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A BCI-Based Vibrotactile Neurofeedback
Training Improves Motor Cortical Excitability

During Motor Imagery
Nikita A. Grigorev , Andrey O. Savosenkov, Maksim V. Lukoyanov , Anna Udoratina,

Natalia N. Shusharina, Alexander Ya. Kaplan, Alexander E. Hramov , Victor B. Kazantsev,
and Susanna Gordleeva

Abstract— In this study, we address the issue of
whether vibrotactile feedback can enhance the motor cor-
tex excitability translated into the plastic changes in local
cortical areas during motor imagery (MI) BCI-based train-
ing. For this purpose, we focused on two of the most
notable neurophysiological effects of MI – the event-related
desynchronization (ERD) level and the increase in cortical
excitability assessed with navigated transcranial magnetic
stimulation (nTMS). For TMS navigation, we used individual
high-resolution 3D brain MRIs. Ten BCI-naive and healthy
adults participated in this study. The MI (rest or left/right
hand imagery using Graz-BCI paradigm) tasks were per-
formed separately in the presence and absence of feedback.
To investigate how much the presence/absence of vibro-
tactile feedback in MI BCI-based training could contribute
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to the sensorimotor cortical activations, we compared the
MEPs amplitude during MI after training with and without
feedback. In addition, the ERD levels during MI BCI-based
training were investigated. Our findings provide evidence
that applying vibrotactile feedback during MI training leads
to (i) an enhancement of the desynchronization level of
mu-rhythm EEG patterns over the contralateral motor cor-
tex area corresponding to the MI of the non-dominant
hand; (ii) an increase in motor cortical excitability in hand
muscle representation corresponding to a muscle engaged
by the MI.

Index Terms— Brain–computer interfaces (BCI), vibro-
tactile feedback, motor imagery (MI), event-related desyn-
chronization (ERD), motor cortical excitability, navigated
transcranial magnetic stimulation (nTMS), motor evoked
potentials (MEPs).

I. INTRODUCTION

NEUROFEEDBACK (NF) is a type of biofeedback that
employs the registration and real-time feedback of brain

activity to users to promote neural self-regulation and improve
cognitive control. NF results in neuroplasticity in the trained
brain circuit and is being used in novel experimental and
clinical applications [1]. Maksimenko et. al. [2], [3] showed
that the brain-computer interface (BCI) based biological feed-
back affects visual perception and prolongs the periods of
sustained attention. As a variation of NF, training in motor
imagery (MI) based BCI is believed to be a helpful technique
in neurorehabilitation therapy of people with impaired motor
functions (e.g. patients with tetraplegia, spinal cord injury) and
patients with brain injuries (e.g. stroke, amyotrophic lateral
sclerosis) [4]–[6]. Therefore, considerable efforts have been
made to develop and study different paradigms of BCI-based
NF for recent reviews, see [6]–[9]. One of the key components
of BCI training is the feedback given to the subject to improve
the learning of an MI task and promote motivation and engage-
ment [10]. Traditionally, most MI-based NF systems have used
visual feedback due to the simplicity of its implementation and
understanding by the user [11]–[14]. However, in some cases,
visual feedback is not suitable, for example, for patients with
an impaired visual system [15] or under the circumstances
of the visual channel overload [16]–[19]. For these purposes,
other feedback modalities have been explored. For MI-based
NF training, closing the sensorimotor loop through haptic feed-
back can improve motor recovery through enhancing activity-
dependent neuroplasticity [20]–[23]. It has been widely shown
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that inclusion of anatomically congruent, proprioceptive feed-
back (such as robotic exoskeleton devices [24]–[26], func-
tional electrical stimulation [21]–[23], virtual reality [27]–[30],
vibrotactile stimulation [16], [19], [31]–[34], etc.) induced
NF effects superior to non-physiological feedback. Most
MI-based NF system use orthosis and exoskeletons as kines-
thetic feedback for research [24], [25], [36], [37] or for
clinical applications, especially for the rehabilitation of stroke
patients [20], [39]–[42].

