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The Resilience and Vulnerability of Human Brain
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Abstract— Resilience, the ability for a system to maintain
its basic functionality when suffering from lesions, is a
critical property for human brain, especially in the brain
aging process. This study adopted a novel metric of network
resilience, the Resilience Index (RI), to assess human brain
resilience with three different lifespan datasets. Based on
the structural brain networks constructed from diffusion
tensor imaging (DTI), we observed an inverted-U relation-
ship between RI and age, that is, RI increased during
development and early adulthood, reached a peak at about
35 years old, and then decreased during aging, which
suggested that brain resilience could be quantified by RI.
Furthermore, we studied brain network vulnerability by the
decreases in RI when virtual lesions occurred to nodes
(i.e., brain regions) or edges (i.e., structural brain con-
nectivity). We found that the strong edges were markedly
vulnerable, and the homotopic edges were the most promi-
nent representatives of vulnerable edges. In other words,
an arbitrary attack on homotopic edges would have a high
probability to degrade brain network resilience. These find-
ings suggest the change of human brain resilience across
the lifespan and provide a new perspective for exploring
human brain vulnerability.

Index Terms— Brain network resilience, diffusion tensor
imaging, homotopic edges, lifespan, vulnerability.

I. INTRODUCTION

THE ability that brain could withstand lesions and main-
tain its basic functionality is called brain resilience.

It seems that the effects of lesions in different locations
have no unequivocal pattern: some lesions bring negligi-
ble effects [1], [2], while some relatively small lesions
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may have broad, even irreversible effects [3]–[8]. Therefore,
the resilience and vulnerability of human brain networks is
worthy of research and has motivated numerous empirical and
computational studies [9], [10].

Complex network analysis considers brain as a network,
where network ‘nodes’ refer to brain regions and ‘edges’
describe the connectivity between brain regions [11], [12].
In such a network, the vulnerable nodes or edges are defined
by the significant lesion effects when they are damaged.
With the development of large-scale brain connectivity maps
(both structural and functional) and computational mod-
els [11], [13]–[15], quite a few studies have explored the
lesion effects on brain functionality and identified the vul-
nerable nodes or edges. The usual method was to simulate
the brain activity using a large-scale dynamics model, and
virtually lesion the structural connectivity (referring to neural
fibers between brain regions) in the model. The lesion effect
could subsequently be assessed by the difference between
the simulated functional connectivity (referring the statistical
association between the representative functional signals for
brain regions) with virtual lesions and the one without virtual
lesions. Based on this research framework, several studies
showed that lesion effects might depend on the topological and
anatomical features of the lesion site. For example, Vasa et al.
found that the lesions of regions with high centrality resulted
in the most significant decrease in functional performance,
indicating that brain is not resilient to attacks on hubs [16].
Besides, Alstott et al. reported that lesions along the cortical
midline, the temporoparietal junction and the frontal cortex
impacted most on functional connectivity [17]. All the studies
attempted to point out the sites where lesions would result in
severe effects on brain, which may offer guidance for clinical
interventions.

However, despite various computational models to simulate
the neural activity of brain, the neural dynamics is still not
well illuminated at the system level [18], and the function that
could appropriately represent human brain state remains to be
explored. In 2016, Gao and his colleagues proposed a universal
index, which could evaluate a system’s resilience without
its dynamic model and simulated functional connectivity, but
only with its structural connectivity [19]. They found that
perturbations on the structural connectivity would affect a
system’s resilience by changing its activities. Resilience Index
(RI), a metric which simultaneously captures density, hetero-
geneity, and symmetry of structural networks, was proved
to universally play a significant role in regulating network
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resilience in multiple fields including the noise system [20],
ecological system [21], and power supply system [19]. Both
the theoretical derivation and empirical results indicate that
larger RI can generally indicate higher resilience for one
system. With this framework of resilience, then in principle,
the structural metric RI could be employed to infer whether a
system is resilient and further help to quantify the effects of
structure lesions in different sites.

In the present study, we adopted the Resilience Index to
assess human brain network resilience, which refers to the
ability that brain withstands lesions. Based on three differ-
ent public lifespan datasets, we investigated the relationship
between RI and age. Since the specific inverted-U shape tra-
jectories exist for various cognitive, functional, and structural
measures regarding the development and aging of human
brain [22]–[26], we assumed that the age trajectory may tell
whether RI is applicable to assess human brain resilience.
If RI could quantify human brain resilience, the decrease of RI
induced by a virtual lesion seems to be a nice indicator of the
lesion effect, thus helping to identify the vulnerable nodes or
edges. This study aimed to explore vulnerable areas without
dynamic models but with a novel metric of network resilience,
offering a new window into how brain structure impacts on
its functionality.

