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A Neural Network Estimation of Ankle Torques
From Electromyography and Accelerometry
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Abstract— Estimations of human joint torques can
provide clinically valuable information to inform patient
care, plan therapy, and assess the design of wearable
robotic devices. Predicting joint torques into the future
can also be useful for anticipatory robot control design.
In this work, we present a method of mapping joint torque
estimates and sequences of torque predictions from motion
capture and ground reaction forces to wearable sensor data
using several modern types of neural networks. We use
dense feedforward, convolutional, neural ordinary differen-
tial equation, and long short-term memory neural networks
to learn the mapping for ankle plantarflexion and dorsiflex-
ion torque during standing, walking, running, and sprinting,
and consider both single-point torque estimation, as well as
the prediction of a sequence of future torques. Our results
show that long short-term memory neural networks, which
consider incoming data sequentially, outperform dense
feedforward, neural ordinary differential equation networks,
and convolutional neural networks. Predictions of future
ankle torques up to 0.4 s ahead also showed strong positive
correlations with the actual torques. The proposed method
relies on learning from a motion capture dataset, but once
the model is built, the method uses wearable sensors that
enable torque estimation without the motion capture data.

Index Terms— Accelerometers, biomechanics,
electromyography, neural networks, wearable sensors.

I. INTRODUCTION

THE estimation of human joint torques is a common
metric in the assessment of human biomechanics, which

provides quantitative and clinically valuable information [1].
These estimates can be useful as part of a functional assess-
ment, as well as for evaluating and planning patient care
and therapy. Moreover, the estimation of joint torque for
an individual person can support the design of wearable
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robotic systems, such as assistive exoskeletons. Though several
exoskeleton technologies exist today, significant work remains
to accurately predict human movement with wearable devices
and optimize the actuation response [2]. Towards this goal,
a method of predicting non-assisted human joint torques
across relevant activities using wearable sensors can inform
requirements for controller design.

Current approaches of estimating joint torques typically
fall into two categories: a complete and a simplified inverse
dynamics method [1]. In the first method, marker trajectories
from motion capture systems are used to track human kinemat-
ics and ground reaction forces from force-sensitive platforms
are used to track interaction with the external environment.
These data are then combined with estimates of body segment
inertia to estimate forces and moments using kinematic chain
models. The second method still requires estimates of joint
kinematics and ground reaction forces, but simplifies the
problem by disregarding the inertial properties of the body
segments and assumes a point mass for the person. Both
of these methods typically incur substantial equipment and
personnel costs and confine estimations to a laboratory setting.
One alternative is to use a wearable exoskeleton specifically
for measurement, as in Li et al. [3]. This method measures
interaction forces between the human and the exoskeleton,
and the combined human/exoskeleton kinematics directly to
perform inverse dynamics. It removes the need for a motion
capture setup, but requires the subject to bear the additional
load of the exoskeleton itself as well as coupling the subject
to a mechanical system that may affect their normal motions.

These methods for estimating inverse joint dynamics use
models of the human body (or body segments) to estimate
joint torques. Machine learning methods provide a different
approach to torque estimation, which forgo the need for a
human body model and instead learn a mapping directly from
sensor input to torque or joint angle output, as shown by
Jacobs and Ferris [4], and Dorschky et al. [5], respectively,
both for walking. With machine learning, joint torque could be
estimated using lightweight wearable sensors such as surface
electromyography (sEMG) and inertial measurement units
(IMU), among other input modalities, eliminating the need
for expensive equipment or external hardware structures [6].
Moreover, this method enables real-time joint torque estima-
tion outside of the confines of a laboratory or clinic after
an initial data collection period, broadening the range of
possibilities for dynamic assessments.

Our previous work in Siu et al. [6] evaluated the perfor-
mance of feedforward and recurrent neural networks for ankle
torque regression on a dataset comprised of standing, walking,
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running, and sprinting. We found that when using accelerom-
etry and surface electromyography (sEMG) inputs from wear-
able sensors, neural networks that took the sequential nature
of the data into account — recurrent neural networks (RNNs)
and the more specialized RNN variant, long short-term mem-
ory (LSTM) networks — outperformed typical feedforward
architectures from the literature in estimating instantaneous
left and right ankle torques.

