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Decoding Hand Movement Types and Kinematic
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Abstract— Brain-computer interfaces (BCIs) have
achieved successful control of assistive devices, e.g.
neuroprosthesis or robotic arm. Previous research based
on hand movements Electroencephalogram (EEG) has
shown limited success in precise and natural control.
In this study, we explored the possibilities of decoding
movement types and kinematic information for three reach-
and-execute actions using movement-related cortical
potentials (MRCPs). EEG signals were acquired from
12 healthy subjects during the execution of pinch, palmar
and precision disk rotation actions that involved two
levels of speeds and forces. In the case of discrimination
between hand movement types under each of four different
kinematics conditions, we obtained the average peak
accuracies of 83.44% and 73.83% for the binary and 3-class
classification, respectively. In the case of discrimination
between different movement kinematics for each of
three actions, the average peak accuracies of 82.9%
and 58.2% could be achieved for the two and 4-class
scenario. In both cases, peak decoding performance
was significantly higher than the subject-specific chance
level. We found that hand movement types all could
be classified when these actions were executed at four
different kinematic parameters. Meanwhile, for each of
three hand movements, we decoded movement parameters
successfully. Furthermore, the feasibility of decoding
hand movements during hand retraction process was also
demonstrated. These findings are of great importance for
controlling neuroprosthesis or other rehabilitation devices
in a fine and natural way, which would drastically increase
the acceptance of motor impaired users.

Index Terms— Brain-computer interface, natural hand
movement decoding, movement-related cortical potential,
kinematic information, EEG.
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I. INTRODUCTION

NEUROLOGICAL impairments caused by stroke,
spinal cord injury (SCI) and amyotrophic lateral

sclerosis (ALS) may lead to the locked-in state [1]. Affected
patients will lose their ability to control muscles gradually,
although their sensory and cognitive processing often remains
largely intact. This situation has a significant effect on the
quality of their daily life and their families [2]. Interventions
such as surgery and physical therapy are often sought to
cushion the resulting effects. When such interventions reach
their limits, non-invasive brain-computer interfaces (BCIs)
are considered as a promising technical solution in the
area of neurological rehabilitation. Utilizing state of art
of machine learning algorithms [3]–[6] BCIs can decode
brain signals and generate control signals for controlling
neuroprosthesis [7], hand rehabilitation robot [8], or a
wheelchair [9].

Over the past decades, BCI control strategies have typically
relied on repetitive imagination of motor tasks, e.g. hand, foot,
and tongue movement. Controlling assistive devices in this
way will lead to the inconsistency between the end effector
actions and the mental task intentions. It is unnatural for
users to imagine the right hand or both feet movement to
control the rehabilitation device [10]. Moreover, the fact that
the vast majority of existing BCIs usually provide few control
signals due to the limited number of imagination tasks, reduces
the capability of using these systems to control complicated
external devices.

Recently, a new control strategy has attracted researchers’
great attention, which focused on the possibility of decoding
the hand movements (e.g. palmar, pincer, and lateral grasp)
[11]. When we perform different types of hand and finger
movements, movement-related cortical potentials (MRCPs)
will be elicited in the cerebral cortex during the movement
preparation and execution phase [12]–[14]. Some studies
reported that similar MRCPs could be observed even by
movement imagination/attempt [15], [16]. Typically, MRCPs
manifest as a negative shift in amplitude during the process
of movement preparation and reach the peak at the onset of
movement, followed by a positive rebound in amplitude. It has
been shown that features extracted from MRCPs contain suffi-
cient information to decode hand actions [12], [21], upper limb
movement [17]–[20], and even movement-related parameters,
such as speed and force [22]–[24].

Researchers have been dedicated to discriminating different
reach-and-execute actions. Schwarz et al. [25] showed that
palmar, lateral, and pincer grasps could be classified using
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MRCPs in healthy subjects. They also successfully classi-
fied unimanual and bimanual reach-and-grasp actions [54].
Ofner et al. [26] classified six types of movements of the same
upper limb from the low-frequency temporal EEG information.
These studies only investigated self-paced movement and did
not paid any specific attention to the kinematic information
during the execution process of different hand movements.
The effect of different motion parameters such as force or
speed on the classification performance of natural hand actions
is still unclear. Some researchers have paid attention to the
kinematics of local joint movements. Jochumsen et al. studied
the isometric dorsiflexion of right ankle performed at different
forces and speeds, and compared different detection and
classification methods [23], [27]. Yin et al. [28] improved the
decoding performance of hand clenching, considering force
and speed. However, there are few attempts in decoding
the kinematic information of natural arm/hand movements.
By distinguishing movement-related parameters of natural
hand movements, the possibility of providing a more fine and
natural control for the upper-limb neuroprosthesis and other
complicated rehabilitation devices could be opened, which is
of great significance to the development of natural human-
machine interaction system.