II. MATERIALS AND METHOD

A. Datasets

This study involved three public datasets. The first dataset
was from the Cambridge Centre for Ageing and Neuroscience
(Cam-CAN, http://www.cam-can.com) [27]. In total, the data
of 627 healthy participants were downloaded, and two partici-
pants lacking T1 images or DTI images were excluded in this
study. All the MRI data were scanned at a single site using a
3T Siemens TIM Trio scanner. T1 images were acquired using
3D MPRAGE sequence, TR = 2250 ms, TE = 2.99 ms, TI =
900 ms, flip angle = 9 deg, FOV = 256 × 240 × 192 mm,
voxel size = 1 mm isotropic. DTI images were acquired using
Twice-Refocused SE sequence, TR = 9100 ms, TE = 104 ms,
FOV = 192 × 192 mm, voxel size = 2 mm isotropic.

The second dataset was from Consortium for Relia-
bility and Reproducibility(CoRR, http://fcon_1000.projects.
nitrc.org/indi/CoRR/html/data_citation.html) [28]. The CoRR
dataset includes 33 datasets, among which most datasets were
collected from participants in narrow age range. In this study,
the data of 74 participants was downloaded from four lifespan
datasets (i.e., IPCAS8, MRN, NYU2, and XHCUMS) of the
CoRR dataset.

The third dataset was from the enhanced Nathan
Kline Institute-Rockland Sample (NKI-RS, http://fcon_1000.
projects. nitrc.org/indi/enhanced/index.html) [29]. In total,
the data of 349 participants were downloaded, among which
140 participants with b0 = 0 were selected. Unlike the pre-
vious datasets, this heterogeneous dataset included 76 healthy
participants and 64 participants with various mental disorders
like depression and anxiety.

All the three datasets were downloaded and used with per-
mission and under the regulation proposed by data providers.

TABLE I
THE DEMOGRAPHIC INFORMATION OF THE THREE DATASETS

The basic demographic information of the selected data from
these three datasets was given in Table I. In this study,
the CoRR dataset and the NKI-RS dataset were used to
validate the results of the Cam-CAN dataset.

B. Data Preprocessing and Network Construction

Data preprocessing and network construction were carried
out using Pipeline for Analyzing braiN Diffusion imAges
toolbox [30]. The toolbox was mainly based on packages
like FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and Diffusion
Toolkit (https://www.nitrc.org/projects/trackvis/). First, the b0
image without diffusion weighting was employed to estimate
the brain mask, which could help to crop the raw images and
correct for the eddy-current effect [31]. Then, the brain was
divided into 90 regions based on the Automated Anatomical
Labeling brain atlas (AAL90, see details in Supplementary
Table. SIV), and each region was defined as one node for
the structural brain network. Finally, network construction was
performed using deterministic tractography. Fiber tracts were
tracked by seeding from all the white matter voxels unless the
fractional anisotropy (FA) < 0.2 or bending angle > 45◦. The
structural connectivity (SC) was eventually constructed, and
the edge strength was caculated as the average FA value of
neural fibers that linked the two corresponding brain regions.
Here, we chose FA values to investigate the relationship
between white matter tracts and age according to some relevant
studies [32]–[36].

C. Resilience Index and Its Components

The traditional framework of resilience designed for sys-
tems containing one element employs a universal equation to
describe their behavior [37], [38]:

dx

dt
= f (x, β), (1)

where x refers to the element’s state, defined as the magnitude
of activity at a single time point; β reflects the changing
conditions, and f (x, β) refers to the system’s dynamics.
Assuming that the system could be in a steady state x0, then
we have [38]:

f (x0, β) = 0, (2)
∂ f

∂x
|x=x0 < 0, (3)

where Equation (3) guarantees the linear stability at the fixed
point x0. Given a specific β, if the system has one and only
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one fixed point x0, it is at a stable state; if the system has no
fixed point or more than one fixed points, it is at an unstable
state. Since β could regulate system state, if its value is far
away from the critical βc, it could keep a system from losing
its stability.

