
1766 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021

A Voting-Enhanced Dynamic-Window-Length
Classifier for SSVEP-Based BCIs

Hadi Habibzadeh , Student Member, IEEE, James J. S. Norton, Theresa M. Vaughan,
Tolga Soyata , Senior Member, IEEE, and Daphney-Stavroula Zois , Member, IEEE

Abstract— We present a dynamic window-length classi-
fier for steady-state visual evoked potential (SSVEP)-based
brain-computer interfaces (BCIs) that does not require the
user to choose a feature extraction method or channel
set. Instead, the classifier uses multiple feature extraction
methods and channel selections to infer the SSVEP and
relies on majority voting to pick the most likely target.
The classifier extends the window length dynamically if no
target obtains the majority of votes. Compared with existing
solutions, our classifier: (i) does not assume that any single
feature extraction method will consistently outperform the
others; (ii) adapts the channel selection to individual users
or tasks; (iii) uses dynamic window lengths; (iv) is unsu-
pervised (i.e., does not need training). Collectively, these
characteristics make the classifier easy-to-use, especially
for caregivers and others with limited technical expertise.
We evaluated the performance of our classifier on a publicly
available benchmark dataset from 35 healthy participants.
We compared the information transfer rate (ITR) of this
new classifier to those of the minimum energy combination
(MEC), maximum synchronization index (MSI), and filter
bank canonical correlation analysis (FBCCA). The new clas-
sifier increases average ITR to 123.5 bits-per-minute (bpm),
47.5, 51.2, and 19.5 bpm greater than the MEC, MSI, and
FBCCA classifiers, respectively.

Index Terms— Brain-computer interface, steady-state
visual evoked potentials, minimum energy combination,

Manuscript received November 6, 2020; revised March 8, 2021 and
July 9, 2021; accepted July 27, 2021. Date of publication August 24, 2021;
date of current version September 3, 2021. This work was supported
in part by the National Center for Adaptive Neurotechnologies through
the National Institute of Biomedical Imaging and Bioengineering of the
NIH, under Grant P41 EB018783, and in part by the resources at
the Stratton VA Medical Center in Albany, NY. (Corresponding author:
Hadi Habibzadeh.)

Hadi Habibzadeh, James J. S. Norton, and Daphney-Stavroula Zois are
with the Department of Electrical and Computer Engineering, University
at Albany, State University of New York, Albany, NY 12222 USA, and
also with the National Center for Adaptive Neurotechnologies, Office
of Research and Development, United States Department of Veterans
Affairs, Stratton VA Medical Center, Albany, NY 12208 USA (e-mail:
hhabibzadeh@albany.edu).

Theresa M. Vaughan is with the National Center for Adaptive Neu-
rotechnologies, Office of Research and Development, United States
Department of Veterans Affairs, Stratton VA Medical Center, Albany,
NY 12208 USA.

Tolga Soyata was with the Department of Electrical and Computer
Engineering, University at Albany, State University of New York, Albany,
NY 12222 USA. He is now with the Department of Electrical and
Computer Engineering, George Mason University, Fairfax, VA 22030
USA.

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNSRE.2021.3106876, provided by the authors.

Digital Object Identifier 10.1109/TNSRE.2021.3106876

filter bank canonical correlation analysis, maximum syn-
chronization index.

I. INTRODUCTION

BRAIN-COMPUTER interfaces (BCIs) are devices that
enable people to control computer systems using brain

activity [1]. Because they require little to no voluntary motor
control, BCIs can help people with severe motor deficits (e.g.,
locked-in syndrome) to communicate [2]. They may also have
applications for healthy people [3]–[6].

Steady-state visual evoked potential (SSVEP)-based BCIs
for text-entry (i.e., SSVEP-based spellers) are one common
type of BCIs [7]. In these systems, users are presented with a
set of stimuli, each flashing at a unique frequency. Attention to
one of these stimuli elicits changes in brain activity at the fun-
damental and higher harmonic frequencies of the flashing—an
SSVEP—that can be measured using electroencephalography
(EEG). These changes in EEG can be quantified and allow a
classifier to infer the stimulus the user is attending to (i.e.,
the target that the user wants to select) [8]. Each stimulus
is mapped to one or more characters; sequential selection of
targets allows users to input text [7].