We believe that it is promising to investigate natural reach-
and-execute actions at two levels of forces and speeds. In this
paper, three reach-and-execute movements commonly used in
daily life were chosen: (i) pinch grasp, (ii) palmar grasp,
(iii) precision disk rotation. The aim of our study was to
explore the possibilities of decoding the hand movement types
at different speeds or forces and the kinematic information for
each of these three actions. Moreover, the hand movement type
decoding during execute and release process for three actions
was analyzed.

II. METHODS

A. Subjects

Twelve right-handed subjects (S1-S12, aged 22-25, six
males) participated in the experiment. All subjects were
recruited from Southeast University. They were healthy with-
out any known musculoskeletal disorders or neurophysiologi-
cal anomalies. The experimental protocols were approved by
the Ethical Committee of Southeast University (2020-SR-362)
and each subject gave their informed consent for the study.

B. Experimental Paradigm

Recording was carried out in a noise-shielded room and
subjects were seated in the armchair. An experimental table
with a 24-inch screen was placed right in front of them. Three
gripping devices designed according to ergonomics were fixed
in the fan shape on the experimental table to perform three
natural reach-and-execute actions (see Fig. 1 a). Each device
included a grip handle and a miniature force sensor to record
grasp forces or torque. Note that the two grasp handles and the
disk grip handle are all fixed. A pressure button was positioned
in the center of this fan-shaped area to ensure that the distances
to all three devices were equidistant for each subject. Subjects
were instructed to put their right hands on the button. The force

produced by the hand movement was used as the input to the
system and displayed on the screen where subjects followed
the specific force trace we cued.

The maximum force contraction (MFC) for each hand action
was determined before the experiment. The average of three
maximal force performed was calculated as the reference
MFC. Between each contraction there was a rest for 1 min.
Subjects were required to perform three natural reach-and-
execute actions: pinch grasp, palmar grasp, and precision disk
rotation (see Fig. 1 c). For the precision disk rotation, we pay
attention to the finger twisting movement of the hand. The
specific implementation process is to grasp the fixed disk
grip handle and then rotate it with fingers [55]. Each action
included four tasks: (i) 3 s to reach 60% MFC, (ii) 0.5 s to
reach 60% MFC, (iii) 3 s to reach 20% MFC and (iv) 0.5 s to
reach 20% MFC. To assist subjects in performing reach-and-
execute actions with the correct force level and the velocity,
a cue-based experimental paradigm was adopted, as illustrated
in Fig. 2. At second 0, the real-time trace of force appeared
on the screen, together with the auditory beep. Subjects were
asked to focus on the vertical lines on the screen. After a
period of 2.35 s, as the force trace reached the mark position
(red vertical line), subjects were instructed to reach toward
the specific grip handle. At second 3, subjects performed the
natural hand movement at specific level of force and speed,
trying to make their force trace match the template trace (see
Fig. 2 top). Thereafter, subjects were instructed to release and
return their hands to the pressure button. Each trial included a
break for 4 s. Subjects were required to keep their face muscle
relaxed and avoid blinking or other body movements during
the experiment.

We designed 480 trials for three natural reach-and-execute
movements with two speeds and two forces. For each con-
dition, 40 repetitions of cued experiments were recorded.
Furthermore, we introduced 10 min for break between each
session to avoid muscle fatigue. In order to perform the hand
movements with various speeds and forces correctly, subjects
need to spend 30 min familiarizing our experimental tasks
before the formal experiment. The duration of the experiment
is ∼4 hours.

C. Signal Acquisition

At the beginning of the experiment, a trigger was generated
from Qt software to synchronize EEG record and force data
acquisition. To synchronize all trials, event types of different
movement-related parameters were sent to EEG amplifier at
the beginning of each trial.

Continuous EEG signals were recorded using an active-
electrode system (ActiCAP Systems, Brain Products GmbH,
Germany) with 64 channels. We selected 40 electrodes posi-
tioned over the frontal and parietal lobes (see Fig. 1 b). All
channels were referenced to the channel FCz and the electrode
FPz was used as the ground when recording. During acqui-
sition, the electrode impedance was kept below 10 K� and
the sampling frequency was 1000 Hz. To attenuate the high
frequency components, we adopted a band-pass Butterworth
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Fig. 1. Experimental setup for three reach-and-execute tasks. a) The experimental table with a screen in front. b) Electrodes set up (black marks).
c) Three kinds of hand movements: pinch, palmar and precision disk rotation. For precision disk rotation, subjects preshaped in the type of precision
disk grasp [55] and then rotated it with their fingers clockwise instead of their wrists.