This study uses largely the same dataset as in [6], consisting
of the aforementioned wearable sensors, and ground truth
estimates of joint torque calculated from inverse dynamics that
used full motion capture and a force-sensitive platform along
with the Plug-in Gait Model (Vicon, Oxford, UK). We expand
on the previous work in several ways. First, we compare the
best-performing architectures from the previous work against
two additional types of network architectures: convolution
neural networks (CNNs) [5], [7] and neural ordinary differ-
ential equations [8]. Most of the previously-examined archi-
tectures, which were from the literature, were simple feed-
forward methods, and the ones considered here (in addition
to the LSTM) represent more modern architectures. Second,
we examine the ability to estimate not only instantaneous ankle
torques, but also entire sequences of ankle torques, both for the
same time period as the input data, as well as for predictions of
torques after the time of the input data. Finally, the effects of
data augmentation via oversampling are considered as a way
to increase the training utility of small biomechanical datasets.

An interesting architecture that we examine here for
biomechanics is the neural ordinary differential equation
(NODE) [8]. This method relies on the characteristic that
stacked feedforward layers in a typical feedforward network
act as universal function approximators, and that the derivative
of such a function can be solved in a continuous manner using
numerical methods. NODE removes the discrete nature of
individual network layers, and rather treats the entire network
as having “continuous” depth, where evaluations of the value
of the network at any hidden state can be found via a numerical
ODE solver. Critically, it removes the need to set a network
depth, as numerical solvers take on that role in an adaptive
manner, effectively creating a “deeper” network only when
the complexity of the function being approximated requires it.

The major contributions in this paper are threefold: (1) a
comparison of the performance of several modern types of
neural network models on the problem of ankle torque regres-
sion from wearable sensors, (2) the evaluation of sequence
regressions for estimating a time series of torques, with and
without data augmentation, and (3) the use of these methods
to predict future torque sequences.

II. LITERATURE REVIEW

A. Human Motion and Joint Force Estimation From
Wearable Sensors

Common approaches to estimating human motion and
joint forces from wearable sensors typically rely on iner-
tial measurement units and less often sEMG in clinical or
laboratory settings. The use of IMUs to estimate human
movement has gained popularity in the recent decades due

to increasing ubiquity of “smart” devices (phones, watches,
etc.), which typically contain such sensors and are carried
close to the body [9]. Algorithms designed for these mobile
devices typically perform human activity recognition, rather
than finer-grained motion analysis, and model training is
almost exclusively performed offline before deployment into
a consumer or research product. Hidden Markov models [10],
boosting [10], support vector machines [11], [12], and con-
ditional random fields [13] are among the methods used for
IMU-based activity recognition. Although not as common as
IMUs, sEMG sensors are another modality used to classify
and predict human motion [14]–[17]. sEMG sensors are placed
on the skin to record electrical activity of underlying muscles,
though the placement and selection of these body-worn sensors
can have a significant impact on the accuracy of activity classi-
fication [18]. Information from sEMG can be used to estimate
future movement trajectories and the associated joint forces
and can serve as an anticipatory control signal for wearable
devices [7], [19], [20]. sEMG signals are more sensitive than
kinematic measurements to factors such as subject-specific
physiology, placement, and noise, though machine-learned
models have shown efficacy in motion classification tasks
despite noise and nonspecific sensor placement [15], [17], [20],
and locomotion classification using a combination of sEMG
and accelerometers have been shown higher accuracy than
with accelerometers alone [18].

B. Neural Networks for Biomechanical Parameter
Estimation From Wearable Sensors

Neural networks are a popular machine learning technique
that have shown utility for a number of applications in biome-
chanics. A very common type of neural network is a simple
fully-connected (or dense) feedforward network architecture.
In this architectures, data moves unidirectionally through a
fixed set of layers, where each unit in one layer is fully
connected to every unit in the next layer through a set of
weights and biases. Such networks have been used previously
to estimate ground reaction forces and ankle moments during
walking and calf raises [4], ankle angles and moments in
walking [21], and energy expenditure during locomotion [22].