For a high-dimensional system consisting of N variables
with states x = (x1, x2, . . . , xN )T, it could be characterized
by the following dynamic coupled equation:

dxi

dt
= F (xi ) +

N∑

j=1

Aij G
(
xi , x j

)
, (4)

where F (xi ) and G
(
xi , x j

)
capture the dynamics of single

variable xi and the coupling between variables xi and x j .
The behavior of the high-dimensional system could not be
regulated by a single parameter β but by its connection
matrix Aij . Gao et al. proposed a framework to reduce its
dimensionality to one-D by mathematical transformations [19],
and gained the equation with a similar form of Equation (1):

dxef f

dt
= F

(
xef f

) + βe f f G
(
xef f , xef f

)
, (5)

where βe f f is abstracted from the network connection matrix
Aij by

βe f f = < sout sin >

< s >
, (6)

in which sout = (sout
1 , . . . , sout

N )
T is the vector of outgoing

weighted degrees and sin = (sin
1 , . . . , sin

N )
T

is the vector of
incoming weighted degree, < s >=< sin >=< sout >
is the average weighted degree, sout

i and sin
i (1 ≤ i ≤ N)

are the outgoing degree and incoming degree of the i th node
(variable). βe f f plays a role in high-dimensional systems just
like β in one-dimensional systems.

We assessed brain network resilience based on a Resilience
Index (RI) proposed by Gao and his colleagues [19]. Both
the theoretical derivation and empirical results indicate that
a larger βe f f generally represents higher resilience for one
system [19]. In this study, we would use βe f f defined in
Equation (6) as RI. For an undirected network, the degree
of a node is defined as the number of edges connected to it,
and the strength of a node is defined as the sum of the weights
of all edges connected to it. For a directed network, outgoing
weighted degree and incoming weighted degree of a node are
defined as the sum of the weights of all outgoing edges from
the node and the sum of the weights of all incoming edges
to the node respectively. In this study, considering that the
structural brain network is undirected, RI for bra+in can be
calculated as:

RI = < s · s >

< s >
. (7)

Besides, Gao and his colleagues demonstrated that RI can
be written as the sum of two network topological features
(Fig. 1):

RI =< s > +H, (8)

where < s > is the average of all node strength and reflects
network density, and H = σ 2/ < s > represents network
heterogeneity, in which σ is the variance of all node strength.

Fig. 1. Demonstration of the two topological features, i.e., density< s >
(a) and heterogeneity H (b), of network that determine Resilience Index.

Fig. 2. Scatter plots of two topological features (Density < s > and
Heterogeneity H) with respect to RI in the Cam-CAN (a), CoRR (b), and
NKI-RS (c) datasets, respectively. The Pearson’s correlation coefficients
r and p-values between RI and < s > or H are provided, respectively.

D. Statistical Analysis

We tried both the linear model and quadratic model to
fit the age trajectory of RI, following previous studies that
generally used these models to examine the relationships
between age and other structural network measures [39], [40].
Here, R-square, the proportion of variability in a dataset that is
accounted for by the statistical model, was employed to assess
the goodness-of-fit. The R-square values (Table SI) told that
data could be explained better by the quadratic model than
the linear model. Therefore, we performed binomial fitting
regression analyses to evaluate the age effect of the RI.

Besides, we calculated the topological features of the struc-
tural connectivity matrix using the Brain Connectivity Toolbox
(BCT) [41]. All calculation was implemented using Matlab
(version 2014a; MathWorks) and visualization of results were
performed using RStudio.

III. RESULTS

A. The Relationships Between RI and Network Density
or Heterogeneity

According to Equation (8), RI of the structural brain net-
work was determined by two global topological features,
i.e., network density < s > and network heterogeneity H .
As shown in Fig. 2, network density < s > accounted for
a larger proportion of RI than network heterogeneity H .
Besides, the correlation coefficients between RI and < s >
approximated to 1 in all the three datasets (Cam-CAN: 0.98;
CoRR: 0.98; NKI-RS: 0.99); while the correlation coefficients
between RI and H were relatively lower (Cam-CAN: 0.60;
CoRR: 0.75; NKI-RS: 0.72).

B. The Relationship Between RI and Age

We examined the relationship between RI and age. Results
showed that RI had a quadratic relationship with age (Fig. 3).
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Fig. 3. The relationships between RI and age in the Cam-CAN
dataset (a), the CoRR dataset (b), the cohort of healthy participants
(c) and the cohort of patients (d) from the NKI-RS dataset. Each dot
represents one participant, and a quadratic fitting regression line with
95% confidence interval (shading area) is illustrated for each case.
The black dash lines indicate the corresponding age where the fitting
curves reach peaks respectively, and divide the participants into two parts
(i.e., adolescence and early adulthood, middle and later adulthood) for
the four datasets respectively. The red trend lines are linear regression
lines for the adolescence and early adulthood; the blue trend lines are
linear regression lines for the middle and later adulthood. The Pearson’s
correlation coefficients r, p values and R-square values (quadratic fitting)
are provided, respectively.