Fig. 2. Experimental paradigm based on the audio and visual cues.
At the start of trail, participants put their hands on the pressure button
(see Fig. 1 a). Thereafter, they reached out their hands and performed
corresponding task, according to the visual cue (Top). Next, participants
moved their hand back to the starting position.

filter between 0.01 Hz to 100 Hz. In addition, a notch filter at
50 Hz was utilized for the reduction of power line interference.

For natural reach-and-execute movements, forces of pinch
and palmar grasps and the torque of precision disk rotation
could be recorded using the miniature force transducers on
the grip handles. The signals of force data and pressure button
(falling edge pulse) were sent to the Qt software using a data
acquisition card with six synchronous channels. The signal of
force and the button was sampled with 1000 Hz.

D. Movement Time Detection

Fig. 3 presents the representative force trace and the button
signal (black line) when the subject matched the visual cue
template (red line) during the pinch grasp. In our experiment,
the red vertical line on the screen indicated the moment
when subjects started to perform the reach-and-execute
movements. Due to the individual differences in the reaction
time and behavior habits, it could cause significant deviations

Fig. 3. Detection methods for movement onset and other time points.
The red line represents the template of visual cues. Black lines denote
the average force (top) and button data (bottom) curve of pinch action for
a representative subject.

in the detection of movement onset using this visual cue.
Therefore, the falling edge of the pressure button (button
release) was detected to determine the movement onset of
three reach-and-execute actions for each subject. Movement
onset was defined as the average of button release time of
each subject. In the similar way, we calculated the finish
time of hand retraction (T3) based on the rising edge of the
pressure button (button press).

In addition, by analyzing the force trace offline, we also
investigated the timings when subjects started their grasps or
rotation (T1) and finished their holds (T2). The start time of
hand movements (T1) was defined as the initial time when
all the force value in the time window of 100 ms exceeded
the baseline. The window was shift in step of one sample over
each trail and the baseline was calculated as the mean value of
button signal during the first interval of 1s of the preparation
phase. We detected the time when subjects released the grip
handle (T2) in the similar way.

E. Signal Pre-Processing

MRCP has been considered as a low-frequency EEG signal
with the low signal-to-noise (SNR) ratio. Before extracting
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Fig. 4. Behavioral analysis for reach-and-grasp duration. Red dots
indicate the movement onset over all subjects. Blue dots represent the
time when to perform grasp (T1). Horizon lines represent the average
over all subjects for movement onset and T1.

the features for classification, it is necessary to pre-process
the raw EEG data. After a low-pass filtering of zero-phase
4th order Butterworth with a cut-off frequency of 45 Hz, all
electrodes were re-referenced to the average of the channels
TP9 and TP10, which located at mastoids. The discriminative
information for movement decoding could be found in the time
domain below 6Hz [13]. It is inevitable that frequency range
of MRCPs overlaps with electrooculogram (EOG), which
leads to the major interference for signal process. Therefore,
we adopted independent component analysis (ICA) method to
remove the EOG artifacts, utilizing channels FP1 or FP2 as the
reference. EEG signals of remaining 35 channels were selected
and filtered from 0.03 Hz to 3 Hz using a 4th order zero-
phase Butterworth filter to retain its low frequency component.
After that, we resampled the signal to 100Hz for the sake of
computing performance.

F. Single Trial Classification

MRCPs will be elicited during reach-and-execute movement
for three actions. For both the binary and the multiclass classi-
fication, we were mainly interested in the two aspects. On the
one hand, we tried to decode different actions under each of
four kinematic parameters. On the other hand, we wanted to
discriminate different kinematic parameters (speed and force)
for each of the three actions.

1) Binary Classification: When epoching ours trials with
respect to the movement onset, we defined different time
regions of interest (tROI) to analyze. Regarding the decoding
scheme of action types, we selected the tROI based on period
of action execution. For movement type classification at fast
speed, the tROI was [−1, 4] s while that of slow speed was
[−1, 6] s. With regard to the decoding scheme of motion
parameter, the execution time for fast movement (0.5 s) and
slow movement (3 s) was different. After 1.5s with respect
to movement onset, the hand action was to finish for the
fast movement but not for the slow movement. Therefore,
the tROI that we chose started 1 s before and ended 1.5 s
after movement onset.

For the two aspects, we performed the same feature extrac-
tion method based on the pre-processed MRCPs. A 1 s time

window sliding every 100 ms was used. We sampled the
amplitude values from each of 35 EEG channels in steps
of 10ms within this time window. In this way, 35×100 features
were obtained and classification model was established every
100ms. For all participants, we divided trials in training sets
and testing sets using 5-fold cross-validation procedure. After
that, we trained the shrinkage linear discriminant analysis clas-
sifier (sLDA) [29] and evaluated its classification performance.
Cross validations were repeated 10 times to calculate the grand
average accuracy.

