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BECT Spike Detection Based on Novel EEG
Sequence Features and LSTM Algorithms
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Abstract— The benign epilepsy with spinous waves in the
central temporal region (BECT) is the one of the most com-
mon epileptic syndromes in children, that seriously threaten
the nervous system development of children. The most
obvious feature of BECT is the existence of a large number
of electroencephalogram (EEG) spikes in the Rolandic area
during the interictal period, that is an important basis to
assist neurologists in BECT diagnosis. With this regard,
the paper proposes a novel BECT spike detection algorithm
based on time domain EEG sequence features and the
long short-term memory (LSTM) neural network. Three time
domain sequence features, that can obviously characterize
the spikes of BECT, are extracted for EEG representation.
The synthetic minority oversampling technique (SMOTE)
is applied to address the spike imbalance issue in EEGs,
and the bi-directional LSTM (BiLSTM) is trained for spike
detection. The algorithm is evaluated using the EEG data
of 15 BECT patients recorded from the Children’s Hospital,
Zhejiang University School of Medicine (CHZU). The exper-
iment shows that the proposed algorithm can obtained an
average of 88.54% F1 score, 92.04% sensitivity, and 85.75%
precision, that generally outperforms several state-of-the-
art spike detection methods.
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I. INTRODUCTION

AS A common neurological disease, the incidence of
epilepsy in children is 10∼15 times as high as that

of adults. Benign childhood epilepsy with centro-temporal
spikes (BECT), also known as the childhood benign rolandic
epilepsy, is the most common focal epilepsy in childhood,
accounting for 15%∼24% of all childhood epilepsy [1], [2].
BECT has a low probability of having seizures. Therefore,
the electroencephalograms (EEGs) recorded from the interictal
period become the main data to help doctors analyze the
condition of BECT patients.

To assist clinical analysis, EEG features appearing in
epilepsy are summarized as biomarkers by neurobiologists.
Epileptiform discharge is a typical biomarker, generally
including spike, sharp, spike and wave complex, and sharp
and wave complex [3]. With the upgrade of EEG acquisi-
tion equipment, more and more high-frequency EEG signals,
such as ripples and fast ripples, have been used as epilepsy
biomarkers, leading to good results [4]. The diagnosis of
BECT is one of the typical cases in epileptiform discharge
analysis. The most obvious feature of the interical EEG of
BECT patients is the large number of spike and sharp wave
complexes in the Rolandic area. On the EEG International
10-20 system [5], the midtemporal and central areas have
the highest discharge amplitude [6]. The width of the spikes
and sharps is generally around 50-100 ms, the amplitude is
mostly greater than 100 μV, and are usually prominent in
the background activity. Since the generation mechanism and
physiological significance of spike and sharp are basically
similar, there is generally no obvious difference in waveforms
except for the duration. Therefore, in this paper, we uniformly
use the spike to refer to spike and sharp waves.

Traditionally, to have a better diagnosis of BECT patients,
neurologists have to analyze the EEG data to find the epilep-
tiform discharges in the millisecond level, which is extremely
tedious and time-consuming. With this regard, we develop
a novel BECT spike detection algorithm based on the time
domain EEG sequence features and the enhanced long short-
term memory (LSTM) neural network model. The contribu-
tions of the paper are three-fold: 1) two time domain EEG
sequence features, the smooth nonlinear energy (SNE) and
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Fig. 1. The flowchart of the proposed BECT spike detection algorithm.

morphological characteristics, are extracted to characterize
spikes, 2) to address the imbalance issue existed between
spike and non-spike signals, the synthetic minority oversam-
pling technique (SMOTE) is applied to generate synthetic
spike sample for model learning, 3) a stacked bi-directional
LSTM (BiLSTM) model is designed to enhance the spike
detection accuracy. The effectiveness of the proposed spike
detection algorithm is validated by using the EEG data
of 15 BECT patients recorded from the Children’s Hospital,
Zhejiang University School of Medicine (CHZU). Experimen-
tal comparisons to 5 state-of-the-art (SOTA) spike detection
methods are also presented in the paper to demonstrate the
superiority of the proposed algorithm. Fig. 1 explicitly shows
the flow chart of the developed spike detection algorithm in
the paper.