Compared to robotic devices, vibrotactile interfaces with
proprioceptive feedback functions are more comfortable,
affordable, portable, cheaper and easier to implement. How-
ever, up until now, vibrotactile feedback has been scarcely
explored in BCI-based NF training applications (for a recent
review see [43]). The pioneering studies on this type of
haptic feedback were conducted by Chatterjee et al. [44],
Cincotti et al. [17]. They showed that users could control
MI-BCI using only vibrotactile feedback. Shu et al. [34]
proposed the integration scheme of the MI task with the con-
stant tactile stimulation applied to the non-dominant/paretic
hand of healthy and stroke individuals. It induced significant
enhancement of the contralateral cortical activations during
MI of the stimulated hand and, as a result, led to improved
BCI performance. A similar way of applying vibrotactile
stimulation for BCI accuracy improvement was presented by
Yao et al. [35] for a hybrid BCI system based on a combination
of MI with tactile sensation. Together with previous research,
their goal was to enhance MI via vibrostimulation [34] and
solve the “BCI illiteracy” problem [45]. In another study,
Barsotti et al. [33] showed that multisensory (visual and
vibrotactile) feedback enhanced the EEG event-related-
desynchronization (ERD) during MI and led to a better BCI
performance relative to using visual feedback only. In this
study, subjects received continuous tendon vibration feedback
during MI, according to the real-time decoded mental state.

It has been shown that MI promotes not only ERD but also
the enhancement of corticospinal excitability as evaluated from
the amplitudes of motor-evoked potentials (MEPs) [46]–[50]
induced by transcranial magnetic stimulation (TMS). TMS
is a non-invasive electrophysiological technique that allows
studying the excitability of different brain regions [51], [52].
Despite the numerous studies focused on the investigation of
the neurophysiological effects induced by the MI-based BCI,
little is known about how adding the feedback to BCI training
influences cortical excitability. However, it was shown that
increased motor cortex excitability during MI BCI-based NF
training can promote the plasticity in motor cortical areas,
which opens up a wide range of neurorehabilitation therapy
technologies [53], [54].

In our previous research, we proposed the BCI paradigm
employing only a vibrotactile channel – without the use of
visual control elements (with the eyes closed) [19]. We showed
that the characteristics of EEG activity, corticospinal excitabil-
ity, session-by-session dynamics, and the accuracy of BCI use
in this approach were at least no different from those in the
classical scheme with visual delivery of stimuli and feedback.
In this study, we address the issue of whether vibrotactile
feedback can enhance the motor cortex excitability translated

Fig. 1. Experimental paradigm. The experiment consisted of four ses-
sions, each taking place on separate experimental day. Day 1 - during the
first training session, the subjects trained kinesthetic left- or right-hand
MI. Trained subjects underwent magnetic resonance imaging (MRI) of the
head. Day 2 - the second session featured the BCI-based training without
vibrotactile feedback utilizing the classical Graz MI-BCI protocol. Day 3
- the third session was the control session. The subjects were asked to
perform a rest command regardless of the cue presented. Day 4 - the
fourth session featured vibrotactile NF training. During on-line testing,
if the MI or rest task was correctly classified, vibrotactile feedback was
applied to subjects. MEPs measurement was performed 30 min after the
last BCI training run on Days 2, 3, 4.

into the plastic changes in local cortical areas during MI BCI-
based training. For this purpose, we focused on two of the most
notable neurophysiological effects of MI – the ERD level and
the increase in cortical excitability assessed with navigated
transcranial magnetic stimulation (nTMS). The MI (rest or
left/right hand imagery using Graz-BCI paradigm) tasks were
performed separately in the presence and absence of feedback.
To investigate how much the addition of vibrotactile feedback
in MI BCI-based training could contribute to the sensorimotor
cortical activations, we compared the MEPs amplitude during
MI after training with and without feedback. In addition,
the ERD levels during MI BCI-based training sessions were
investigated.

II. METHODS

A. Subjects

Ten BCI-naive and healthy adults (6 females; age range
18-27 years old, mean ± SD: 22.5 ± 2.3) participated in
this study. All subjects were right-handed (mean ± SD:
0.80 ± 0.21 points according to the Edinburgh Handedness
Inventory). The protocol was realized in accordance with
the Declaration of Helsinki and approved by the Ethical
Committee of the Institute of Biology and Biomedicine of the
Lobachevsky State University of Nizhny Novgorod (Protocol
N.45 19.10.2020). All the participants gave their written
informed consent in advance.