More sophisticated types of neural networks have been
developed to capture temporal or sequential information from
the input data. Recurrent neural networks (RNNs) give the pre-
vious output as an input back into the network for predicting
the next time step. This structure makes RNNs advantageous
for sequential data, but also introduces difficulties in training.
Song and Tong [23] used an RNN to estimate elbow torque
from sEMG sensors in a dynamic tabletop manipulandum
task. However, the standard RNN that they used suffers
from the vanishing gradient problem during training, i.e.,
long sequences of inputs are not learned well because the
information carried by the gradient during backpropagation
diminishes the longer the length of the input sequence [24].

Long short term memory networks (LSTMs) are a kind
of RNN that attempt to avoid the vanishing gradient prob-
lem [24], [25] by using a recurrent structure that regulates the
flow of previously-seen data by encoding a cell state variable
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that is modified based on current inputs and previous cell states
before being passed along. The training of these networks
tunes the degree to which the existing cell state and new
information is used to modify the cell state, which ultimately
determines the network output. The use of cell states rather
than a simple recurrent unit allows information to be “gated”
and prevents the vanishing gradient problem. The rest of this
paper uses the abbreviation RNN to refer to standard recurrent
neural networks, and LSTM will refer to this specific variant.

Much like “deep” variants of dense networks, a stacked
LSTM architecture allows more complex representations of
the data to be developed than would be possible with a single
LSTM layer [26]. However, the data requirements of these
larger networks grow substantially as the number of tunable
parameters increases. A two-layer LSTM was implemented
by Slade et al. [22] for estimating energy expenditure during
locomotion, but was found to perform worse than a dense
network. However, they reported computational difficulties
that limited their use of an LSTM to a subset of the data
that was used for the dense feedforward network, which may
have contributed to the lower accuracy.

Convolutional neural networks (CNNs) are another type
of network, characterized by layers that consider the spa-
tial relations of incoming data through the use of (typi-
cally 2D) convolutions. CNNs have become de facto parts
of image-based machine learning [27], but have also been
used for mapping wearable sensor data to biomechanical
parameters [5], sometimes in combination with LSTMs [7].
In biomechanics applications, CNNs may be structured to
consider segments of data in their temporal context directly,
without the additional use of RNNs/LSTMs, but in such
cases, they do not have the strict sequential processing of
the latter two architectures. However, they have a notable
speed advantage in some situations, since modern graphics
processing units (GPUs) are optimized for parallel processing
of the many matrix multiplications on which CNNs rely.

III. METHODS

A. Data Collection and Preprocessing

Five subjects performed the experiment protocol, but due
to sensor malfunction, only four subjects’ data were usable.
From these four subjects, there were three female and one
male, ages 27, 21, 31, and 21. All subjects were asked to walk
on a self-paced, split-belt treadmill. Each subject completed
six trials of 150 seconds in duration that were presented
in the same order for each subject. For each trial, subjects
were given visual commands to “stand,” “walk,” “run,” and
“sprint,” for 10-second blocks (Figure 1), with breaks between
trials (variations in subject speeds are shown in Table II).
In total, each subject spent 300 seconds standing, 240 seconds
walking, 180 seconds running, and 180 seconds sprinting. All
subjects provided written, informed consent and the protocol
was approved by the MIT Committee on the Use of Humans
as Experimental Subjects (protocol #1703875483). This is
the same underlying dataset as in Siu et al. [6], with one
additional subject.

Fig. 1. Sequence of locomotion commands given to subjects across the
six locomotion trials. Each plot represents a trial. Since subjects were
on a self-paced treadmill, their locomotion may have varied from the
commands given.

Fig. 2. Example sensor and marker setups for one subject with wireless
accelerometer/sEMG sensors and motion capture markers. Subjects
wore a chest harness as part of a safety system for the treadmill.