II. RELATED WORKS

As a common epilepsy biomarker, spike has broad appli-
cations in the auxiliary diagnosis [7], [8] and seizure pre-
diction [9]. The earliest study can be traced back to 1972,
in which Steven et al. [10] tried to explore the correla-
tion between spikes and seizures using the power spectrum
of EEGs. Gotman et al. [11] decomposed EEG into half-
waves and extracted its features for the spike detection.
Qian et al. [12] used the cascade of the difference filter
and the product operator to enhance the spike amplitude.
Liu et al. [13] eliminated background noise in EEGs with a
morphological filter which adopts adaptive Gaussian struc-
ture factor. Oikonomou et al. [14] established a time-varying
autoregressive model based on the non-stationarity of EEGs,
and used a Kalman filter to estimate the time-varying coeffi-
cients, which enhanced the signal-to-noise ratio. More funda-
mental spike detection methods can be referred to [15]–[19].
In general, most spike detection algorithms tend to use time
domain features. Although the frequency domain and wavelet
domain features are widely used in the field of EEG signal
processing [20], [21], their application in spike detection
[22]–[25] is limited due to the short duration of the target
waveform and high positioning accuracy requirements.

Recently, machine learning based neural networks have been
widely used for EEG analysis, such as epilepsy and seizure
detection [26]–[29], spike detection [30]–[32], brain-computer

Fig. 2. The 10-20 international standard EEG recording system,
the waveform and appearance position of EEG interferences and
spikes.

interfaces [33]–[35], etc. Webber et al. [30] implemented
spike detection algorithms through spike candidate selection
and artificial neural networks (ANN) based classification.
Özdamar et al. [31] directly adopted ANN to learn on the raw
EEGs, and explored the influence of the feature input dimen-
sion and network structure parameters. Medvedev et al. [32]
used the relative spectral power of different frequency bands
as the features, and employed BiLSTM for spikes, ripples, and
composite waveforms detection. Johansen et al. [36] applied
one-dimensional convolutional neural network (CNN) to spike
detection. Many other representative deep learning based spike
detections can be referred to [37], [38]. Particularly, for
childhood BECT spike detection, Wang et al. [39] developed
a hybrid algorithm based on an adaptive template matching
algorithm and a random forest (RF) classifier for false positives
elimination. Besides [39], few attentions have been paid to the
BECT spike detection.

III. METHODOLOGY

A. EEG Preprocessing

Interferences, such as eye blinking, electromyogram (EMG),
non-physiological artifacts, baseline drift, etc. (shown in
Fig. 2), usually affect the performance in scalp EEG analy-
sis [40], [41]. Preliminary frequency domain filtering by a
50 Hz IIR notch filter and a 1∼70 Hz IIR filter is applied to
remove the power frequency noise, to reduce low-frequency
interference such as baseline drift, and to suppress the high-
frequency interference. Then, the following preprocessing is
adopted.
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Fig. 3. EEG preprocessing by the frequency domain filter and the S-G
filter.

1) Savitzky-Golay Filtering: The Savitzky-Golay filter
(S-G filter) is a time domain polynomial least squares
filtering algorithm, which is effective to eliminate noise while
remain the signal distribution characteristics unchanged. Part
of the interference caused by electromyography and poor
contact also has high-frequency spike-like characteristics,
but its amplitude and duration are generally smaller than
spikes. By applying the S-G filter, these interferences can be
smoothed under the premise of not having a great impact on
spikes, and the influence on subsequent spike identification
can be reduced.

Suppose the width of the filter window is n = 2m + 1,
the original EEG is x , and the k-order S-G filter will fit the
data using a k degree polynomial defined as y = a0 + a1x +
a2x2 + · · · + akxk , where ai (i = 0, . . . , k) is the polynomial
coefficient. For all EEG segments, the following k-ary linear
equation can be obtained⎡
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⎡
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where e is the fitting error. The matrix form is

Y (2m+1)×1 = X(2m+1)×k ak×1 + e(2m+1)×1 (1)

where Y (2m+1)×1, X(2m+1)×k , ak×1, e(2m+1)×1 are the
matrix/vector forms of variables in (1). By least squares, â can
be estimated as â = (XT X)−1 XT Y , and the filtered output is

Ŷ = X â = X(XT X)−1 XT Y . (2)

The center sequence Ŷ(0) of the filtered output is finally
used.