B. Experimental Paradigm

The aim of this study was to apply BCI-based vibrotactile
NF training to improve the subject’s motor cortical activations
during MI. The experiment consisted of four sessions, each
taking place on a separate experimental day (training session,
MI BCI training session without vibrotactile feedback, control
session and MI BCI vibrotactile training session). To reduce
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Fig. 2. Timing of MI-BCI sessions without (a) and with (c) vibrotactile NF. (b) Timing for control session. MI - motor imagery, FB - vibrotactile
feedback.

the influence of sessions on each other, we added an interval
of at least three days between sessions. Figure 1 illustrates
the experimental paradigm procedure. During each session,
subjects were comfortably seated in a reclining chair, with
both arms positioned on armrests. The experimental scenarios
were displayed on a 27-inch LCD screen located at a distance
of 2 meters. Each experimental session lasted 2–2.5 h and
was followed by the TMS measurement (except the training
session).

In the first training session, the subjects trained in kines-
thetic left- or right-hand MI. The training consisted of three
sequential steps: hand movements, quasi-movements (muscle
tension is not observed visually), and MI. The subjects were
asked to clench their hands into a fist. The success of training
was determined by the ERD power in the sensorimotor cortex
during MI. The training progress was represented to the sub-
jects by voice. Trained subjects underwent magnetic resonance
imaging (MRI) of the head to build a 3D model of the brain
structures for nTMS.

The second session was the BCI-based training without
vibro feedback utilizing the classical Graz MI-BCI proto-
col [55]. This session consisted of three 5 min 5 s test runs
of 30 trials each. Figure 2a illustrates the MI-BCI proto-
col. Subjects performed one of three commands: kinesthetic
MI of left or right hand (fist clenching) or rest when the
subject had to concentrate on their breathing. Subjects were
asked to execute the command after they would see a visual
cue (Fig. 2a). Each command was repeated 10 times during
a testing run with randomized order. The duration of each
command was 5 s, and the interstimulus interval was 5 s
(Fig. 2a). During the interstimulus intervals, the subjects were
allowed to blink and swallow. Between testing runs, subjects
could rest as long as they felt necessary. The classifier analyzed

EEG every 500 ms. MEPs measurement was performed 30 min
after the last BCI training run.

The third session was the control. The subjects were asked
to perform the rest command regardless of the cue presented.
During each command, the subjects were stimulated via vibro-
tactile actuators for 200 ms with the interstimulus interval
of 500 ms (Fig.2b). The control session consisted of three runs
of 30 trials each and was followed by nTMS measurements.

Figure 2c illustrates the experimental protocol for the fourth
vibrotactile NF training session. The structure of the pro-
tocol was the same as in the second session of MI BCI
training. There were 3 test runs in this session. Each run
consisted of 30 command trials (kinesthetic MI of left or
right hand or rest) with randomized order. As the visual cue
appeared, the subjects performed the mental task for 4.9 s.
During the mental task, the online performance was tested
by classification of EEG in time windows of 500 ms. During
online testing, if the MI or rest task was correctly classified,
vibrotactile feedback was applied for 200 ms immediately
after the classification period ended. MEPs measurement was
performed 30 min after the last vibrotactile NF training run.

C. EEG Recording and Classification

For data acquisition, we used a 48-channel NVX-52 ampli-
fier (MKS, Zelenograd, Russia). The EEG data were recorded
from 6 standard Ag/AgCl electrodes (C5, C3, C1, C2, C4,
C6), placed according to the international 10-10 system
(Fig. 3a). The earlobe electrodes were used as a reference. The
grounding electrode was placed on the forehead. All electrode
impedances were kept below 15 k�. EEG was digitized with
a signal sampling frequency of 1 kHz and filtered in the
frequency range from 1-30 Hz with a 50 Hz Notch filter.
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Fig. 3. Experimental setup for MI-based BCI vibrotactile NF training
session. (a) EEG electrode distribution in the 10–10 system. (b) Subjects
were comfortably seated in a reclining chair, with both arms positioned
on armrests. The vibrotactile actuators were attached to the right and left
forearm and to the back of the neck in order to provide real-time feedback
of the successful decoding of MI of the right and left hand and of the rest
task, respectively.