2) Multiclass Classification: To estimate the performance of
the multiclass classification model, we followed the binary
classification procedure. However, following changes were
introduced. The multi-class sLDA using “one-versus-one”
scheme was adopted instead [30]. In order to improve the
computing performance, the steps of taking amplitude val-
ues were extended to 100 ms. Furthermore, for kinematic
information decoding, the normalized confusion matrices at
the specific time point was reported for further analysis.
Meanwhile, the multiclass classification performance of twelve
subjects were provided in detail.

III. RESULTS

A. Behavior Analysis

In Fig. 4, we show the movement onsets of three actions
for each subject, together with timing when subjects started to
perform the grasps or rotation (T1). The ultimate movement
onset was defined as the average time over all subjects.
For three natural hand movements, we analyzed their times
together because different actions were cued in the same way
and the only difference was the type of action. Moreover,
we used the same method to define the time T1. The one-way
ANOVA was calculated to check the significant difference of
movement onset (p > 0.88) and time point T1 (p > 0.09) for
subjects. Results indicated that the time to reach and the time
to execute hand movements had no significant difference for
them.

In order to study the entire process of movement, we also
report the time when subjects released the grip handle (T2)
and when they returned their hands on the button (T3) in
Table I. According to our experimental paradigm, movement
onset and T1 is consistent for all task conditions, while T2 and
T3 will vary for the fast task (0.5 s execution) and the slow task
(3 s execution) due to the different speed.

B. Movement-Related Cortical Potentials (MRCPs)

The grand average MRCPs at C1, C2 and Cz channel [11]
are shown in Fig. 5. Baseline correction was performed using
the mean value in the initial 0.5 s of the preparation phase.
Channel C1 and Cz showed relatively higher peak values of
MRCPs.

For all action conditions, we could observe an apparent
negative shift starting around 1.5 s to 1s before the movement
onset. At about 500 ms before the movement onset, a strong
and short-term positive rebound oscillating within 3uV could
be observed. Furthermore, for each action, the negative shift
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Fig. 5. Grand average of all trails of movement-related cortical potentials (MRCPs) relative to the movement onset for all conditions. ‘Fast’ means
0.5s to reach the desired level of force and ‘slow’ means 3 s to reach the same. MRCPs of four different reach-and-execute tasks for three actions
were show over channels C1, Cz and C2. Time = 0 s indicates the movement onset.

TABLE I
PHASE TO RELEASE THE GRIP (T2) AND TO RETURN TO THE BUTTON

(T3) WITH REGARD TO ACTIONS AT DIFFERENT SPEEDS

reaches its peak around movement onset. An intermediate pos-
itive rebound was observed around 1.5 s after movement onset
for those MRCPs produced during fast reach-and-execution
movement, which is related to the hand retraction movement.
Regarding the negative shift of MRCPs, more pronounced
differences can be seen in the movement at different speed
than that at different force. The negative rates of the averaged
MRCPs were slower for the slow than for the fast hand move-
ments around movement onset (p < 0.05). Moreover, different
peak amplitudes could be observed between the movements
of two speed levels (p < 0.05). A similar distinction in peak
values could be found between pinch movement and the other
two actions

Fig. 6 shows the topographic maps of the pinch grasp of the
representative subject under the different kinematic conditions,
and the topographic maps during the different force or speed

movement are depicted in the time window of [−1s, 1s] with
respect to the movement onset. The brain activation was found
to change smoothly before the movement onset. We could
also observe the differences in the brain activation regions
and the degree of the activation under the different kinematic
conditions. The difference could be found mainly in the left
brain region. Regarding the pinch grasp actions at different
speeds, the faster movement could activate more areas of the
brain, and to a greater degree, especially around the movement
onset. For the pinch grasp at the higher level of MFC, the
topographical scalp distribution also showed relatively greater
activation.

C. Decoding Hand Movement Types Under Each of Four
Kinematic Parameter Conditions

1) Binary Classification Performance: Estimates of binary
classification performance across the defined tROI, when
combining three action types at different speeds and forces,
are shown in Fig. 7. We presented the average results of
single trial classification for all subjects with some important
time points: movement onset, T1 and T3. For three natural
reach-and-execute actions, we reported the whole process of
movement execution including hand retraction. Due to our
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TABLE II
GRAND-AVERAGE PEAK PERFORMANCE OF BINARY-CLASSIFICATION FOR ACTION PAIRS AND THEIR CORRESPONDING TIME POINT RELATIVE TO

THE MOVEMENT ONSET DURING REACH-AND-EXECUTE PHASE

Fig. 6. The time-resolved topographic maps of EEG amplitude of the pinch grasp action during the four different kinematic conditions over the
representative subject.

limited number of trials, the chance level is 65.5% (alpha =
0.05, permutation test [31], [32]). Our results show that under
the given motion parameters, there is no significant difference
between the classification results of the action pairs (p > 0.05).
For all conditions, peak performance occurred shortly after
time point T1. The time when the classification result exceeds
the baseline threshold were around t = 0 s. For the slow 20%
MFC condition, this time slightly advances by 300ms, while
for the fast 20% condition, this time delays 150ms with respect
to movement onset.