In this paper, the filter window length is set to 71, and
the corresponding duration is 0.071 s, which is close to the
average duration of BECT spikes. It can ensure that the interval
contains enough information to minimize the impact on spikes,
and meanwhile ensure that the noises with a duration shorter
than spikes. Through experiments, the third-order filter has the
best overall performance and good smoothing effect on noises.
Fig. 3 shows the filtered EEGs obtained by frequency-domain
filter and S-G filter, respectively.

2) Standardization: EEG normalization can help to reduce
the sensitivity of different acquisition devices. Commonly used
resizing methods include rescaling, mean normalization and
Z-score normalization. Since the scalp EEG is sensitive to
external interferences, using rescaling or mean normaliza-
tion may not have a satisfactory normalization. Since the
preprocessing is performed on the entire signal, the Z-score

Fig. 4. Spike discharge duration proportion in each patient’s EEG in the
CHZU database (the duration of one spike discharge is around 0.075 s).

normalization is the most suitable method here, defined as

x � = x − mean(x)

σ
(3)

where x is the EEG signal, mean(x) and σ are the mean and
variance, that can be estimated from the samples.

3) Data Segmentation: The EEG frame length is set to
be 0.2 s by considering the duration of BECT spikes. For
model training and validation, the pre-marked points are
directly divided to obtain samples, while in testing, we set
a 50% overlap rate to continuously divide the entire EEGs
into frames. The purpose is to visually analyze the detection
performance on real data, and also to ensure the integrity of
the spike waveform in the sample interval.

B. Data Augmentation

Compared with the long-term EEG recordings, the duration
of the EEG in the non-spike state is usually much longer
than spikes. Fig. 4 shows the spike duration ratios recorded
from 15 BECT patients in the CHZU database. As observed,
for most patients, the proportion of spike discharge durations
with respect to the whole recordings is less than 6%, and
the proportion of spike of 5 patients is even less than 2%.
This leads to a typical imbalance data learning problem. It is
also well known that conventional machine learning models
are generally not applicable to imbalance data, and usually
suffer poor performance on the minority classes, resulting in
a very low recall rate. Therefore, we recur to the SMOTE [42]
resampling method to generate minority samples (spikes),
where the generated spikes will be only used in model training.

SMOTE is an improved random oversampling algorithm,
that can effectively address the overfitting and poor gener-
alization issues in the basic random oversampling methods.
SMOTE overcomes these issues by exploring the nearest
neighbors within the minority category to generate the syn-
thetic samples xnew using xnew = x + rand(0, 1) × (�x − x),
where x is the sample from the minority class, �x is randomly
selected from the K nearest neighbors of x .

C. Time Domain Sequence Feature Extraction

Two time domain features, smooth nonlinear energy (SNE)
and morphological characteristics (MC), which can reflect
the characteristics of EEGs and distinguish spikes from non-
spikes are extracted for signal representation in this paper. The
dimensions of SNE and MC are consistent with that of EEG
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Fig. 5. Original EEG, smooth nonlinear energy and morphological
characteristics of spike and non-spike samples.

segment to ensure that they can be applied for the subsequent
model learning.

1) Smooth Nonlinear Energy: The nonlinear energy opera-
tor (NEO) was proposed by Kaiser for nonlinear speech mod-
eling [43]. NEO can characterize the instantaneous frequency
and amplitude of the signal, and its output is proportional to
the product of the amplitude and frequency of the input.

Let x(t) (t > 0) be a continuous time signal, NEO is

ψ[x(t)] = x2(t)− x(t)x ��(t) (4)

where ψ[x(t)] is the nonlinear energy (NE) and x ��(t) is the
second-order derivative. For a discrete signal x(n), NEO is

ψ[x(n)] = x2(n)− x(n − 1)x(n + 1). (5)

To further improve the ability of NEO in characterizing non-
stationary signals, a smooth nonlinear energy operator (SNEO)
has been developed in [44] as

ψs [x(n)] = w(n) ∗ ψ[x(n)] (6)

where w(n) is the triangular window function, ∗ represents
the convolution operation, and ψs [x(n)] is the SNE.

SNE reduces the interference through the convolution oper-
ation. As shown in Fig. 5, SNE from the spike discharge
interval is much higher than that from the background and
non-spike EEG. Therefore, the spike can be clearly protruded
from a segment of EEGs by SNE.