The design of the classifier is critical to the performance of
SSVEP-based spellers. Ideally, the classifier correctly infers
the target (i.e., has perfect accuracy) immediately (i.e., with
zero delay) after the user starts attending to it. In actual
practice, SSVEPs are small and embedded in EEG signals
that are contaminated with noise from multiple sources (e.g.,
movement, muscle activity, etc.) [9], [10]; classifiers often
misidentify targets and input incorrect text. Users have to
correct these mistakes, decreasing text-entry rates. Improving
the performance of an SSVEP-based speller requires designing
a classifier that identifies targets as accurately and as quickly
as possible. This entails many design choices, including:

• Feature-Extraction Method: There are many ways to
identify SSVEPs embedded in noisy EEG signals;
each works in a slightly different way. The mini-
mum energy combination (MEC) method minimizes the
signal-to-noise ratio (SNR) of nuisance signals [11];
the maximum synchronization index (MSI) maximizes
the synchronization index between a template of an
SSVEP and set of EEG signals [12]; and canonical
correlation analysis (CCA) finds the maximum possible
correlation between templates of an SSVEP and a set of
EEG signals [13]. Although filter bank CCA (FBCCA)
(a CCA variant [14]) generally performs better than other

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-9839-8798
https://orcid.org/0000-0003-1506-8641
https://orcid.org/0000-0002-7807-7142

HABIBZADEH et al.: VOTING-ENHANCED DYNAMIC-WINDOW-LENGTH CLASSIFIER FOR SSVEP-BASED BCIs 1767

methods, no single method uniformly outperforms the
others (See Fig. S5).

• Channel Selection: SSVEP-based BCIs generally include
EEG signals recorded from as many as 128 electrodes
placed at different locations on the scalp. The goal of
channel selection is to find the set of EEG signals that
Maximizes the performance of the classifier. Adding
more channels does not always improve performance [15]
(Fig. S1); thus, the best set of channels is often deter-
mined through offline analysis [14], which itself has
limitations, including the inability to produce a global
solution due to inter-subject differences (especially in
those with injuries or illness), and the failure to account
for changes in the scalp distributions of SSVEPs that can
occur during a task [16].

• Window Length: The window length defines the number
of samples to collect before making a classification.
When choosing a window length, there is a trade-off
between classification accuracy and classification delay.
Longer window lengths improve classification accuracy,
but also increase classification delay. There are two
approaches to balancing this trade-off. Fixed window-
length classifiers collect the same number of samples
before making a classification. They are simpler to imple-
ment and typically determine the best window length
using offline analysis [17], [18]. On the other hand,
dynamic window-length classifiers adjust the window
length over time [19]–[21]. For example, the classifier
introduced by da Cruz et al. [20] increased or decreased
the window length by analyzing the number of times the
participant used the “delete” character. Classifiers that
use dynamic window lengths are more complicated to
implement but may provide a better trade-off between
classification accuracy and classification delay.

In this paper, we introduce a new classifier that does
not require the user to choose a feature extraction method,
channel selection, or window length. Instead, it uses voting
to determine the target based on multiple feature extraction
methods and many different channel sets. Individual votes are
obtained by using every permutation of the feature extraction
method and channel selection to infer the target. The classifier
then identifies the target as the stimulus with the majority of
the votes. If, however, none of the stimuli receives the majority
of the votes, the classifier dynamically extends the window
length until this requirement is met.

Our classifier has multiple advantages over existing SSVEP-
classifiers: (i) it does not assume that any single feature
extraction method will uniformly outperform all the others;
(ii) it adapts its channel selection depending on the individual
user and the task; (iii) its window length is dynamic; and
(iv) it is unsupervised (i.e., does not require any offline
training). Collectively, these characteristics make our classifier
particularly advantageous for clinical applications, where there
is neither the time nor the technical expertise to precisely tune
the classifier.

The rest of this paper is organized as follows. Section II
describes our classifier. Section III describes the experiments
we completed to compare our classifier with three existing

classifiers, and Section IV provides the results of these exper-
iments. We then discuss the results (Section V) and present
our conclusions (Section VI).

II. CLASSIFIER

To describe our classifier, we first explain how we perform
feature extraction and channel selection in Section II-A and
Section II-B. We then describe how we dynamically adjust
the window length in Section II-C. Finally, we provide the
algorithm for our classifier in Section II-D.

A. Feature Extraction

Let E be the set of Ne ∈ N EEG signals. A feature
extraction method �(E) uses the EEG signals in E (typically,
by linearly combining them) to extract features. For a given set
E and its power set P(E) (assume P(E) excludes the empty
set), let E�i ⊆ P(E) be the set of all subsets of E that lead
to the selection of target i (i.e., a vote for target i) using the
feature extraction method �. For target i , we define ψi (�, E)
as:

ψi (�, E) = |E�i |
|P(E)| = |E�i |

2Ne − 1
, (1)

where |·| is the set cardinality operator. We observe that 0 ≤
ψi (�, E) ≤ 1 for all i ’s and

∑
i ψi (�, E) = 1. As a numerical

example, if EEG signals are collected using eight electrodes
(indexed from one to eight), then Ne = 8. In this case, there
are at most 255 (i.e., 28 − 1) possible channel selections.
Assume that only channel selections {1, 2, 3} and {7, 8} result
in a vote for target i using feature extraction method �.
Thus, E�i = {{1, 2, 3}, {7, 8}}. Consequently, |E�i | = 2 and
ψi (�, E) = 2/255.