Table II lists the peak accuracy results of all action com-
binations as well as its occurrence time with respect to
movement onset. Grand average results across motion parame-
ters were included. Action combinations of slow 60% MFC
condition achieved grand average peak accuracy of 82.03%.
For fast 60% MFC condition and slow 20% MFC condition,
the peak results averaged at 80.74% and 81.06% respectively.
Considering the worst task condition: fast 20% MFC, peak
accuracies of all action pairs were no more that 80%, but
nevertheless exceeded the significance threshold of 65.5%
by more than 12%. Another peak value of the classification
curve in the period of hand retraction was also worthy of our
attention. It can be observed that the time for this peak is
around 200 ms after the time T3 that corresponds to the end
time of hand retraction.

2) Multiclass Classification Performance: Fig. 8 depicts the
grand average performance of multiclass classification of
action types with the subject-specific chance level lying at

48.1% (alpha = 0.05, permutation test). We show the time
region of interest between −1 s and 1.5 s relative to the
movement onset. For all conditions of movement-related para-
meters, better-than-chance classification could be achieved
before the movement onset although the performance was
limited.

Table III shows the peak accuracy results and true positive
rate (TPR) of multiclass classification and the corresponding
standard deviation. For the condition of slow 20% MFC,
the classification result reaches 73.83% followed by condition
of slow 60% MFC (72.5%). In regard to the multi classification
for fast 20% MFC, the result of 68.26% is the lowest, but
still exceeds the subject-specific chance level by more than
20%. Grand average peak accuracies all occurred about 1s
after movement onset.

For each kind of the kinematic condition, we also shows the
TPR at the peak time. It can be intuitively observed that all
the results could exceed 40% except for the rotation movement
under the fast 20% condition. For the highest TPR results, our
results even achieved close to 60%.

D. Decoding Four Kinematic Parameters for Each of
Three Actions

1) Binary Classification: For kinematic information decod-
ing, the average of the binary classification performance are
shown in Fig. 9. The subject-specific chance level was 65.5%
(alpha = 0.05, permutation test). Four pairs of task conditions
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TABLE III
GRAND-AVERAGE PEAK PERFORMANCE AND TRUE POSITIVE RATE OF ACTION TYPE CLASSIFICATION WITH STANDARD DEVIATION

Fig. 7. Binary classification results of action pairs for different motion parameters relative to movement onset. Grand average of classification
accuracies with standard deviation are plotted. The black perpendicular solid line at second 0 marks the movement onset, and the dotted line marks
the time T1 and T3 respectively.

classified over the tROI of [−1, 1.5] s were (i) slow 60% MFC
vs slow 20% MFC, (ii) fast 60% MFC vs fast 20% MFC,
(iii) slow 60% MFC vs fast 60% MFC and (iv) slow 20%
MFC vs fast 20% MFC.

In most conditions, the classification results can exceed the
chance level before the movement onset. However, for preci-
sion disk rotation, the classification performance is relatively
poor and a delay in the time for exceeding the chance level
can be observed relative to movement onset, especially for
condition of fast 60% MFC versus fast 20% MFC (∼500 ms).
Even so, the peak accuracy of its decoding performance still
exceeds the baseline.

Table IV presents the peak classification accuracy of
movement-related parameter for each of three actions. More-
over, grand average results across motion parameter pairs and
the occurrence time of the peak results relative to movement
onset was shown. During the period of tROI, it can be
observed that all task pairs achieve its peak accuracy about 1s
after the movement onset. For each natural hand movement,
we achieved the peak accuracies higher than 70%.

Table V demonstrates the precision results of binary clas-
sification of the kinematic parameter pairs for each of three
actions. For slow 60% MFC versus fast 60% MFC, the highest
precision could reach 86.14% (pinch grasp) and the averaged

Fig. 8. Grand average multiclass classification results of action types
over all subjects under different motion parameters.

results was 82.26%. For fast 60% MFC versus fast 20% MFC,
the precision results averaged at 74%.

2) Multiclass Classification: For each of three differ-
ent natural reach-and-execute actions, we investigated the
multi-classification performance of kinematic parameters as
illustrated in Fig. 10 (top left). Peak accuracy culminates at
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Fig. 9. Grand average binary classification results of different kinematic parameter pairs over all subjects. The black perpendicular solid line
at second 0 marks the movement onset, and the dotted line marks the time T1. S60: Slow 60% MFC, S20: Slow 20% MFC, F60: Fast 60% MFC,
F20: Fast 20% MFC.