2) Morphological Characteristics: Morphological filter is a
nonlinear filter based on the basic mathematical morpholog-
ical transformation. It was originally used to process binary
images. Later, Serra et al. [45] introduced the set representa-
tion method of functions and extended it to time sequence
signal processing. For the signal x(n), n ∈ (0, 1, · · · , N − 1)
and the structure element g(m), the four basic morphological
operations of g(m) with respect to x(n) are corrosion ‘�’,
expansion ‘⊕’, morphological opening ‘◦’, and morphological
closing ‘•’, which are respectively defined as

(x � g)(n) = min[x(n + m)− g(m)] (7)

(x ⊕ g)(n) = max[x(n + m)− g(m)] (8)

(x ◦ g)(n) = (x � g)⊕ g (9)

(x • g)(n) = (x ⊕ g)� g (10)

where m = 0, . . . ,M − 1 and N ≥ M . Corrosion operation
removes the negative phase peak and reduces the width of the
positive phase peak, expansion operation removes the positive
phase peak and reduces the width of the negative phase peak,
the open operation only removes the positive phase peak, and
the closed operation only removes the negative phase peak.

To further improve the filtering performance, the basic
operations mentioned above are cascaded and combined to

better separate the target from the original signal. The mor-
phological opening-closing operation (OC), closing-opening
operation (CO) and open-close-closed-open average combined
operation (OCCO) are respectively defined as

OC[x(n)] = [(x ◦ g) • g](n) (11)

C O[x(n)] = [(x • g) ◦ g](n) (12)

OCC O[x(n)] = 1

2
{OC[x(n)] + C O[x(n)]}. (13)

OC and CO can effectively separate positive and negative
pulses from the signal, respectively. Due to the inverse scala-
bility of the open and closed operations, a single OC or OC
operation will cause statistical deviation. OCCO eliminates
statistical deviations and improves the filtering performance
by averaging OC and CO results.

After the structure element setting, OCCO can filter out the
spike wave-like waveform. Subtracting the result of OCCO
from the original EEG, the characteristic sequence containing
only the waveform of the type structure unit is

MC(n) = x(n)− OCC O[x(n)]. (14)

The structural element used here is a positive half-wave Sine
signal with a certain degree of similarity to the spike wave,
defined as

g(m) = hs sin

	
πm

ts



(15)

where hs is the spike amplitude, ts is the spike duration, and
m ∈ (0, 0.001, · · · , ts).

Fig. 5 plots the typical BECT spike and non-spike EEG
samples, and their corresponding SNE and MC features.
As observed, for both the SNE and MC features, the waveform
of spike is well retained, and the amplitudes of the two features
obtained from non-spike EEGs are apparently suppressed.
For further validation, we have compared the SNE and MC
features obtained from 139 spikes and 1455 non-spikes from a
BECT patient of the CHZU database in Fig. 6. For non-spike
EEGs, the SNE and MC features are generally around 0, while
on the contrary, spike EEGs show completely different SNE
and MC features to non-spikes.

D. LSTM Architecture Neural Network Classifier

Instead of directly adopting the SNE and MC features for
spike detection, we apply the LSTM neural network with
the stacked bi-directional structure for discriminative feature
learning and spike EEG detection. Conventional RNN gener-
ally uses simple repeating module containing only one tanh
layer for time series learning. LSTM modifies the repeating
module, designs the cell state that stores important information
and controls it through three gate structures, namely the forget
gate, input gate and output gate [46]. It can overcome the
gradient disappearance and explosion issues existed in tradi-
tional RNN. The forget gate selectively forgets the information
passed from the previous unit, defined as

ft = σ(W f · [ht−1, xt ] + b f ) (16)

where x is the input sequence, ht−1 is the output of the
previous block, ct−1 is the cell state of the previous memory
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Fig. 6. Comparisons on SNEs and MCs obtained on multiple spikes and
non-spikes from the EEGs of a BECT patient.

unit, b f and w f are the bias and weight vectors, σ is the
sigmoid activation function, and ft is the output, determining
how much of the cell state from the previous moment is
retained to the current moment unit state ct .

The input gate of LSTM selectively records new information
into the cell state, with the definition as

it = σ(Wt · [ht−1, xt ] + bi ) (17)�Ct = tanh(WC · [ht−1, xt ] + bC) (18)

where it determines how much input is retained in the current
moment unit state Ct , and �Ct is the current input unit state.
The cell state is then updated by

Ct = ft ∗ Ct−1 + it ∗ �Ct . (19)

Finally, the input gate will obtain the output of the current
block based on the cell state as

ot = σ(Wo[ht−1, xt ] + bo) (20)

ht = ot ∗ tanh(Ct ). (21)

Bidirectional LSTM (BiLSTM) and stacked LSTM are two
variants of LSTM. BiLSTM contains forward and backward
structures in a unit. Stacked LSTM uses a cascade method
to obtain a deeper structure. At the same time, these two
structures can also be superimposed to get a more complex
architecture.