For all trials, subjects wore eight wireless sEMG sensors
with embedded three-axis accelerometers (Delsys, Natick,
MA) with four sensors on each leg (tibialis anterior, medial
gastrocnemius, vastus medialis, and semitendinosus), where
electrodes were positioned on top of the center of the muscle
bodies after palpation, and parallel to the muscle. These mus-
cles were chosen as they are primary contributors to ankle and
knee motion. Motion capture markers were placed on the sub-
jects in a modified Plug-In Gait model configuration with the
full lower-body marker set and a reduced upper-body marker
(Vicon, Oxford, UK) (Figure 2). Throughout the experiment,
force plates embedded under each tread (left and right) of the
treadmill were sampled at 1000 Hz, sEMG and accelerometers
were sampled at 2000 Hz, and the motion capture data were
sampled at 100 Hz. Motion capture and ground reaction force
data were combined in the Plug-in Gait model to calculate the
inverse dynamics-derived joint torques, which were the labels
for the machine learning training. All collected signals were
downsampled to 100 Hz for further processing, a sample rate
that was chosen to be similar to what would be feasible for



SIU et al.: NEURAL NETWORK ESTIMATION OF ANKLE TORQUES 1627

TABLE I
REGRESSION METHODS

use with an online motion prediction system using the feature
generation and inference methods described here.

B. Feature Extraction

Downsampled signals were processed to extract features,
without additional filtering or rectification, at the same 100 Hz
rate, using a 0.5 s historical window of sensor signals, and
0.49 s overlap with adjacent windows, similar to [15]. sEMG
features were the max value and area for each window.
Accelerometer features were the median vector magnitude
and the median angle in the X-Y, Y-Z, and Z-X planes for
each window. In the case of Subject 4, the integrated sensors
also included a gyroscope, for which the mean magnitude
of the angular velocity was also calculated for each window.
We decided to include the gyroscope features, which were only
available for Subject 4, to give the models as much data to
work with as possible as the comparisons being made in this
study are focused on the model architectures rather than sensor
inputs. These features were selected due to their relatively
low computational cost, making them well-suited to wearable
device applications. The features were subsequently used as
the inputs to the machine learning models.

C. Ankle Torque Regression Across Neural
Network Architectures

To evaluate regressions across model architectures and
provide updated comparisons from our previous work in [6],
we consider four classes of neural networks: a dense (fully-
connected) feedforward network, a convolutional network,
a neural ordinary differential equation network, and long
short-term memory network. The chosen architectures are
summarized in Table I. Each architecture was trained using the
same inverse dynamic model output from the Nexus Plug-In
Gait model. For all but the CNN model, we controlled the
number of tunable parameters to be approximately 30,000
(when outputting a single pair of torques) and used leaky
ReLU activations and Adam optimization for consistency.
Since the neural ODE requires equal-sized inputs and out-
puts for the continuous-depth section of the network, linear
reshaping layers were added before and after to ensure size
consistency. The CNN could not use a similar number of
parameters due to the requirements for parameters connecting

TABLE II
SPEED VARIATION IN SELF-PACED TREADMILL LOCOMOTION

convolution layers, so instead, we replicated a network similar
to the one used in [5]. Learning rate sweeps were performed
in log-linear steps from 10−7 to 10−3 to find the best learning
rate for each model. No learning rate decay was used.

A subject-specific six-fold cross validation was used with
five training trials and one test trial, where these trials cor-
respond to the experiment trials in Figure 1. Sequences of
features from fifty contiguous time steps were used as model
inputs. For each of the models, the instantaneous left and right
ankle plantarflexion/dorsiflexion torques at the end of the data
sequence were the two regression targets, and each model
output a regression of both ankle torques at once. We will
refer to this as the sequence-to-one regression paradigm.

For the regression outputs, both the root mean square
error (RMSE) and the Pearson correlation (ρ) between the
estimated and inverse dynamics torque values were calculated
as measures of accuracy. The accuracy results are reported
for each model for both the pooled and individual locomotion
activities, even though models were not trained independently
for each activity. Each ankle is considered an independent sub-
group for the purposes of calculating the Pearson correlation.