TABLE IV
GRAND AVERAGE PEAK PERFORMANCE OF BINARY-CLASSIFACATION FOR DIFFERENT PAIRS OF KINEMATIC PARAMETERS AND THEIR

CORRESPONDING TIME POINT RELATIVE TO THE MOVEMENT ONSET

TABLE V
THE PRESICINO OF BINARY-CLASSIFACATION FOR DIFFERENT PAIRS OF KINEMATIC PARAMETERS

AND THEIR CORRESPONDING TIME POINT RELATIVE TO THE MOVEMENT ONSET

58.2% (pinch grasp), 57.84% (palmar grasp) and 51.28%
(precision disk rotation), which all exceed the chance level
of 38.2 % (alpha = 0.05, permutation test). Higher classifica-
tion performance can be observed in pinch and palmar grasp
condition. For palmar action, a better-than-chance result could
be achieved up to 500ms before movement onset while the
time is ∼300ms for pinch and rotation actions. For all hand
movements, their peak time occur around 1s after movement
onset.

In Fig. 10 (bottom), we demonstrated the row normalized
confusion matrixes at the time point of peak accuracy for each
hand movement. The true positive rates for different movement
parameter conditions all exceeded the values of 40%. However,
the false positive rates could reach 30.23% for precision disk
rotation movement. Moreover, we presents subject-specific
results at the peak time in Fig. 10 (top right). It is worth
mentioning that the classification of movement parameters of
subject 6 could get the accuracy higher than 70% for each of
hand movements.

IV. DISCUSSION

In this paper, we investigated decoding performance relative
to movement types and kinematic information for three natural
reach-and-execute actions.

Our results successfully classified movement types under
each of four different kinematic conditions. Binary classifica-
tion result of 83.44% for action versus action condition was

achieved. For multiclass classification, the accuracy of 73.83%
could be attained.

Furthermore, we demonstrated that it was possible to
discriminate four movement-related parameters for each of
three reach-and-execute actions. In the binary decoding sce-
nario, classification performance for motion parameters versus
motion parameters condition peaked at 82.9%. With regard to
multiclass decoding scenario, the highest results of classifica-
tion accuracy could reach 58.2%.

A. Movement-Related Cortical Potentials

MRCPs is often shown to be elicited during self-initiated
movement paradigm [15]. Consistent with the MRCPs
described by Jochumsen in [23], the amplitudes manifested the
negative shift as early as 1.5s before the movement onset and
reach its maximum around the movement onset (t = 0s). In our
study, we found a weak positive potential rebound before
the movement onset (Fig. 5). Furthermore, negative peaks of
pinch grasp were higher than other two actions. In addition,
peak negative shifts of the C1 and Cz electrodes are more
pronounced than that of the C2 electrode for the contralateral
control of the brain. This phenomenon indicates that the nat-
ural movement of the right hand will activate the left-brain area
more, as illustrated in Fig. 7. Shibasaki et al. [33] revealed that
the MRCPs potential contains sufficient decoding information,
including speed and force parameters. Analysis of MRCPs
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Fig. 10. Multiclass classification results of motion parameters for each of three actions. Top left plots the grand-average decoding accuracies over
all subjects. Top right shows the subject-specific accuracies at the time of grand average peak performance. The green dashed lines represent the
significant threshold. Bottom shows confusion matrixes normalized by row at the peak time for three actions.

produced by the same action showed that the difference in
potentials generated by actions at different speed is more
pronounced than actions at different force. Gu et al. [34] found
the greater rebound rate of MRCPs for faster wrist movement
than for slow wrist movement. The similar results could be
found for each of three natural actions in our study.

For the time-resolved topographical maps of pinch grasp
under different kinematic conditions, the degree of brain
activation for each kind of movement increased before the
movement onset smoothly, and decreased gradually, as the
execution of the action came to the end. From the com-
parison of topographical map in the 1s period before and
after movement onset, we could conclude that the faster or
more forceful movement helps to activate more areas of the
brain and to a deeper degree. Additionally, in terms of brain
regions activated, most of them were located in the left-
brain region. These results were consistent with our above
analysis.

B. Movement Time Detection

In this study, pressure button and miniature force sen-
sors were used to record the time points during movement
execution. The calculation results showed that the standard
deviation of T0 and T1 were below 100ms, while the standard
deviation of T3 reached 230ms. Although we adopted the
similar calculation method, due to influence of factors such
as visual cues and personal habits, standard deviations of T0,
T1 and T3 were different.

C. Single Trial Classification

The theoretical chance level of the binary classification
should be 50%. In the three-class and four-class task, this
value is supposed to be 33% and 25%, respectively. The actual
threshold could exceed these levels for the limited number
of trials. In this research, we comprehensively considered the
experimental time and the fatigue of subjects. Each movement
related task contains 40 trials to ensure the performance of task
execution. The significant thresholds of different cases were
adjusted and the peak classification accuracies of two aspects
that we focused on were obtained.