Equation (1) can be applied to virtually all feature extraction
methods (e.g., MEC, MSI, CCA, and FBCCA). Additionally,
it can be generalized into multi-dimensional spaces, enabling
users to avoid the design decision for the selection of a feature
extraction method.

Let � = [�1,�2, . . . ,�K] be a vector of K different
feature extraction methods (or the same feature extraction
method but with different parameters). We can use Eq. (1) to
compute �i (�, E) = [ψi (�1, E), . . . , ψi (�K , E)]. For these
K -feature extraction methods, we define the extracted feature
of target i as:

ψi (�, E) = 1

K
× �� (�, E) �2

�, (2)

where � · �� is the �-norm operator. Herein, we use the
Euclidean norm.

B. Dynamic Channel-Selection

In the standard 10-10 EEG electrode placement system,
21 electrodes cover the occipital and parietal regions of the
scalp. For a set E that includes all of these electrodes,
|P(E)| = 221 −1 (excluding the empty set). Hence, computing
ψi (�, E) per Eq. (1) becomes computationally prohibitive.
Instead, we estimate ψi (�, E) as follows:

ψ̂i (�, E) = |Ê�i |
|̂PR(E)| , (3)

1768 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021

where P̂R(E) is computed by randomly selecting R elements
of P(E) with equal probability. Ê�i is the set of all channel
selections in P̂R(E) that result in a vote for target i using the
feature extraction method �. Computing ψ̂i (�, E) per Eq. (3)
only requires R (vs. 2Ne − 1) votes.

If target i is the correct target (i.e., the target the user
is attending to), then ψ̂i (�, E) measures the probability of
selecting the (often non-unique) channel selection that leads
to a vote for the correct target using feature extraction method
�. For example, if no channel selection results in a vote for
target i (i.e., ψ̂i (�, E) = 0), the probability of selecting the
correct channel selection is zero. Likewise, if all possible
channel selections result in a vote for target i , then the
probability of selecting the correct channel selection is one.
More likely scenarios fall between these two extreme cases.
Because the correct target is unknown during classification,
we assume the target with the largest ψ̂i (�, E) is the correct
target.

C. Dynamic Window Length

The feature ψ̂i (�, E) ∈ [0, 1] represents the ratio of
votes for target i . Our classifier dynamically increases the
window-length until one of the targets obtains the majority of
votes. The classifier uses pre-defined threshold values (denoted
by τ ∈ [0, 1]) to determine whether a target has obtained the
majority of votes (e.g., τ = 0.5 instructs the classifier to select
the target that collects 50% of votes. If no target has enough
votes, the classifier extends the window length).

D. Algorithm

The algorithm for our classifier has six steps:
1) The classifier receives the number of targets N , K dif-

ferent feature extraction methods, a vector of threshold
values τ (one threshold for each window length), and the
number of additional samples W that it collects when
extending the window length. The classifier also chooses
R different random channel selections.

2) It then classifies the signal using each channel selection
and each feature extraction method. A counter vector
(V) of size K × N keeps track of the number of votes
that each target receives.

3) After iterating through all K × R cases, the classifier
normalizes V by dividing its elements by R.

4) The classifier uses Eq. (2) to obtain ψi (�, E) for each
i ∈ {1, 2, . . . , N}.

5) If ψi (�, E) ≤ τ for all i , the classifier collects W more
samples and goes to step 2. Else;

6) The classifier returns target i∗ as the output of the
classifier such that:

i∗ = argmax
i

ψ̂i (�, E). (4)

Algorithm 1 shows the algorithm of our classifier.

III. METHOD

This section describes how we implemented the classifier
explained in Section II.

Algorithm 1 The Algorithm of Our Classifier. The Procedure
classify(�k, e) Invokes the Feature Extraction Method
�k to Classify Signals Recorded by Electrodes e and Output
the Selected Target.

Input: Signal sets P̂R(E), Feature extraction method �,
Threshold vector τ , The difference between two consec-
utive window lengths W, Maximum signal length Smax

Output: Classification Output i∗,
1: N = number of targets
2: K = number of feature extraction methods
3: V = K × N zero vector
4: S = number of samples
5: γ = 0, j = 0
6: while γ ≤ τ [j] do
7: for k in 1 . . . K do
8: for signals set e in P̂R(E) do
9: target = classify(�k, e)

10: V[k, target] = V[k, target] + 1
11: end for
12: end for
13: V = V / R
14: for n in 1 . . . N do
15: psi[n] = (1/K) × norm(V[:, n], 2)
16: end for
17: [γ , i∗] = max(psi)
18: S = S + W
19: j = j + 1
20: if S > Smax then
21: break
22: end if
23: end while
24: return i∗

A. Dataset

We use the benchmark dataset for SSVEP-based BCIs [22]
for all our experiments. This dataset contains data from
35 healthy participants (S1,S2, . . . ,S35) who use a 40-target
SSVEP speller. Each target flashes at a unique frequency
f ∈ {8.0, 8.2, . . . , 15.8}Hz and a (non-unique) phase φ ∈
{0, π/2, π, 3π/2}. Each participant’s data contains 240 (40 × 6)
trials, where every target is selected exactly six times. Sixty-
four channels of EEG were recorded at a sampling rate
of 1000 Hz (down-sampled to 250 Hz).