D. Sequence-to-Sequence Ankle Torque Regression

In addition to comparing regression performance for instan-
taneous torque across different model architectures, we also
consider the problem of sequence-to-sequence regression for
the LSTM architecture. In these experiments, the same training
and testing procedure is followed, but instead of estimating a
single pair of left and right foot target values (torques) per set
of feature inputs, models are made to predict torque values for
each time point in the provided sequence, resulting in 2 · T
regression outputs for each f · T input values, where T is
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TABLE III
REGRESSION MEAN SQUARED ERROR (RMSE) BY MODEL AND ACTIVITY

TABLE IV
REGRESSION PEARSON CORRELATION BY MODEL AND ACTIVITY

the length of both the feature and output sequences and f
is the number of input features per time point ( f = 112).
For the sequence regressions, we use T = {50, 150, 300},
corresponding to 0.5, 1.5, and 3.0 s of data. 0.5 and 1.5 s
lengths are slightly less than and slightly greater than a typical
walking gait cycle, and 3.0 s was used as a stress-test, as it
provided a much longer input/output sequence.

E. Data Augmentation Comparisons

We consider the effects of training data augmentation for the
LSTM architecture. We compare the performance of models
trained with unaugmented data against those trained with
data augmented via oversampling in three ways: by activity
class (activity augmentation), by maximum torque value in a
sequence (max augmentation), and by the range of the torque
values in a sequence (range augmentation). Oversampling is
a commonly-used technique for improving performance of
deep learning models on under-represented data [28]. These
approaches were chosen in an effort to improve predicted
peak/trough amplitude accuracy in run and sprint activities,
as this was an observed shortcoming in unaugmented models.

For activity augmentation, under-represented classes in the
training set are randomly oversampled until the number of
instances approximately matches that of the most represented
class. The on-screen command given to the subject is taken
as a proxy for the true activity class label. Since running and
sprinting have similar biomechanics, we consider them a single
class for activity oversampling.

When augmenting by the other two methods, we calculate
a characteristic value for each target sequence: the maximum
torque value (for max-augmentation), or the range between the
minimum and maximum torque values (for range augmen-
tation). The characteristic values are then grouped into five
histogram bins, and oversampling is performed as in the case
of activity-based augmentation, treating each bin as a class.
The results of data augmentation are compared against models
trained under the same conditions, but without augmentation.

F. Future Torque Predictions

Finally, we apply the LSTM model to the task of predicting
a sequence of future torques, beyond the time period of the
provided sensor inputs. Since we are associating future torque
labels with past sensor data as part of future prediction,
we consider first whether a “burn-in” time is required for
the LSTM to reach steady-state error. This occurs because
LSTMs produce outputs sequentially, and the first outputs are
produced when the LSTM memory is still being initialized.
While burn-in would not affect our augmentation and sequence
length comparisons (since they would consistently occur),
we measure it explicitly for these comparisons in order to
remove outputs from the burn-in period. All outputs after the
burn-in are for times that are after the time stamp of the last
sensor reading in the input, thus giving a torque prediction for
the immediate future.

IV. RESULTS

A. Neural Network Architectures

Two model accuracy metrics are reported for the sequence-
to-one regressions in Tables III and IV as root mean square
error and Pearson correlation, respectively. The LSTM model
had the lowest RMSE on average and across all activities
(Table III). Conversely, the dense feedforward and NODE had
higher error in many cases, even after the exclusion of two out-
lier folds that existed for Subject 1 (one that did not converge,
and one that was simply higher error). The non-converging
fold for dense feedforward was also a particularly high-error
outlier for NODE throughout all parameter sweeps for both,
indicating that it may have been due to the data from that
fold, rather than the learning method that caused the problem.
Though the same fold resulted in higher error for the LSTM,
it did not cause the numerical instability that occurred with the
feedforward model. Across all models, sprinting resulted in the
highest average error across activities, due to the larger torques
involved and errors in estimating very brief peak torques.
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Fig. 3. Root mean square error from all models by activity and subject. The same fold for Subject 1 that was excluded in Table III was also excluded
here. Note that Subject 1 has different y axis limits than the rest.

Fig. 4. 0-1 normalized ankle torque estimates (rows) vs target ankle torques (columns) using four methods for one fold from Subject 3. Each pixel
column has been also been normalized to sum to one in order to highlight cases with higher target torques, which occur much less frequently than
lower torques. Perfect agreement would mean a single line along the diagonal.

Similarly, the LSTM models resulted in the highest overall
correlation values with the ground truth joint torque values
(Table IV) across all activities.