1) Decoding Hand Movement Types Under Each of Four Kine-
matic Parameter Conditions: Single trial binary classification
for action versus action conditions attained high classification
results ranged from 76.40% to 83.44%. Schwarz et al. [35]
reached an averaged peak accuracy of 75% for binary clas-
sification (rest vs palmar vs lateral) using combined features.
Direct comparison may be difficult because the experimental
setup and actions of the research were not exactly the same.
It should be noted that four different movement parameter
conditions were considered to classify different hand actions
in this study. We found that action pairs could be successfully
classified under each of these kinematic conditions. Addition-
ally, it can be observed from Fig. 7 that the classification
performances for action pairs in the condition of fast 20%
MFC are all below the chance level at movement onset.
Meanwhile, for condition of slow 60% MFC, the average
peak result of the action pairs reached highest, which yielded
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4.2% higher than that of fast 20% MFC condition. Analyzing
the decoding performance at different speed or force, we can
conclude that slower and more forceful execution is beneficial
for movement discrimination between different actions.

For the multiclass classification of action types, we achieved
the highest classification accuracy of 73.83%. Ofner et al. [26]
decoded six different upper limb movements and indicated that
discrimination between movements including different joints
are significantly better than the grasps. Different with their
work, three kind of hand movements that did not include
wrist rotation were investigated in this study. As can be seen
in Table III, multiclass classification at slow 20% MFC and
slow 60% MFC shows a slightly better performance than that
at the other two conditions. The poorest performance was
observed for the condition of fast 20% MFC. It is reason-
able to believe that greater force or speed can induce more
discrimination information between actions. Moreover, from
our results, the parameter of speed seems to have a greater
impact on the classification performance of hand movement
types. Yuan et al. [36], [37] demonstrated the possibility of
decoding the speed of imagined hand movement and analyzed
the spectral-temporal dynamics systematically.

2) Decoding Four Kinematic Parameters for Each of Three
Actions: For three natural hand movements, we combined
four pairs of movement-related tasks. Peak accuracies were
obtained during the execution phase and all exceeded the
subject-specific chance level. Movements at different speeds
will cause inconsistent of execution time. For the fast move-
ment, subjects were instructed to complete the grasp or rota-
tion action around the time point of 1.5s after movement
onset, while the action execution process continued for the
slow movement. Therefore, the time of interest for kinematic
classification performance was defined in the time range
between −1s to 1.5s relative to the movement onset (see
Fig. 9). In our experiments, the accuracy of single-trial binary
classification could reach 82.9% for pinch grasp. In line with
the study of [11], the time of peak classification of our study
is bout 1000ms with respect to movement onset, which delays
by ∼300ms compared to the time when the force starts to be
applied. In addition, consistent with study of [23], the parame-
ter classification results (accuracies and precisions) of different
speeds show better performance than that of different forces
but does not depend on the action types. Regarding different
actions, our investigations reveal that pinch movement obtains
better discrimination performance than palmar and rotation
movement when trying to distinguish different speeds and
forces.

The results from multiclass classification of different move-
ment parameters show that peak accuracy of 58.2% could
be obtained around 1s after movement onset. It is notable
that precision disk rotation action achieves a peak accuracy
of 51.28%, which is lower than results of the other two actions.
It is believed that the differences in the way of hand movement
execution may be the potential reason. Jochumsen et al. [22]
studied the isometric palmar grasps and classified single-trial
movement execution associated with two levels of force and
speed, with the accuracy result of 41% ± 7% (4 class).
With respect to the limit classification accuracy of their study,

we scored a significantly higher result for each of three hand
actions.

Regarding the confusion matrix, it could be observed that
the performance of multiclass decoding is biased. For pinch
grasp, the highest values on the diagonal was fast 60%
MFC condition. For palmar and rotation actions, slow 60%
MFC and slow 20% MFC condition got the highest values.
Nevertheless, for each hand movement, the TPRs of four
movement-related parameters all exceeded the chance level
of 38.2% and differed by no more than 15%. In addition,
the experiment recruited twelve subjects and subject 8 showed
poor movement parameters classification results for each of
the three actions, but still exceeded the significant threshold.
With respect to the best classification performance of subject 6,
the decoding accuracy were higher than 70% for each of three
actions.