Here, R-square, the proportion of variability in a dataset that
is explained by the statistical model, was employed to assess
the goodness-of-fit. For the Cam-CAN dataset (Fig. 3(a)),
the inverted-U curve captured RIs of the healthy partici-
pants from 18 to 88 years old, reaching the peak at about
35 years old (R-square=0.385). Here, the inflexion point was
determined by the top of the quadratic fitting curve. Before
the peak, RI was significantly positively correlated with age
(p=0.046); after the peak, RI was significantly negatively cor-
related with age (p<0.001). The similar inverted-U quadratic
relationship between RI and age also appeared in the CoRR
dataset (Fig. 3(b), peak appeared at 31 years old), the cohort
of healthy participants in the NKI-RS dataset (Fig. 3(c), peak
appeared at 34 years old) and the cohort of patients in
the NKI-RS dataset (Fig. 3(d), peak appeared at 35 years
old). The inverted-U curves suggested that RI of the brain
network increases during development and early adulthood,
then reaches a peak at about 35 years old, and finally decreases
during the aging process. Also, for the NKI-RS dataset,
we found that mental disorders had no significant impact on
the age-related RI values by using a general linear model
(Supplementary Table. SV). So, the data of 140 participants
from the NKI-RS were analyzed as a whole hereafter.

C. Impacts of Nodes on RI

We investigated the impacts of the 90 defined nodes
(i.e., 90 AAL ROIs) on RI. For each node, we simulated
damage of different levels on it by proportionally reducing
the strength (from 0% to 50%) of all the edges connected it.

Fig. 4. Impacts of the 90 nodes on RI for participants from the Cam-CAN
dataset. (a) The heat map showed that RI decreased with the increase of
nodal weakening proportion for all 90 nodes respectively for one typical
participant. (b) The clustering heat map of the rankings of 90 nodes for
all 625 participants from the Cam-CAN dataset. (c) The boxplot of the
rankings of 90 nodes respectively for all 625 participants. Black dots
denote the outliers which are not in the range from the lower quartile
minus 1.5 times of interquartile range to the upper quartile plus 1.5 times
of interquartile range. (d) The spatial location of the top 20% ranked
nodes (blue, the top 4 nodes are colored in red) in the AAL template.

Results showed that RI decreased with increasing nodal dam-
age (Fig. 4(a)). For some nodes, such as bilateral putamens
(PUT.L and PUT.R) and precuneus (PCUN.L and PCUN.R),
simulated damage on them resulted in larger decreases in RI
than on other nodes. Further, according to the decrease in RI
with the 50% nodal weakening, 90 nodes were ranked from
1 to 90. It meant that damage on the node ranking first would
lead to the largest decrease in RI. To compare the rankings
of ROIs across all participants, we conducted a clustering
analysis, which can simultaneously reveal row (participants)
and column (ROIs) hierarchical cluster structure in a data
matrix [42]. As shown in the clustering heat map (Fig. 4(b))
and average ranking (Fig. 4(c)), PUT.R, PUT.L, PCUN.R,
PCUN.L showed the highest ranking among all 625 partic-
ipants consistently. Besides, Fig. 4(d) illustrated the top 20%
ranked nodes, most of which were symmetrically distributed
in the bilateral brain hemispheres.

We also examined the effects of age and gender on RI by
a general linear model, and found that age and gender had
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significant impacts on RI (Supplementary Table SIII). After
adjusting the effects of age and gender, we recalculated the
impacts of weakening node on RI, and found that the nodal
rankings were similar with those before adjusting the effects
of age and gender (Supplementary Fig. S1).

D. Impacts of Edges on RI

We investigated the impacts of edges on RI with seven
strategies of attack simulations. The first strategy was to
eliminate the strongest edges by the order. The second strategy
was to eliminate the weakest edges by the order. These two
strategies were employed to examine how the strength of edges
contribute to RI. The third strategy was to eliminate edges
randomly. The fourth strategy was to randomly delete the
homotopic edges (edges that link two geometrically symmetri-
cal regions, see red edges in Fig. 7(a)). The fifth strategy was
to randomly delete the other inter-hemispheric edges (edges
that link two nodes in two hemispheres respectively, see green
edges in Fig. 7(a)) other than the homotopic ones. The sixth
strategy was to randomly delete the intra-hemispheric edges
(edges that link two nodes both within the left or the right
hemisphere, see blue edges in Fig. 7(a)). These last three
strategies aimed to explore the contribution of the edges with
specific spatial embedding features to RI. Especially, we took
the seventh strategy, i.e., deleting the edges connected with
the temporal lobe hubs, which were reported to be associated
with higher lesion probability in Alzheimer’s disease [1].

