed for motor rehabilitation,
the detection and exploitation of un-/suitable brain states can
potentially be transferred to different applications such as
cognitive trainings or sports sciences.
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