In this paper, we have developed 4 types of LSTM based
BECT spike detection models, including the basic LSTM,
stacked LSTM, BiLSTM, and stacked BiLSTM. Each model
follows a neural network that consists of fully connected (FC)
layers and a Softmax layer for feature fusion and spike/non-
spike classification. The FC neural network is designed with
a three-layer structure, the number of neurons are 500, 250,
and 2, respectively. Fig. 7 shows the 4 LSTM network struc-
tures, respectively. We fully exploit the EEG signal and the
SNE, MC features for spike detection by concatenating them
in parallel as the input. The dimensions of EEG, SNE and
MC are all 1 × 200, and the final feature sequence for model

Fig. 7. Four LSTM network based spike/non-spike classification models.

learning and spike detection is 3 × 200. The input feature
dimension to the basic LSTM at each time step is 3 × 1.

For model learning and parameter optimization, the cross
entropy is used as the loss function, and the adaptive moment
estimation (ADAM) algorithm is used for parameter learning.
ADAM combines the advantages of AdaGrad and RMSProp
optimization algorithms, comprehensively considers the first
and second-order moment estimation of the gradient, and
updates the step size. The parameters are updated by

gt = �θ J (θt−1) (22)

mt = β1 · mt−1 + (1 − β1) · gt (23)

vt = β2 · vt−1 = (1 − β2) · g2
t (24)

m̂t = mt

(1 − β t
1)
, v̂t = vt

(1 − β t
2)

(25)

θ = θt−1 − α · m̂t�
v̂t + σ

(26)

where gt is the gradient of the current time step, θt−1 is the
parameter to be optimized obtained at the previous time step,
mt and vt are the exponential moving average of the gradient
and the gradient square, respectively, m0 and v0 are initialized
to be 0, β1 and β2 are exponential decay rates, mt and vt are
corrected to get m̂t and v̂t , θt is the parameter updated at the
current time step, α is the learning rate, σ is a positive value
that tends to be 0 to avoid the division to be 0.

IV. EXPERIMENTS AND DISCUSSIONS

A. Database

We test the spike detection performance on the EEGs of
BECT patients recorded from the Children’s Hospital, Zhe-
jiang University School of Medicine (CHZU). These include
the EEGs of 15 children (8 males and 7 females) suffered from
the BECT syndrome, with the age ranging from 3 to 10 years
old. The EEG acquisition equipment is Nicolet v32 with
sampling frequency of 1000 Hz, and the electrodes are placed
according to the international 10-20 system. The EEG data
used in this experiment comes from the routine long-term EEG
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TABLE I
SPECIFICATIONS OF THE CHZU BECT SPIKE DATABASE

monitoring of inpatients in the hospital, and the duration is
generally more than 10 hours. For each patient, a segment of
EEGs around 10 minutes, that contain the most spikes, are
used for testing. For instance, for patient 1, 163 spikes have
been acquired in the 12 minutes 18 seconds EEG segment.
All spikes are annotated by the help of neuroscientist from
CHZU. Particularly, the detailed specifications of the CHZU
BECT spike database are given in Table I.

To build the database, the patients EEG data is divided into
three non-overlapping segments according to the amount of
spikes in the time period, which are used to generate model
training, verification and testing samples. The spike number
ratio in each segment is 6:2:2. An equal amount of non-
spike samples will be randomly generated in their respective
data segments for training and verification. The time interval
between the center point of the generated sample and the
nearest peak point must be greater than 0.5 seconds. The non-
spike samples will be generated with the same ratio to the
spikes in the training dataset. While for testing, the samples
are directly derived from the real EEGs. The specific reasons
have been explained in Section III.A.

B. Performance Evaluation

The sensitivity (Sens), precision (Prec) and F1 score are
adopted for the performance evaluation, defined as

Sens = TP

TP + FN
, Prec = TP

TP + FP
, F1 = 2Prec · Sens

Prec + Sens
where TP, FP, FN represent the true positive, false positive,
and false negative, respectively.