The results showed that, among the first six strategies, delet-
ing the strongest edges (i.e., strategy 1) resulted in the largest
decrease of RI, while deleting the weakest edges (i.e., strategy
2) resulted in the smallest decrease of RI. Randomly deleting
edges (i.e., strategy 3) resulted in a medium decrease between
strategy 1 and strategy 2 (Figs. 5(a) and 5(b)). Furthermore,
deleting the homotopic edges (i.e., strategy 4) and other
inter-hemispheric edges (i.e., strategy 5) resulted in a greater
decrease of RI than the case of deleting intra-hemispheric
edges (i.e., strategy 6) (Figs. 5(c) and 5(d)). These results
suggested that edges with high strength or inter-hemispheric
embedding have large impacts on RI. What’s more, deleting
the edges connected with the temporal lobe hubs (i.e., strategy
7) resulted in similar decrease of RI with deleting homotopic
ones (i.e., strategy 4) (Fig. 5(d)). We also investigated the
impacts of edges on RI with the seven strategies of simulated
attacks after adjusting the effects of age and gender by
a general linear model, and found similar results as those
before adjusting the effects of age and gender (Supplementary
Fig. S2).

We further examined the relationship between the strongest
edges and age. For each edge, it may be one of the strongest
edges for some participants but not for other participants, so if
its strength ranked top i for more than 30% of all participants,
we would take it into the representative set Di , as the strongest
edges of group. We summed up the strength of edges in Di

for each participant and found that it also had a quadratic
relationship with age (Fig. 6(c)). The goodness of quadratic
fitting was then evaluated by R-square. Results showed that
R-square value increased to saturation and fluctuated within

Fig. 5. Impacts of removing edges on RI under seven strategies of
random errors or targeted attacks for participants from the Cam-CAN
dataset. Strategy 1 refers to deleting the strongest edges, strategy 2
refers to deleting the weakest edges, strategy 3 refers to randomly delet-
ing edges, strategy 4 refers to deleting the homotopic edges; strategy 5
refers to deleting other inter-hemispheric edges except homotopic ones;
strategy 6 refers to deleting intra-hemispheric edges; and strategy 7
refers to deleting the edges connected with the temporal lobe hubs.
(a) The RI of one typical participant with respect to the number of
edges deleted (up to 200) under the first three strategies. The maximum
number of edges we can delete here was determined by the minimum
number (i.e., 210 for the Cam-CAN dataset) of non-zeros edges among
all participants and we deleted up to 200 edges eventually for illustrations
purpose. (b) The average RI of all the 625 participants with respect to
the number of edges deleted (up to 200) under the first three strategies.
(c) The RI of one typical participant with respect to the number of edges
deleted under the seven strategies. Note that the maximum number of
deleted edges here was determined by the number of homotopic edges
in this typical participant, that is, this participant has only 20 homotopic
edges. (d) The average RI of 438 participants with respect to the
number of edges deleted under the seven strategies. Here these selected
438 participants all have 12 or more homotopic edges.

a narrow range (Fig. 6(a)). We empirically set the saturation
threshold at 0.5 and got 86 edges (Fig. 6(b)). The total
strength of these 86 edges was suggested to have a best
inverted-U relationship with age (Fig. 6(c)). To eliminate the
possibility of coincidence, we randomly picked 86 edges from
all edges (546 edges) which existed in more than 30% of all
participants and calculated the R-square values. The procedure
was repeated 100,000 times. The frequency histogram told that
0.5 ranked top 0.01% among all the 100,000 R-square values
(Fig. 6(d)). Since theses strongest edges have great impacts
on RI (Fig. 5(c)) and their total strength have an inverted-U
relationship with age, which is similar with the relationship
between RI and age, we would call the so defined top
edges as ‘resilience-related’ edges hereafter. Note that similar
results under thresholds other than 30% have also been found
(see details in Supplementary Fig. S3).

E. Spatial Embedding Feature of the
“Resilience-Related” Edges

Regarding the spatial embedding feature, the 86 strongest
edges were classified into three types: 13 homotopic
edges, 52 inter-hemispheric edges and 21 intra-hemispheric
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Fig. 6. The inverted-U relationship between age and the strongest
edges. (a) The goodness-of-fit (indicated by R-square value) changed
with the potential of Di (1 ≤ i ≤ 236), i.e., the number of edges
in the representative set Di of group top edges (|Di|). The value of
R-square almost stabilized around 0.5 when |Di| > 86, here i = 107.
(b) The top 86 edges in D107. (c) The relationship between age and
the sum of the strength of the 86 strongest edges was captured by the
quadratic fitting regression line with 95% confidence interval (shading
area). (d) Histogram of R-square values for the 100000 times of randomly
picked 86 edges from all possible edges (546 edges) existing in more
than 30% of all participants. The vertical dash line indicates the R-square
value of the top 0.01%.