Inter-subject variability was observed across model classes
and activity conditions (Figure 3). Apart from outliers, all
subjects had a similar order of magnitude of errors across
models, with a persistent pattern of higher error during higher-
torque locomotion.

For a representative subject and validation fold, heat maps of
the torque estimates vs target values are presented (Figure 4).
In these plots, a perfect set of regressions would appear as
a dark stripe along the diagonal. Here, we see that most the

dense feedforward and CNN tended to underestimate higher
target torque values, and a general trend of greater variance in
higher target torques can also be observed.

B. Sequence-to-Sequence Regression
and Data Augmentation

A summary of the RMSE values from an LSTM architecture
on varying target lengths for sequence-to-sequence regression
with the three types of data augmentation is shown in Figure 5.
The augmentation methods showed mixed results compared to
unaugmented training. Augmentation reduced the interquartile
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Fig. 5. Mean square errors from different target sequence lengths
(LSTM). All results use equal-length feature and target sequences
(sequence-to-sequence regression), except for 1*, which uses a length-
50 feature sequence and a length-1 target (sequence-to-one regression).
For clarity, outliers are not shown. In all cases, all outliers were on
the upper end of the distribution, and represented 11%-13% of the
corresponding sample.

range in the longer sequences (150, 300), particularly with
max and range augmentation. Distributions in sequence-to-
one regression remained the same, and augmentation may
have a negative effect in 0.5 s torque regression (Figure 5
and Figure 6, a and c). Although max-value augmentation
improved the match between the high-torque periods of run
(Figure 6, b vs. d), it degrades estimation during walk (a vs. c),
flattening the prediction (c) compared to the unaugmented
prediction (a). 3 s regressions showed similar differences
between unaugmented and max-augmented run gait cycles
(Figure 6, b vs. d and f vs. h), but walk gait cycles regression
(a vs. c) were generally flatter and closer to the cycle’s
mean value than in the 0.5 s case, both with and without
augmentation.

C. Future Torque Prediction

Our burn-in analysis (Figure 7) showed that for a length-50
(0.5 s) input and output sequence, a transient with consistently
high error occurred in the first 5-10 outputs produced by the
LSTM. Thus, for all subsequent future prediction analysis,
we shifted the torque labels such that there was 0.1 s overlap
with the end of the sensor data, and 0.4 s beyond the sensor
data. The first 0.1 s of each prediction was then removed. The
results for this future prediction, using activity-augmented data
is shown in Tables V and VI. These LSTM sequence predic-
tions show similar RMSE error to single-point regression, but
have higher variance (Tables III and V), and lower (though still
positive) correlation. Best- and worst-case prediction outputs
for walking and run/sprint are shown as gait cycle plots in
Figure 8 as examples.

V. DISCUSSION

A. Measurement Comparisons

In this work, we sought to broadly consider the effects of
using different types of modern neural network architectures
on a biomechanics mapping problem, and for the LSTM,
consider the task of future torque prediction. In contrast

to our previous comparisons of architectures used in the
literature [6], results between architectures here were less
varied, likely because the overall greater sophistication of
these networks allowed better learning of the task. Overall,
the LSTM models had higher average single-point estimation
accuracy (lower RMSE and higher correlation) than other
methods (Tables III and IV), even after outliers were rejected
from Dense Feedforward and Neural ODE. Moreover, the abil-
ity of the LSTM to perform well even in cases that led to
numerical instabilities in the feedforward model and additional
outliers in both the feedforward and the NODE means that the
LSTM may be a more stable method for these applications.
Importantly, we also see that the CNN did not perform notably
better than the other models (and indeed had the lowest overall
correlation) despite the fivefold greater number of tunable
parameters compared to the other models.