It is noteworthy that unlike conventional spike detection
algorithms that use manual labeling or candidate selection to
obtain the testing sample for performance evaluation, the pro-
posed method uses an overlapping continuous segmentation
process to test performance. The advantage of the process is

that it can more accurately reflect the detection performance
of the algorithm, and at the meantime, can eliminate the
dependence of the algorithm on the selection of candidate
samples, which may involve a large number of complex
threshold parameter adjustments. But it also suffers from the
disadvantage that it is impossible to label all the generated
samples one by one, and the automatic segmentation may
result in incomplete waveforms. Therefore, under the premise
of comprehensively considering the sample labeling, data
segmentation, and actual detection application, we designed
the following process to calculate the TP, TN, FP, and FN of
the model through the pre-labeled spikes.

The first step is to divide samples containing spikes into
two categories, correct and incorrect. Due to the way in sample
segmentation, a spike frame may be contained in two adjacent
samples. When the classification of at least one sample is
a spike, their results are regarded as correct, otherwise the
results are regarded as incorrect. In the second step, samples
that do not contain spike are also divided into the above two
categories. When these samples are classified as non-spike,
the results are regarded as correct, otherwise the results are
regarded as incorrect. The third step is to get the values of
TP, TN, FP, and FN, where TP is the number of samples
containing spikes in the database with correct results, and TN
is the number of samples remaining in the database. FP is the
number of samples with spikes in the database with incorrect
results, and FN is the number of samples remaining in the
database. For all experiments, the model is trained and tested
on the patient-based, namely, for each patient, a model is learnt
using his/her own data.

C. Experiment Comparisons on Feature Input

The performance of the proposed algorithm on the fea-
ture inputs is firstly studied in this section. To show the
contribution of the EEG signal and the two time domain
features SNE and MC on spike detection, we test all the
combinations of the three features, including the single fea-
ture by EEG, SNE, MC, the combinations of two features
by EEG+SNE, EEG+MC, SNE+MC, as well as the com-
bination of EEG+SNE+MC. The stacked BiLSTM neural
network is adopted as the model for spike/non-spike classi-
fication. Table II lists the F1 score, sensitivity, and precision
obtained by all these features of the 15 patients. The aver-
age spike detection results are also calculated for compari-
son. As observed, the top three performance rankings in all
feature combinations are: EEG+SNE+MC, SNE+MC, and
SNE. Among them, the model trained using EEG+SNE+MC
achieves the best detection performance in general, where it
obtains the highest F1 score and precision on 12 and 10 out
of 15 patients, respectively, and the highest average F1 score
and precision.

On one hand, the performance of time domain sequence
features (SNE, MC) is better than using original EEG for
spike detection, which proves the effectiveness and necessity
of the two features extracted in the proposed algorithm. The
model with SNE in the feature input performs better than
the model with the same number of other features. On the
other hand, generally speaking, more feature input will result
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TABLE II
F1 SCORE, SENSITIVITY, PRECISION (%) WITH DIFFERENT FEATURES

in a model with better performance, which has been proved in
combination performance rankings. However, the performance
of the combination of EEG and SNE has declined compared
with the model input by SNE alone. This is due to the different
distributions of these two features. The mean value of EEG
is zero and has values on the positive and negative semi-axes,
but most of the SNE values are on the positive semi-axes. Due
to the inability to unify the feature distribution, the neural
network classifier cannot effectively use the information of
the feature, thus, resulting in a degraded performance. At the
same time, the weak representation ability of EEG is also a
reason for the above problems. When replacing EEG with MC,
the performance of the model has been significantly improved.

D. Experiment Comparisons on LSTM Architecture

The hyperparameters of the LSTM network usually affect
the detection performance, include the number of hidden layer

Fig. 8. The average F1 scores of spike detection with different memory
units in the LSTM/BiLSTM models.

units, activation function, learning rate, etc, where among
them, the hidden layer units usually play the dominant role
in the performance. With this regard, in this section, we test
the spike detection performance of the aforementioned four
LSTM neural network classification models with different
size of memory units μ = [50 : 50 : 300]. Fig. 8 shows
the trend of F1 score of each model with respect to the
memory unit size. All models can basically maintain stable
performance when the memory unit size reaches 200, and
continuously increasing the memory unit size will not signif-
icantly improve the performance. Compared with single-layer
models, the stacked models can achieve better recognition
performance, increasing F1 scores by 1.15% and 0.74% on
the LSTM/BiLSTM network, respectively. But the advantage
comes with the prices of more memory cell sizes and addi-
tional complexity. For BiLSTM and LSTM, the performance
of the two networks using BiLSTM as the basis has a certain
performance improvement compared with the network using
LSTM under different memory units. The optimal performance
on the single-layer model and the stacked model increased
by 1.1% and 0.69%, respectively. The overall optimal spike
detection model is the stacked BiLSTM with more than
200 memory cells.