Fig. 7. Spatial embedding feature of the ‘resilience-related’ edges.
(a) Illustration of the three types of edges, i.e., homotopic edges, inter-
hemispheric edges and intra-hemispheric edges according to the spatial
location of the two nodes they connect. (b) The numbers of the three types
of edges (i.e., 13, 52, and 21 respectively) in the picked 86 ‘resilience-
related’ edges and the corresponding numbers of the three types of
edges (15, 68, and 463 respectively) for all the possible 546 edges in
brain networks. (c) 14 ‘resilience-related’ edges connected with PUT.L,
PUT.R, PCUN.L and PCUN.R.

edges (Fig. 7(a)). Normalized by their corresponding number
of edges in all the 546 possible edges, we found that the
proportion of the intra-hemispheric edges was far smaller than
that of the other two types of edges (Fig. 7(b)). Besides,
among the 84 ‘resilience-related’ edges, 14 edges connected
with PUT.L, PUT.R, PCUN.L and PCUN.R (Fig. 7(c)), which
were observed to have the greatest impacts on RI (Fig. 4).

Fig. 8. Impacts of different spatial embedding edges on RI. (a) For one
typical participant, the 80 edges inducing the largest deceases in RI and
their respective types. (b) The frequency distributions of K. For the jth
type of edge, K denotes the value of Kj calculated by equation (9), which
is the average rankings of one type of edge in the top 80 ranking edges
for all 625 participants.

We further assessed the impacts of different spatial embed-
ding edges at the individual level besides the group level.
For one participant, we firstly calculated the decrease in RI
after eliminating each edge. Then we picked the 80 edges
that induced the largest decreases in RI and ranked them
in descending order. To quantify the average ranking for
each edge type (homotopic, inter-hemispheric, and intra-
hemispheric) among the top 80 edges, K j was defined as:

K j =
∑80

i=1 1
(
ei ∈ C j

) · i
∑80

i=1 1
(
ei ∈ C j

) , (9)

where C j denotes the j th type of edge, i denotes the ranking of
edge ei , 1(·) is the indicator function which equals 1 or 0 when
(·) is true or false respectively. The frequency distributions of
K j ( j = 1, 2, 3) for all the 625 participants demonstrated
that in general, the homotopic edges had the highest average
ranking while the intra-hemispheric edges had the lowest
average ranking (Fig. 8(b)). Note that similar results have also
been observed in the top 60, 70, 90 and 100 ranking edges
(see details in Supplementary Fig. S4).

IV. DISCUSSION

Overall, this study explored the resilience and vulnera-
bility of human brain networks across the lifespan with a
novel measurement of network resilience, the Resilience Index
(RI). We observed an inverted-U relationship between RI and
age, which provides evidence for our speculation that RI is
applicable to quantify human brain resilience. Furthermore,
we inferred the vulnerable nodes (e.g., bi-hemispheric puta-
mens and precuneus) and edges (i.e., inter-hemispheric edges
and edges with high strength) by the significant decreases
in RI when they were removed. Finally, we found that part
of the strongest edges might be most related with resilience
and thus referred them as ‘resilience-related’ edges. Among
these ‘resilience-related’ edges, homotopic edges were the
most prominent representatives. In other words, an arbitrary
attack on homotopic edges would have a high probability to
degrade brain network resilience.

A. Resilience Index as a Measurement of Brain
Network Resilience

Most previous studies assessed brain lesion effects based
on structural connectivity (SC), computational models, and
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simulated functional connectivity (FC) [11], [13], [14]. The
usual method was to simulate brain activity using a dynamics
model and then virtually lesion SC, then lesion effects could
be reflected in the alteration of FC in simulation. Such strategy
attempts to replay the events during real brain lesions, helping
to identify many vulnerable brain regions [16], [17]. However,
since the neural dynamics is still not well illuminated at
the system level, no computational neural model has been
commonly accepted yet [18]. A recent study investigated the
brain resilience via functional connections, and the drop in the
largest connected component (LCC) after removing the nodes
or edges from the brain network was recorded as a measure
of the inferred damage [43]. This study proposed resilience
metrics from a functional perspective and exploited the influ-
ence of environmental and genetic factors on brain resilience.
Indeed, brain network resilience based on structural network
remained rarely studied. In 2016, Gao and his colleagues found
that, regardless of dynamics, perturbations on SC would affect
one system’s activities. They transformed a high-dimensional
system to a one-dimensional system and proposed a so-called
Resilience Index to quantify the system’s resilience. RI is
a one-dimensional metrics, which simultaneously captures
density, heterogeneity, and symmetry of a structural network.
It has been demonstrated that larger RI generally indicates
higher resilience in multiple high-dimensional systems includ-
ing the ecological system, gene regulation system and power
supply system [19]–[21], [44]. To the best of our knowledge,
this theoretical model hasn’t been used in the study of human
brain resilience, though the possibility of its application on
neuronal networks and neuropsychology study has been dis-
cussed in terms of perspectives and future challenges [45].