B. Performance Metrics

The information transfer rate (ITR) is the primary mea-
sure by which we compared classifiers. ITR formulates the
trade-offs among classification delay, window length, and the
number of targets. ITR is defined as:
C = 60

T
×

[
log2 N + P · log2 P + (1 − P) · log2

1 − P

N − 1

]
,

(5)

where C is the ITR in bits-per-minute (bpm), T is the window-
length in seconds, N denotes the number of targets, and P is
the probability of correct classification (with the convention

HABIBZADEH et al.: VOTING-ENHANCED DYNAMIC-WINDOW-LENGTH CLASSIFIER FOR SSVEP-BASED BCIs 1769

TABLE I
FEATURE EXTRACTION PARAMETERS. REFER TO THE CITED

REFERENCES FOR THE DEFINITION OF EACH PARAMETER

that 0 log 0 = 0). In this work, we include in T the 0.5 s pre-
stimulation period.

High ITR spellers are of limited practical interest unless
they can deliver an acceptable accuracy (typically ≥ 70%).
Hence, whenever relevant, this work also compares the per-
formance in terms of accuracy, which is the ratio of the number
of correct classifications to the total number of classifications.

C. Classifiers Implemented for Comparison

Our implementation of MEC, MSI, and FBCCA uses
the same parameters as those used by Friman et al. [11],
Zhang et al. [23], and Chen et al. [14], respectively (Table I).
We, however, extend the second cutoff frequency of the
band-pass filter (BPF) for MSI to 50 Hz to retain the informa-
tion of the third harmonic of the highest stimulation frequency
(15.8 Hz).

D. Parameter Selection for Our Classifier

For the experiments, our classifier uses three feature extrac-
tion methods (MEC, MSI, and FBCCA) and 512 random
channel selections (i.e., R = 512). The electrode set E in
Eq. (2) includes 21 electrodes that cover occipital, posterior,
and parietal regions of the scalp: P[7, 5, 3, 1, Z, 2, 4, 6, 8],
PO[7, 5, 3, z, 4, 6, 8], O[1, z, 2], and CB[1, 2]. All other
parameters of feature extraction methods are set per Table I.

We configured the classifier to use 15 window lengths from
0.7 s to 2.1 s in 0.1 s increments, where time 0 denotes the onset
of the stimulation. If no target obtains the majority of votes
(defined by threshold τ) at 0.7 s, the classifier dynamically
increases the window length to 0.8 s. If no target has the
majority of votes at 0.8 s, the classifier extends the window-
length to 0.9 s and so on. If the window length reaches 2.1 s,
the classifier picks the target with the largest number of votes
as the classification output, regardless of the value of the
threshold at that window length.

For determining the threshold values of each window length,
we use the prior assumption that longer window lengths and
more data samples improve the classifier’s accuracy. To model
this, we choose t equidistant thresholds from [τmin, τmax]
interval in descending order, where t is the number of window
lengths (15 in our implementation), τmin ∈ [0, 1], τmax ∈
[0, 1], and τmin < τmax . In this modeling, we use τmin

Fig. 1. Average ITR of our classifier compared with the average ITR of
MEC, MSI, and FBCCA when applied to all 35 participants in our dataset.
For our classifier, we set Φ = [MEC,MSI,FBCCA] and used a different
value for τmin and τmax to obtain the average ITR for each average
window length. As shown in the figure, we can achieve near-optimal
ITR by setting τmin = τmax = 0.5, a simple majority voting that does
not require any prior selection of τmin and τmax. Figure S4 provides a
comparison between our classifier and CCA.

and τmax for window lengths of 2.1 s and 0.7 s, respectively.
The values set for τmin and τmax control the behavior of the
classifier. Overall, decreasing τmin and τmax encourages the
algorithm to use shorter window lengths on average. This is
a suitable scenario for applications that are tolerant to low
accuracies but require high ITR. Alternatively, increasing τmin

and τmax improves the overall accuracy at the cost of extending
the window lengths. Defining τmin and τmax as parameters
enables users to control the tradeoff between classification
speed and classification accuracy. Users can avoid making
a design choice on the value of τmin and τmax by setting
τmin = τmax = 0.5, corresponding to a simple 50% majority.

E. Experimental Setup

We implemented all algorithms on MATLAB 2017a (9.2.0)
on a remote host that ran Oracle® Linux Server (Release 7.7).
The host was equipped with Intel® Xeon® E5-2680 v4 and
256 GB of memory.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of our classifier.