We found that a multi-metric approach was required to
appropriately describe model accuracy for joint torque esti-
mations during diverse movement activities. During quiet
standing, the average error was low, but the Pearson’s cor-
relation was also low (Tables III and IV). This difference
likely emerges from the relatively low amplitude joint torque
required for standing resulting in small differences when
compared to the inverse dynamics torques. Therefore, RMSE
may not be a particularly good indicator of accuracy for low-
torque activities. The walking gait cycles also illustrate this
point, as the regressions are qualitatively worse than those for
run/sprint (Figure 6). Conversely, high error occurred during
sprinting (2-3 times as high as during stand), while Pearson’s
correlation (≈0.8-0.9) was consistent with the other activities.
Finally, average accuracy values observed for a person or
activity do not describe the torque level-specific changes.
The heat maps and gait cycle plots provide an improved
understanding during which parts of the gait cycle the models
are providing the most accurate estimates of joint torque and
where the algorithms could be improved.

Nuances of describing model accuracy are also highlighted
in our future prediction results. Visual inspection by gait cycle
(Figure 8) shows that for some subjects, peak torques are still
potentially prone to underprediction, and peak timing may be
mis-predicted; RMSE does not account for such differences
directly. Gait parameters (e.g. peak timing and magnitude) may
be used with pre-defined torque profiles in some applications,
with differing emphasis placed on each, perhaps affecting the
choice of loss function.

The data used here present a challenge that can be seen from
the mixed results of our augmentation efforts. Augmentation
only appeared to benefit the longer sequences that were 1.5 and
3.0 s in length. Run and sprint periods are overrepresented in
terms of number of gait cycles (due to shorter gait cycles
than when walking), but are underrepresented in terms of
their torque characteristics, both in terms of the maximum
values and the range of values contained in any sequence from
these activities (again because of shorter cycles). Additionally,
the higher torque values during run/sprint means that they
contribute a disproportionately large amount to the RMSE.
Activity-based augmentation resulted in similar error distribu-
tions to unuagmented training (Figure 5), but max and range
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Fig. 6. Comparisons of two different output lengths (50 and 300, corresponding to 0.5 and 3.0 s) for sequence-to-sequence regression. Target
(Plug-In Gait) LSTM-estimated gait cycle torques for one trial from Subject 3. Shaded regions are one standard deviation from the mean. Top and
bottom rows of plots are unaugmented and max-augmented, respectively. Each plot represents 30-50 gait cycles.

TABLE V
LSTM FUTURE TORQUE PREDICTIONS ERRORS BY SUBJECT AND ACTIVITY

TABLE VI
LSTM FUTURE TORQUE PREDICTIONS CORRELATIONS BY SUBJECT AND ACTIVITY

Fig. 7. Min-max normalized mean error as a function of the sequence
number of an LSTM future prediction. Note the consistently higher error
present earlier in the prediction sequences. From this, a burn-in time
of 10 steps (0.1 s) was chosen for future prediction analysis.

data augmentation methods reduced overall error in some
cases (Figure 5), primarily benefiting run/sprint estimates at
the expense of walk estimates. Other ways to characterize
the locomotion data for oversampling or non-oversampling
augmentation methods could be explored, in addition to using

more task-specific network architectures (e.g. with subnet-
works for different activities). Related issues with data over-
sampling and other types of data augmentation are commonly
found in machine learning and data mining literature, with the
bulk of existing work addressing classification problems (i.e.,
image classification, fraud detection, text topic labeling, med-
ical diagnosis) but a substantial and growing base addressing
regression tasks [29], [30]. Such imbalance may be addressed
in data-preprocessing (e.g., oversampling), algorithm design
(e.g., modified neural network cost functions), post processing,
or a hybrid of the aforementioned stages; there is no one-size-
fits-all solution. In general, the data characteristics emphasized
through data augmentation approaches ought to match the
intended application, for example, peak amplitude and timing
for ankle torque assisting exoskeletons. It should be noted that
models trained specifically for a single locomotion type would
not encounter the same challenges we experienced with under-
or over-representation of gait cycles and target value ranges,
but would have narrower application.



1632 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021

Fig. 8. Best- and worst-case LSTM predictions of future torques up to 0.4 s in advance, by gait cycle percentage for walk and run/sprint.