In this study, for the first time, we applied RI to assess brain
network resilience via structural connectivity. For the Cam-
CAN dataset, we observed an inverted-U relationship between
RI and age, that is, RI increased during development and early
adulthood, reached a peak at 35 years old, and then decreased
during aging (Fig. 3). We have also calculated RI based on
a brain template with 246 regions [46] and observed similar
inverted-U tendency and similar inflexion point (35 years old)
(Supplementary Fig. S7), suggesting that the inverted-U age
trajectory of RI is not sensitive to the parcellation of ROI.
Furthermore, the CoRR and NKI-RS datasets also showed
the inverted-U tendency for RI across the lifespan, which
empirically matched the development and aging process of
human brain. There were differences among the results of the
three datasets. For example, the fitting curve of the CoRR
dataset is higher than those of other datasets (Fig. 3). The
reason may be due to that participants in the CoRR dataset
are generally younger. Similar inverted-U tendencies have
been reported in cognitive (e.g., memory, [23]), functional
(functional flexibility, [47]) and structural (e.g., white matter
hyperintensities, [39]) measures. Therefore, we speculated that
RI could be a candidate measure for brain network resilience
and this method is of certain generalization under different
brain templates and datasets. Besides, we conducted a sup-
plementary analysis about comparisons between RI and other
network metrics including relative local efficiency (LE), rela-
tive global efficiency (GE), and small-worldness. The results

suggested that RI was significantly positively correlated with
LE and GE, but negatively correlated with small-worldness
(Supplementary Fig. S5).

Since the structural brain network is undirected, the RI
of the brain network actually refers to the sum of two
network metrics, i.e., network density and network hetero-
geneity according to Equation (6). As we know, density and
heterogeneity are two critical properties for the structural
brain network, and they have been reported to associate with
brain resilience in previous studies [48], [49]. Compared with
network heterogeneity, network density accounted for a larger
proportion of RI and had a higher correlation with RI (Fig. 2),
suggesting its primary contribution to RI. The result also gave
a hint about the different contributions of various nodes or
edges to RI: strong nodes or edges tend to contribute more
because they can help to enhance network density, which is
the primary factor; weak nodes or edges also played a role
as they can contribute to network heterogeneity, which is the
secondary factor.

B. The Vulnerable Nodes and Edges

In this study, we identified the vulnerable nodes by the
Resilience Index. Our results showed that the removing of
PUT.R, PUT.L, PCUN.R, PCUN.L would result in a sharp
decline in RI for almost all participants (Fig. 4 and Supple-
mentary Fig. S6), suggesting that attacks on these four brain
regions were most likely to degrade brain resilience. In previ-
ous studies, the vulnerable brain regions have been identified
by the decreases in network metrics such as global efficiency,
local efficiency and the size of the largest component when a
fraction of nodes is removed [50], [51]. Despite the difference
in methods, the four vulnerable brain regions identified by
RI were accordant with the previous vulnerability study [52].
Specially, these four nodes were distributed in the geometri-
cally symmetrical regions of the left and the right hemispheres,
and the phenomenon of geometrically symmetrical locations
were also observed in other nodes that had large impacts on
RI (Fig. 4(d)). Besides, we calculated the vulnerability rank
of 90 nodes for participants in the CoRR and NKI-RS datasets
respectively (Supplementary Fig. S6), and found that 11 nodes,
i.e., bi-hemispheric PUT, PCUN, SOG, CAL, PreCG and right-
hemispheric LING, consistently ranked top 20 most vulnerable
notes in all the three datasets. We referenced previous studies
and found the identified vulnerable nodes have been reported
to be affected in neurodegenerative diseases (Supplementary
Table SVIII), which support the availability of RI in exploring
brain resilience.

Previous studies reported that putamen is one of the hub
nodes (most connected nodes) in structural brain networks [53]
and the key part of striatum, which supports the integration
of dopaminergic inputs and incoming information in limbic,
cognitive and motor control circuits [54]. Besides, precuneus
is a functional core of the default-mode network, which
showed increased susceptibility to age-related change [55] and
neurodegenerative disease [56]. Putamen has been shown to be
affected in many neurodegenerative disorders, e.g., Parkinson’s
disease (PD) and Alzheimer’s disease (AD) [57]. Zhao and his
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colleagues reported that the patients in amnestic mild cognitive
impairment showed significant decreased FA in precuneus
region [36]. Besides, kartaci and his colleagues reported that
lower FA in the precuneus white matter was associated with
higher clinical disease severity, suggesting the high vulner-
ability of precuneus [58]. In this study, the identified most
vulnerable nodes were accordant with both the empirical and
computational studies. Although the vulnerability ranks of
putamens and precuneus were consistently high among all
three datasets, they have significant but opposite statistical
correlation with age (Supplementary Table SIX). It means
that precuneus may become more vulnerable with age while
putamen may become less vulnerable with age. This result is
quite interesting and needs to be explored in the subsequent
work.