E. Experiment Comparisons on SMOTE Augmentation

In this section, the spike data augmentation method by
SMOTE with different scale factors on the detection per-
formance is studied. Particularly, the data enhancement ratio
increases from 0 to 30 with an interval of 5. Fig. 9 shows the
curves of F1 score, sensitivity, and precision. As observed,
without spike data augmentation, the sensitivity of the model
is high but the precision is low, which reflects the problem of
high false alarm rate of the model. After adding the syntectic
spikes on model training and validation, the F1 score and
accuracy of the model have been significantly improved, but
the sensitivity will first increase when the data scaling factor is
small, and then decrease and maintain a relatively stable state
when the scaling factor is higher than 15. Therefore, using data
augmentation can significantly improve the spike detection
performance and balance the false positive rate and the false
negative rate. The SMOTE algorithm increases the amount
of data to prevent the neural network model from overfitting
and improves the generalization performance. At the same
time, it adds random noise to the generated data in the time
domain, which improves anti-interference ability of the model
to a certain extent and makes the model more robust.
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Fig. 9. The spike detection performance with respect to different spike
data enhancement factors in SMOTE.

F. Experiment Comparisons to SOTA Methods

The last experiment shows the comparisons to 5 SOTA
spike detection algorithms, including 1) spectral power feature
method [32], 2) threshold methods based on the SNE [16] and
MC features [13], respectively and 3) neural network classifi-
cation method using FNN [37] and CNN [36], respectively.

The spectral power feature method [32] uses short-time
Fourier transform (STFT) with 0.25 s time domain resolution
and 4 Hz frequency domain resolution to extract the spectral
power values of 8 frequency bands of the intracranial EEG,
namely θ (4-8 Hz), α (8-13 Hz), β (13-30 Hz), γ1 (30-56 Hz),
γ2 (64-116 Hz), rip1 (124 -176 Hz), rip2 (184-196 Hz), rip3
(204-236 Hz). STFT is used to obtain the sub-band spectral
power of three time steps in the interval to be detected and
its adjacent intervals, and merge them into a 3 × 8 feature
matrix. The frequency domain features of 0.75 s EEG segment
are obtained. Eventually, EEG segments will be divided into
4 categories (spike, RonS, ripple, baseline). Since the detection
objective of the paper is on the relatively low-frequency spikes
from the scalp EEGs, comparing with intracranial EEGs, there
is a lot of interferences in the high-frequency part. Therefore,
only the spectral powers of the first 5 frequency bands covering
4∼116 Hz are extracted as features for performance testing
in this section. The neural network classifier structure and
hyperparameter settings are consistent with the BiLSTM in
the proposed algorithm of the paper.

The threshold method is a traditional and widely used spike
detection algorithm in the past. Without loss of generality,
we used the SNE and MC as the features, and the threshold
Tr used for detection is defined by the same way in [16] as

Tr = c
1

N

N�
n=1

F(n) (27)

where N is the number of samples, c is a scaling factor
selected by trials, and F(n) is the feature sequence.

The neural network classification method uses two common
structures, namely the fully connected neural network (FNN)
and CNN. As FNN is generally not suitable for too high-
dimensional data, we resized the three-dimensional features
(3×200) to one-dimensional (1×600) as the input of FNN. The
CNN structure is based on [36] but with certain improvements
to better fit for the spike detection. First, the input features
are passed through 3 convolution kernels with 1 × 40, 1 × 60,
1 × 80 kernel sizes, respectively, where the step size is [1, 1].
For further feature learning, the extracted features are then
combined and input to 2 consecutive convolution kernels with

Fig. 10. Structures of the FNN and CNN based spike detection
algorithms.

TABLE III
F1 SCORE, SENSITIVITY, PRECISION (%) COMPARISONS TO THE

SOTA SPIKE DETECTION ALGORITHMS

the size of 3×3 and the steps of [3, 1] and [1, 1], respectively.
Finally, a FNN is applied for spike/non-spike classification.
The detailed network structures of FNN and CNN used in the
paper are shown in Fig. 10.