A. Overall Classifier Performance

Figure 1 depicts the average ITR of our classifier (See
Section II) for different window lengths and compares it
with MEC [11], MSI [23], and FBCCA [14]. MEC gives
a maximum ITR of 75.9 bpm at the fixed window length
of 2.0 s corresponding to an accuracy of 72.0%. MSI and
FBCCA yield a maximum ITR of 72.2 bpm and 104.0 bpm for
window lengths of 2.0 s and 1.6 s and corresponding accuracies
of 69.8% and 79.1%, respectively. When compared to MEC,
MSI, and FBCCA, our classifier increased the maximum
average ITR by 47.5 bpm (p ≤ 0.01), 51.2 bpm (p ≤ 0.01),
and 19.5 bpm (p ≤ 0.01), respectively.

1770 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021

Fig. 2. The average ITR of our classifier—with dynamic channel selection and dynamic window length—configured to use (left) three individual
feature extraction methods and (right) four different combinations of feature extraction methods.

Fig. 3. (left) The average ITR for three feature extraction methods MEC, MSI, and FBCCA with (dashed line) and without (solid lines) the dynamic
channel-selection method discussed in Section II-B. (right) The ITR of all three feature extraction methods (MEC, MSI, and FBCCA) that use
dynamic (dashed) and standard channel selection averaged into a single curve (Results from the left plot (greyed-out lines) and are added here for
comparison).

Our classifier uses dynamic window lengths; different pairs
of τmin and τmax result in different average window lengths.
In Fig. 1, we classified the dataset using numerous values
for τmin and τmax to obtain at least one average ITR for
each average window length. We then selected the maximum
ITR at each average window length to obtain the final result.
Determining τmin and τmax , however, adds a new design
choice to the classifier. To avoid making a decision on τmin and
τmax , we can set τmin = τmax = 0.5, corresponding to a simple
majority vote. Figure 1 shows that for τmin = τmax = 0.5,
the classifier had an average accuracy of 81.6% at the average
window length of 1.5 s, corresponding to an average ITR
of 114.5 bpm. Figures S6–S40 show the classifier’s perfor-
mance for individual participants.

B. Feature Selection Performance

Figure 2 compares our classifier’s performance for
configurations that use single (left) and multiple (right)
feature extraction methods. For configurations with a

single feature extraction method, our classifier increased
the maximum average ITR to 111.6 bpm, 108.8 bpm, and
127.9 bpm for configurations with � = [MEC], � = [MSI],
and � = [FBCCA], respectively (p ≤ 0.01). Among the
configurations that used multiple feature extraction methods,
the configuration that used � = [MEC, FBCCA] had the
largest average ITR at 128.2 bpm.

C. Dynamic Channel Selection Performance

Figure 3 (left) compares the average ITR of MEC, MSI, and
FBCCA with our classifier (for three configurations, where
(i) � = [MEC], (ii) � = [MSI], and (iii) � = [FBCCA].)
To evaluate the performance of the proposed channel selection,
the classifier used fixed window lengths. The proposed channel
selection increased the maximum ITR from 75.9 to 96.3 bpm
for MEC, from 72.2 to 93.4 bpm for MSI (p ≤ 0.01) but the
changes for FBCCA were not significant.

Figure 3 (right) averages the ITR of MEC, MSI and FBCCA
and compares it with the average ITR across the three

HABIBZADEH et al.: VOTING-ENHANCED DYNAMIC-WINDOW-LENGTH CLASSIFIER FOR SSVEP-BASED BCIs 1771

TABLE II
THE RELATIVE POPULATION OF SIGNALS CLASSIFIED AT EACH

WINDOW LENGTH AND THEIR CORRESPONDING

CLASSIFICATION ACCURACY

configurations of our classifier. It shows that on average,
the dynamic channel selection increases the maximum ITR
from 82.7 bpm (at the corresponding window length of 2.0 s)
to 98.3 bpm (p ≤ 0.01).

D. Dynamic Window Length Performance

Table II details the classification performance for each
permissible window length. The results are obtained for
� = [MEC,MSI,FBCCA], τ ∗

min = 0.135 and τ ∗
max =

0.865. The very high accuracy associated with window lengths
shorter than ≤ 2.1 s confirms the efficacy of the proposed
features; 73.02% of the dataset can be classified with the
accuracy of 90.25% with the average window length of 1.30 s.
Around 4.68% of the signals (corresponding to 393 signals)
are classified at the window length of 2.1 s with the accuracy
of 45.04%. The continuous decrease in overall accuracy for
larger window lengths is expected because the algorithm
defers the classification of only noisy signals to these window
lengths.

V. DISCUSSION AND FUTURE WORK

Our classifier has several significant advantages over exist-
ing SSVEP classifiers. First, because it uses multiple fea-
ture extraction methods, it does not depend on the specious
assumption that one feature extraction method will consis-
tently outperform the others. Second, because this classifier
uses many channel selections, there is no need to pick a
specific channel selection for a specific user or specific appli-
cation. Third, the classifier adjusts the window length for
each classification. Together, these three properties improve
the average ITR. Fourth, because it automates choices about
feature extraction, channel selection, and window length,
the classifier is easy for caregivers and others to use; it
does not require special expertise. The rest of this section
discusses other advantages of this classifier and opportunities
for improving it.