The vulnerable edges are another fundamental object in
vulnerability studies. According to strength and spatial embed-
ding feature, structural edges were classified to different types.
Regarding the edge strength, the results of damage simulation
showed that attacks on the strongest edges were most likely to
degrade RI (Figs. 5(a) and 5(b)), which agreed with the high
positive correlation between network density and RI (Fig. 2).
Regarding the spatial embedding feature, the removal of the
inter-hemispheric edges resulted in larger decrease in RI than
deleting the intra-hemispheric ones (Figs. 5(c) and 5(d)).

C. Homotopic Edges: The Most Prominent
Representatives of the “Resilience-Related” Edges

We observed that the total strength of some strongest edges
had an inverted-U relationship with age. The goodness-of-
fit (i.e., R-square value) rapidly increased with an increasing
number of the strongest edges being taken into consideration in
the beginning, then almost stabilized around 0.5 after a certain
number (Fig. 6(a) and Supplementary Fig. S3). We caught
the edges at the empirical saturation threshold 0.5 and found
that the relationship between their strength and age could be
well captured by the inverted-U shape curve. Since a similar
relationship between RI and age was observed, intuitively,
we speculated that these edges might be most relevant with
resilience and referred them as ‘resilience-related’ edges for
convenience.

We examined the spatial embedding feature of the
‘resilience-related’ edges, and found that the homotopic edges
(i.e., edges that link two geometrically symmetrical regions)
occurred most frequently among the ‘resilience-related’ edges,
and the intra-hemispheric edges occurred the least frequently
(Fig. 7 and Supplementary Fig. S3). This finding was further
supported by an individual level analysis, where all edges were
ranked according to their impacts on RI for each participant.
Results showed that the homotopic edges had the highest aver-
age ranking for most participants (Fig. 8 and Supplementary
Fig. S4). These results suggested that an arbitrary attack on
the homotopic edges had the highest probability to degrade
brain network resilience. Functional connectivity studies have
demonstrated that the homotopic edges would be affected in
stroke [59], [60], Alzheimer’s disease [61], and Parkinson’s
disease [62], suggesting an abnormal functional integration

and information communication. These discoveries would help
support the applicability of RI in exploring the changes of
brain resilience associated with disease.

The great influence of homotopic edges is not surprising
given that they account for a high proportion in callosal
fibers [63]. Corpus callosum has been reported to be affected
in some neurodegenerative disorders including Alzheimer’s
disease and Dementia [64], [65]. Besides, branzoli and his
colleagues pointed out that lower water fractional anisotropy in
the corpus callosum could indicate the onset of demyelination
processes with healthy aging [66]. The importance of human
corpus callosum may be attributed to its significant role in
large-scale bi-hemispheric integration [67], [68]. Alteration
of the homotopic fiber tracts may disrupt the neural signal
transmissions between two hemispheres and thus damage the
functional homotopy (i.e., the functional synchrony between
homotopic regions) [69]. Especially, homotopic functional
edges has been reported to be critical in building brain intrinsic
functional architecture [70]. Compared with concerns in func-
tional homotopy, studies on homotopic structural edges are
rare, which may be due to the sparseness of homotopic edges
in the structural brain network (i.e., only a small number of
homotopic edges in the structural brain network). Our results
suggest that despite no dominance in number, structural homo-
topic edges may contribute most to brain network resilience.

V. CONCLUSION

This study assessed human brain resilience across the lifes-
pan with a novel metric of network resilience, the Resilience
Index (RI). The inverted-U lifespan trajectory between RI and
age suggested that RI could be a candidate measure for brain
resilience. Besides, we identified the vulnerable nodes like
bi-hemisphere putamens and precuneus, and vulnerable edges
(i.e., inter-hemispheric edges and edges with high strength).
Specially, an arbitrary attack on homotopic edges would have
a high probability to degrade brain network resilience. Our
findings shed light on the intrinsic pattern of brain network
resilience during development and aging and suggested that
the Resilience Index may be applicable to identify vulnerable
areas and edges, thus offering a new perspective to explore
human brain vulnerability.
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