Table III shows the result comparisons to aforementioned
SOTA spike detection algorithms. To have a fair comparison,
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Fig. 11. Screenshot on the real-time spike detection performance on
the CHZU database, where the green color represents false negatives,
the blue color represents false positives, and the red color indicates the
true positive.

the testing data division and the performance index calcula-
tions are the same to the previous experiments. As observed,
the proposed algorithm can offer the highest F1 score on 11 out
of 15 patients, the highest precision on 9 out of 15 patients.
Meanwhile, for all patients, the proposed algorithm achieves
the highest performance. Among all the 5 compared SOTA
spike detection methods, the spectral power feature method has
achieved good results on the database. Its average sensitivity
is almost consistent with the proposed algorithm, but the
average F1 score and precision are lower than the proposed
algorithm. It is noted that the single sample duration of
spectral power feature method (0.75 s) is longer than that of
the proposed algorithm (0.2 s), meaning that the proposed
algorithm can locate spikes more accurately with a better
resolution. The frequency domain features used in this method
are obtained through STFT. To improve the positioning ability
of the algorithm, the time domain resolution of the STFT
needs to be increased, which will result in a decrease in
frequency resolution. Therefore, the spectral power of each
frequency band cannot be accurately extracted, which may
lead to the loss of accuracy. Generally speaking, unless using
high sampling frequency EEG, it is impossible to further
improve the spike location ability of the proposed algorithm.
The two threshold methods have achieved promising results
on some patient data with obvious spike. However, there are
low-amplitude spikes in real data. The waveform is similar to
a typical spike but the peak amplitude is slightly higher than
normal EEGs. The existence of a large number of such spikes
makes the selection of the threshold very difficult, resulting
in performance degradation. While for the two mainstream
neural network classifiers, neither FNN nor CNN can achieve
satisfactory results. Unlike LSTM, these two neural networks
are unable to make good use of the time series information
contained in the EEG signals. In the other words, LSTM is
more effective in time series data learning. From the results,
it is also observed that all methods suffered performance
fluctuations among different patients. The reason behind is
the existence of the aforementioned low-amplitude spikes.
The features used in the proposed algorithm as well as in
the compared SOTA methods are insufficient in characterizing
such spikes.

Particularly, Fig. 11 shows a screenshot on the real-time
detection performance obtained from the CHZU database,
where comparisons between the proposed algorithm and the
5 SOTA methods are presented. The testing EEG segment

includes 13 true spike discharges, and different colors are used
to annotate the detection results, where the green, blue and red
colors represent the false negatives, the false positives, and the
true positive, respectively. As depicted, the proposed method
successfully detects the all the EEG frames containing the
16 true spike discharges without false alarms. The compared
frequency domain feature method, the threshold method using
the MC EEG feature, and the CNN classification method
have high sensitivity, but also suffer some false alarms in the
EEG frames adjacent to the spike discharge frames. For the
threshold method using the SNE EEG feature and the FNN
classification method, both of them have problems of high
false positive and false negative rates. It is also observed that
the spike detection resolution of the frequency domain feature
method is lower than other methods, making it not suitable
for accurate spike localization.

V. CONCLUSION

This paper proposed a novel BECT spike detection algo-
rithm composed of time domain EEG sequence features
extraction and neural network classifier based on LSTM
architecture. Aiming at the problem of data imbalance in
spike detection, the SMOTE algorithm has been applied in
the proposed algorithm for the spike sample augmentation.
Based on the characteristics of the scalp EEG and spikes,
two time-domain EEG sequence features that are effective
in characterizing spikes have extracted. These features are
fused for spike representation and a stacked BiLSTM has been
developed for spike/non-spike classification. The effectiveness
of the proposed algorithm has been verified on the EEG
database of 15 BECT patients recorded from the CHZU.
The comparison experiments shown that the algorithm has
higher detection sensitivity, precision and F1 score, and has
stronger robustness than many SOTA spike detection methods.
In the future, more attentions will be paid to enhancing the
algorithm’s anti-interference ability and recognition ability on
low-amplitude spikes. Meanwhile, more effective algorithms
on addressing the spike data imbalance and exploring the
impact of data augmentation on the overall recognition ability
will be studied.
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