The classifier uses voting to combine the features extracted
by the different methods. While conventional normalization
techniques can rescale and combine features (e.g., using the
logistic function to convert features to probabilities), these
techniques often lead to loss of interpretability because the
normalized features represent disparate phenomena (e.g., even
after normalization, combining correlation with SNR is dif-
ficult). On the other hand, using voting to combine features
satisfies many desiderata of interpretability including trans-
parency (i.e., it is clear how the classifier works), trustworthi-
ness (i.e., confidence that the classifier performs well), and
transferability (i.e., classifier can function in environments
different from the test environment) [24].

The parameter ψi (�, E), as computed per Eq. (1), is the
probability that a random selection of a channel set and a
feature extraction method result in a vote for target i . As
ψi (�, E) approaches one, all possible selections lead to the
same result. In these cases, it becomes less important to pick
one selection over the others. Thus, instead of searching for
the best selection of channel set and feature extraction method,
the classifier dynamically increases the window length until
all (or most of) the selections result in the same output. For a
non-target i (i.e., any target other than the one the user intends
to selects), it is unlikely (although not impossible) to obtain
ψi (�, E) = 1. This is because non-targets generally have
smaller SNRs, which makes the classification results more
random. This is confirmed by the results provided in Table II,
where signals with shorter window lengths (and higher ψi) are
classified with an average accuracy of more than 90%.

Brain injuries, aging, and other neuroplasticity can change
the spatial distribution of SSVEPs [25]–[27]. Hence, a fixed
channel selection can limit the system’s applicability. The
uniform selection of random electrode sets, as explained in
Section II, mitigates this problem [28]. Inherent symmetries
of the uniform distribution allow unbiased selection of dif-
ferent spatial distributions. Thus, SSVEP detection becomes
independent of their spatial distribution.

The advantages of our proposed channel-selection tech-
nique are obtained at no cost to the classifier’s performance.
To confirm this, we configured MEC, MSI, and FBCCA to use
our technique (results in Fig. 3). The technique significantly
improved the average ITR for MEC and MSI, but not for
FBCCA (for most window lengths). We attribute this at least
in part to the fact that, unlike MEC and MSI parameters,
FBCCA’s parameters (Table I) were already optimized for our
dataset (or at least a subset of our dataset). Hence, Fig. 3
implies that our classifier mitigates the deleterious impact of
lack of training and parameter optimization. If the parameters
are already optimized, our classifier does not impair classifi-
cation. One potential way to improve the performance of our
classifier is to test the inclusion of different feature extraction
methods. Possible choices include filter bank MEC [29], deep
multi-set CCA (DMCCA) [30], and task-related component
analysis (TRCA) [31].

Our classifier is computationally complex. The computa-
tional complexity of the classifier depends on K R, where
K is the number of feature extraction methods in � and R
is the number of channel selections. In our implementation,

1772 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021

TABLE III
PERFORMANCE SUMMARY OF ALL PARTICIPANTS WITH

THE AVERAGE ITR OF BELOW 100 BPM

K = 3 and R = 512. Thus, our classifier is roughly
1536 times more computationally complex than a classifier
with K = 1 and R = 1. There are a number of ways to
mitigate this added complexity. First, as Fig. S2 shows, using
R = 50 results in similar performance to R = 512. This
simple change reduces the computational complexity of our
classifier by a factor of ten. In addition, our classifier is highly
parallelizable—every vote can be computed simultaneously.
We developed a graphics processing unit (GPU)-accelerated
version of our classifier to demonstrate its parallelizability.
As shown in Fig. S3, the run time of the GPU-accelerated
version was 0.05 s, 230× faster than the MATLAB version of
our classifier (11.52 s).

Different sampling strategies might improve the channel-
selection. Let r be the cardinality of a random subset of P(E),
where E includes the 21 electrodes discussed in Section III-D
and all subsets are equally probable. Then, r approximately
follows a normal distribution r ∼ N (μ = 10.5, σ 2 =
5.25). One possible improvement is to change the expected
number of channels (μ) by changing window length. This is
based on the observation that the number of useful channels
usually increases with window length, presumably because
more data reduces noise. Another possible improvement is
using a non-uniform spatial distribution to select electrodes
(instead of a uniform distribution). This could increase the
probability of selecting certain electrodes (e.g., Oz).

Our classifier works better for some participants than for
others. Table II shows that classification accuracy was much
lower at longer window lengths (45.04% at 2.1 s) than it was at
shorter window lengths (94.17% at 1.2 s). The majority of the
signals (80.9% (See Table III)) classified at a window length
of 2.1 s came from just nine of the 35 participants. Thus,
window length might identify people for whom an alternative
classification strategy might perform better.