B. Implications for Measurement and Robotic Control

Current modeling methods are limited by the accuracy of
the labels provided during training, and critically, by the
volume of data. It may be possible with a larger dataset for
neural networks to provide more accurate estimates despite
inaccuracies in the labels (e.g. Rolnik et al.’s work on classi-
fying images with corrupted training datasets [31]). However,
neural network robustness to label noise is less explored for
regression than for classification and will require further work.
Additionally, it may be possible to learn appropriate esti-
mations across individuals (testing on an unseen individual’s
data), as was done to some degree of success by Slade et al.
for metabolic expenditure measurements [22].

Apart from our work, Jacobs and Ferris [4] also showed
an example of ankle torque estimation during walking using
a neural network and wearable sensors. Our results are not
directly comparable due to sensor and procedure differences,
but we would expect that improvements seen here in using an
LSTM would also be transferable to their wearable system.

The ability to predict future joint torques may find useful
applications to robotic control, as a form of human intent
prediction. However, the best way to use such predictions
(e.g. direct torque prediction or higher-level parameters)
remains to be seen. Additionally for the case of wearable
robotics, any feedback effects on prediction capability when
the human is affected by external actuation remains to
be tested.

C. Limitations
The first major limitation of this study is the small number

of subjects (N = 4) and the subject-specific models. While the
results of these experiments are promising on an individual
level, variability in physiology, sensor placement, and other
factors affect the generalizability of these results. However,
the consistency of the accuracy trends between activities and
between neural network architectures is promising (Figure 3).

Our activity labels were based on commands given to
subjects, but subjects were on a self-paced treadmill. They
were not restricted to a specific gait speed and were able to
interpret the instructions differently (Table II). Similarly, tran-
sition periods between different activity conditions (e.g., stand
to walk) were also included in the analysis and may have
lowered the accuracy reported for the steady state conditions.
In future studies specific transition states may be uniquely
identified and treated separately.

All our models output left and right ankle torques simul-
taneously. This architecture has reduced computational cost
compared to independent left/right networks, but also means
that each ankle torque estimation had access to sensor infor-
mation from the opposite leg. While this may apply to some
cases of torque estimation, we should note that we did not
evaluate unilateral estimates independently.

Finally, the estimation models evaluated in this study all
assumed signal stationarity. Though subjects were given breaks
between trials, fatigue and task adaptation may alter the
underlying neuromechanics of gait during experimental ses-
sions. To compensate for these changes, models that have
longer-term dependencies may be required over medium-term
(e.g. a warehouse workday, a ruck march, etc.) and long-term
(e.g. increased strength and conditioning over week or months,
repetitive strain injuries, etc.) periods.

D. Future Work

A major barrier to operationalizing the work shown here
is the requirement that subject-specific data be collected in a
space with motion capture and instrumented force plates. Dif-
ferences between human subjects means the creation of a large
dataset of diverse biomechanical data remains a challenge,
though this difficulty may be alleviated as consumer-grade
wearable sensors become more powerful and less expensive.

Along similar lines, though we explored oversampling as a
method of data augmentation, another type of augmentation
— synthetic data generation — may also be useful. These
methods use existing data to generate new, similar data, using
approaches such as dynamic time warping [32] and generative
adversarial networks [33]. Synthetic data generation has been
shown to be effective for biosignal data augmentation, though
most studies that specifically test these types of augmentation
do so for classification, rather than regression problems. Addi-
tionally, lack of diversity in the underlying dataset — both of
movements and participant physiology — is unlikely to be
solved through augmentation alone.

Finally, the robustness of these methods to real-world
conditions and external perturbation must be considered.
In operational use cases, issues such as sensor dropout or
irregularly-spaced data streams are common. If these predic-
tions are used to control wearable robotics, the effects of
external physical perturbation by the robot itself also needs
to be examined.
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VI. CONCLUSION

In this study, human ankle torques were estimated using
sEMG and accelerometer data, leveraging subject-specific
models trained on torques from motion-capture-based inverse
dynamics. The effects of oversampling-based data augmen-
tation on network training were also evaluated, to mixed
results. A long short-term memory model provided the
best performance, and gave similar performance when esti-
mating instantaneous and sequences of torques up to 3 s
long. The model also showed promise as a way to pre-
dict immediate future human torques, beyond the range
of available data. The ability to use wearable sensors to
obtain joint dynamics estimations and future predictions may
be useful for both clinical and wearable robotic control
applications.
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