D. Hand Retraction

For the hand retraction process in Fig. 9, the discrimina-
tion performance is observed, which is an unexpected and
interesting discovery. Binary classification of various natural
actions yields high average result ranging from 75.61% to
79.94%. The peak time delays no more than 300ms related
to T3. For each subject, this time may be advanced or delayed
because of the high standard deviation of the time T3 (200ms).
Compared with the classification performance of action pairs
in the reaching and holding phase, the average classification
result is slightly lower in the process of hand retraction.
Nevertheless, exceeding chance level by more than 10% means
that it is feasible to decode the movement of hand retraction
after the task execution. The intermediate positive rebounds
of different actions during the hand retraction process in
MRCPs showed the underlying neural differences (see Fig. 5).
This phenomenon is expected because the inverse process of
the natural reach-and-execute movement should also contain
specific motion information for decoding. Unfortunately, there
are few researches in this area for us to compare.

E. Limitations and Future Work

In this study, we investigated three types of natural hand
movement: pinch, palmar and precision disk rotation. Our
results indicated that it is feasible to decoding action types
regardless of the kinematics. For each of three different
hand movements, the kinematic information could be decoded
utilizing MRCPs. Previous BCI studies have shown success
in robotic arm control for hand movement tasks and relied
on motor imagination (MI) [38]–[40]. However, classifying
natural actions based on MRCPs can be much more natural
and responsive to the user’s subjective feelings than MI
tasks. In addition, the EEG-based control of robotic arms
is mostly discrete or staged, and the kinematic parameters
of the end-effector (speed of tension and strength of grasp,
etc.) are fixed or pre-designed [40], [41]. For many daily-
life scenarios, the subjective and flexible control of the force
or speed for hand movements are required, such as grasping
objects of different weights and hardness, grasping objects
that are fragile or deformable, and rotating different objects.
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Schwarz et al. [42] have shown successful online decoding of
the lateral grasp, palmar grasp and wrist supination movement,
and implemented the manipulation of the robotic arm in a
simulated environment. Compared with their rough control,
our research could introduce more flexibility and precision for
control strategy. Although our analysis was performed offline,
further research on our basis can improve the performance
of brain-actuated robotic arm or prosthesis, especially for the
complex operation tasks.

To assist participants in the precise control on the speed
and force during action execution, we adopted a cued-based
experiment protocol, which was different with the self-initiated
movement in MRCPs [43]. Additionally, our study was not
carried out on the SCI patients and the command strategy was
generated by the execution of the movement, which makes
it a challenge to transfer our results to actual end users
decline due to the distinctions in the muscle control ability
between the patients and healthy subjects. Ofner et al. [44]
have shown a similar neural representation for decoding
between the executed movement and the attempted movement.
Blokland et al. [45], [46] indicated that the movement attempt
may be more suitable for command strategy than the move-
ment imagination. We also envision a possible future solution
where the residual function of end users could be utilized to the
maximum extent, such as performing the reaching movement
followed by the non-functional hand attempted movement.
A further study on the user group with motor impairment is
necessary to evaluate our results, although it is challenging.

It is notable that the extracted features in our study are
based on time domain only. The intricate and non-stationary
properties of EEG make it a challenge to improve the decoding
performance. Researchers have shown that discriminable infor-
mation for decoding precision and power hand movements
could be found over higher frequency bands, especially for
alpha band [47], [48]. For three self-paced movements of
rest, palmar and lateral grasp, study of [35] have shown that
the classification performance of sLDA classifier could be
improved by 10% by combining the spectral power values
of α and β bands, compared with the simple time-domain
features. Therefore, further studies are possible to consider the
combination of frequency and time-domain features. Although
the simplicity and efficiency of the classifier make it easier
for online implementation, the performance of classification
model in our study is still need to be further evaluated. Some
of the latest models in the motor imagination (MI) paradigm
could brought us inspiration. Deep learning algorithms can not
only be used for extract various features from time-frequency
images or EEG source imaging, but also for EEG analysis
to boost the decoding performance [49]–[51]. Lee et al. [52]
has showed that the proposed end-to-end convolutional neural
network (CNN) could perform well on the 3-class, 5-class
and 7-class classification tasks for nine different arm MI
movements. Recent study has shown the ability of CNN
structure to learn a wide variety of interpretable features over a
range of BCI tasks, including the MRCP-based paradigm [53].
In the future work, it is reasonable to combine hybrid features
with the deep learning techniques to boost the decoding
performance.

V. CONCLUSION

This study investigated three natural reach-and-execute
actions performed at two levels of speeds and forces. On the
one hand, we demonstrated that three movement types
can be successfully decoded under each of four different
movement-related parameter conditions. On the other hand,
it was found that four different kinematic parameters could be
discriminated better than chance level for each of three natural
actions. Based on the analysis of whole process of natural
movements, we also presented the feasibility of decoding
different movement types during the hand retraction process,
which is the inverse process of the natural reach-and-execute
movement.

Investigations on natural actions with kinematic information
are of great importance for the application in the BCI system.
We believe that despite the issues such as transferring to end
users and online experiment, which still needs to be further
addressed, our works can make potential contributions to the
fine and natural control of rehabilitation robot, especially for
neural prosthesis.
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