Rather than increasing window length, the classifier could
use other methods to address low classification confidence. For
example, it could re-assign flashing frequency and target phase
to distinguish among the most probable targets (e.g., switching
to hierarchical selection only when necessary). In the trade-off
between classification accuracy and latency, a conservative
(i.e., high) threshold biases toward accuracy. This benefits

applications that have low tolerance for error (e.g., wheelchair
control).

VI. CONCLUSION

We propose a new dynamic window length SSVEP classifier
that uses multiple feature extraction methods and channel
selections. Because it automatically selects the feature extrac-
tion method and recording channels for each individual and
each application, the classifier should be easy for caregivers
and others to use.

The classifier evaluates all permutations of different fea-
ture extraction methods and channel selections, and it uses
voting by the permutations to identify the person’s target.
The classifier dynamically extends the window length until
either the number of votes for one target exceeds a pre-
determined threshold, or the window length reaches a preset
maximum value (at which point the target with the most votes
is identified).

This classifier has four advantages over commonly used
classifiers (i.e., minimum energy combination (MEC), max-
imum synchronization index (MSI), filter bank canonical cor-
relation coefficient (FBCCA)). First, it does not assume that
a single feature extraction method is best. Second, it adapts
channel selection to the person and the application. Third,
it uses dynamic window lengths. Fourth, it does not require
training for feature extraction or channel selection. For 35 par-
ticipants, the classifier gave an average ITR of 124.1 bpm
versus 104.0 bpm for the next-best classifier (FBCCA).

ACKNOWLEDGMENT

The authors would like to thank Wang et al. [22] for shar-
ing their benchmark dataset. The authors are also grateful for
the valuable feedback Jonathan S. Carp, Jonathan R. Wolpaw,
and the anonymous reviewers provided.

REFERENCES

[1] J. R. Wolpaw and D. J. McFarland, “Multichannel EEG-based
brain-computer communication,” Electroencephalogr. Clin. Neurophys-
iol., vol. 90, no. 6, pp. 444–449, Jun. 1994. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/001346949490135X

[2] J. R. Wolpaw et al., “Independent home use of a brain-computer
interface by people with amyotrophic lateral sclerosis,” Neurology,
vol. 91, no. 3, pp. e258–e267, Jul. 2018.

[3] A. Nourmohammadi, M. Jafari, and T. O. Zander, “A survey on
unmanned aerial vehicle remote control using brain–computer inter-
face,” IEEE Trans. Human-Mach. Syst., vol. 48, no. 4, pp. 337–348,
Aug. 2018.

[4] L. Al-barrak, E. Kanjo, and E. M. G. Younis, “NeuroPlace: Cat-
egorizing urban places according to mental states,” PLoS ONE,
vol. 12, no. 9, Sep. 2017, Art. no. e0183890. [Online]. Available:
https://doi.org/10.1371/journal.pone.0183890

[5] L.-W. Ko, O. Komarov, W. D. Hairston, T.-P. Jung, and C.-T. Lin,
“Sustained attention in real classroom settings: An EEG study,”
Front. Hum. Neurosci., vol. 11, p. 388, Jul. 2017. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnhum.2017.00388

[6] A. Saboor et al., “SSVEP-based BCI in a smart home scenario,”
in Advances in Computational Intelligence, I. Rojas, G. Joya, and
A. Catala, Eds. Cham, Switzerland: Springer, 2017, pp. 474–485.

[7] A. Akce, J. J. Norton, and T. Bretl, “An SSVEP-based brain–computer
interface for text spelling with adaptive queries that maximize informa-
tion gain rates,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 23, no. 5,
pp. 857–866, Sep. 2015.

HABIBZADEH et al.: VOTING-ENHANCED DYNAMIC-WINDOW-LENGTH CLASSIFIER FOR SSVEP-BASED BCIs 1773

[8] F. Lotte et al., “A review of classification algorithms for EEG-based
brain–computer interfaces: A 10 year update,” J. Neural Eng., vol. 15,
no. 3, 2018, Art. no. 031005.

[9] H. J. Scheer, T. Sander, and L. Trahms, “The influence of amplifier,
interface and biological noise on signal quality in high-resolution EEG
recordings,” Physiol. Meas., vol. 27, no. 2, p. 109, 2005.

[10] L. C. Parra, C. D. Spence, A. D. Gerson, and P. Sajda, “Recipes for
the linear analysis of EEG,” NeuroImage, vol. 28, no. 2, pp. 326–341,
2005. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1053811905003381

[11] O. Friman, I. Volosyak, and A. Graser, “Multiple channel detection
of steady-state visual evoked potentials for brain-computer interfaces,”
IEEE Trans. Biomed. Eng., vol. 54, no. 4, pp. 742–750, Apr. 2007.

[12] Y. Zhang, P. Xu, K. Cheng, and D. Yao, “Multivariate synchronization
index for frequency recognition of SSVEP-based brain–computer inter-
face,” J. Neurosci. Methods, vol. 221, pp. 32–40, Jan. 2014.

[13] Z. Lin, C. Zhang, W. Wu, and X. Gao, “Frequency recognition based
on canonical correlation analysis for SSVEP-based BCIs,” IEEE Trans.
Biomed. Eng., vol. 53, no. 12, pp. 2610–2614, Dec. 2006.

[14] X. Chen, Y. Wang, S. Gao, T.-P. Jung, and X. Gao, “Filter bank
canonical correlation analysis for implementing a high-speed SSVEP-
based brain–computer interface,” J. Neural Eng., vol. 12, no. 4, 2015,
Art. no. 046008.

[15] L. Meng, J. Jin, and X. Wang, “A comparison of three electrode channels
selection methods applied to SSVEP BCI,” in Proc. 4th Int. Conf.
Biomed. Eng. Inform. (BMEI), vol. 1, Oct. 2011, pp. 584–587.

[16] R. B. Silberstein, P. L. Nunez, A. Pipingas, P. Harris, and F. Danieli,
“Steady state visually evoked potential (SSVEP) topography in a
graded working memory task,” Int. J. Psychophysiology, vol. 42, no. 2,
pp. 219–232, Oct. 2001.

[17] M. Sengelmann, A. K. Engel, and A. Maye, “Maximizing information
transfer in SSVEP-based brain–computer interfaces,” IEEE Trans. Bio-
med. Eng., vol. 64, no. 2, pp. 381–394, Feb. 2017.

[18] E. K. Kalunga, S. Chevallier, Q. Barthélemy, K. Djouani,
E. Monacelli, and Y. Hamam, “Online SSVEP-based BCI using
Riemannian geometry,” Neurocomputing, vol. 191, pp. 55–68,
May 2016. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0925231216000540

[19] I. Volosyak, “SSVEP-based Bremen–BCI interface—Boosting informa-
tion transfer rates,” J. Neural Eng., vol. 8, no. 3, 2011, Art. no. 036020.

[20] J. N. da Cruz, F. Wan, C. M. Wong, and T. Cao, “Adap-
tive time-window length based on online performance measure-
ment in SSVEP-based BCIs,” Neurocomputing, vol. 149, pp. 93–99,
Feb. 2015. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0925231214009540

[21] M. Nakanishi, Y. Wang, Y.-T. Wang, and T.-P. Jung, “A dynamic stop-
ping method for improving performance of steady-state visual evoked
potential based brain–computer interfaces,” in Proc. 37th Annu. Int.
Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Aug. 2015, pp. 1057–1060.

[22] Y. Wang, X. Chen, X. Gao, and S. Gao, “A benchmark dataset for
SSVEP-based brain–computer interfaces,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 25, no. 10, pp. 1746–1752, Oct. 2017.

[23] Y. Zhang, D. Guo, D. Yao, and P. Xu, “The extension of multi-
variate synchronization index method for SSVEP-based BCI,” Neu-
rocomputing, vol. 269, pp. 226–231, Dec. 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0925231217309980

[24] Z. C. Lipton, “The mythos of model interpretability,” Queue, vol. 16,
no. 3, pp. 31–57, 2018.

[25] I. Volosyak, F. Gembler, and P. Stawicki, “Age-related differences in
SSVEP-based BCI performance,” Neurocomputing, vol. 250, pp. 57–64,
Aug. 2017.

[26] M. Laganaro, S. Morand, C. M. Michel, L. Spinelli, and A. Schnider,
“ERP correlates of word production before and after stroke in an aphasic
patient,” J. Cognit. Neurosci., vol. 23, no. 2, pp. 374–381, Feb. 2011.

[27] M. Molnár, J. Osman-Sági, Z. Nagy, and J. Kenéz, “Scalp distribution
of the dimensional complexity of the EEG and the P3 ERP component
in stroke patients,” Int. J. Psychophysiol., vol. 34, no. 1, pp. 53–63,
Oct. 1999.

[28] E. Webster, H. Habibzadeh, J. J. S. Norton, T. M. Vaughan, and
T. Soyata, “An unsupervised channel-selection method for SSVEP-based
BCI systems,” in Proc. 9th IEEE Annu. Ubiquitous Comput., Electron.
Mobile Commun. Conf. (UEMCON), Nov. 2018, pp. 626–632.

[29] P. Stawicki and I. Volosyak, “Comparison of modern highly interactive
flicker-free steady state motion visual evoked potentials for practical
brain–computer interfaces,” Brain Sci., vol. 10, no. 10, p. 686, 2020.

[30] Q. Liu et al., “Efficient representations of EEG signals for SSVEP
frequency recognition based on deep multiset CCA,” Neurocomputing,
vol. 378, pp. 36–44, Feb. 2020.

[31] X. Xing et al., “A high-speed SSVEP-based BCI using dry EEG
electrodes,” Sci. Rep., vol. 8, no. 1, pp. 1–10, Dec. 2018.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