The raw signals were bandpass filtered using the 4th-order
Butterworth filter at 7-16 Hz, followed by the calculation of the
coefficients for the common spatial pattern (CSP) filter [56].
We used the linear discriminant analysis (LDA) method to
classify the EEG patterns [57]. During online classification,
the classifier analyzed EEG every 500 ms. In the sessions
with vibrotactile stimulation, the time windows of feedback
application were removed from the classification. The second
and fourth experimental sessions started with the training of
the LDA classifier. For classifier training, we recorded a single
run. Time protocol of this run was the same as for the run
of MI-BCI session without feedback (Fig. 2a). The custom
Python script was used for data recording, classification and
feedback control.

The average classification accuracy for the three classes (the
MI of left/right hands and the rest task) was calculated as a
percentage of correct classification time (7 times in one trial).

To estimate ERD levels during MI, signals corresponding to
the rest task were taken as the reference state. The raw EEG
data were spatially filtered using the Surface Laplacian [58]
for all the channels. Then, the power spectral density was
constructed for each channel with a step of 1 Hz, and ERD
was calculated as the difference between the signal powers
during MI and the rest signal, which was divided by the
signal power corresponding to the rest task. Then for each
subject, an individual frequency range was chosen in which the
peak ERD was most often encountered. For statistical analysis,
in this individual frequency range, one value of the maximum
ERD was chosen in each 500 ms MI time window for each
electrode. In the sessions with feedback, the time intervals of
vibro stimulation were removed from the analysis.

D. Vibrotactile Feedback

We used flat linear resonant actuators (3 V, diameter 10 mm)
for tactile stimulation. The actuators were positioned on the
right and left forearm and on the back of the neck to feedback
the successful decoding of MI of the right and left hand
and the rest task, respectively (Fig. 3b). Actuators were fixed
on the skin using Velcro tapes. The actuators with selected

vibration parameters were operated by the Arduino Nano
microcontroller connected to a PC via ÑOM-port. To confirm a
correctly classified command, a vibration signal lasting 200 ms
was applied to a subject. The pattern and intensity of vibration
were chosen to give the user the most pleasant and distinct
feedback. We used the following stimulation parameters: the
pulse frequency was 500 Hz, pulse-width was 1.2 ms [59].
A vibrotactile stimulation was tested on subjects before the
experiment to ensure the stimulation can be perceived, is com-
fortable, and does not prevent them from freely performing the
required MI tasks.

E. MEPs Measurement

After control and BCI-based training sessions, if needed,
EEG caps were removed from the subjects, and they were
prepared for MEPs measurements. The preparation took about
30 min. Cortical excitability was only measured for the right
hand, as a measurement for both hands would have made the
experiment too long for the participants. MEPs were obtained
using nTMS. For navigation, we used the Localite TMS
Navigator system (Localite, Germany) with individual high-
resolution 3D brain MRI. For matching each subject’s head
and MRI data, we used three landmarks: left and right lateral
canthi and nose bridge. The navigator oriented individual
3D-MRI data to the subject’s head through infrared tracking
using a marker with spheres coated with a reflective surface.

While applying nTMS, muscle activity was continu-
ously monitored using electromyography (EMG). EMG was
recorded with pair of Ag/AgCl hat-shaped electrodes (COVI-
DIEN, USA) from flexor digitorum superficialis (DS) muscle
on the right hand. A ground electrode was placed on the left
forearm. The skin under the electrodes was prepared with
alcohol cotton swabs. Electrode impedances were kept below
15 k�. Signal was digitalized at 500 Hz using the Neuron-
Spectrum-5 amplifier (Neurosoft, Ivanovo, Russia) and filtered
with a 50 Hz Notch filter.

Single-pulse TMS was applied through a figure-of-eight
shaped coil (7 cm diameter) connected to a Neuro MS/D
magnetic stimulator (Neurosoft, Ivanovo, Russia) to the motor
cortex, in the optimal location to measure MEPs in the
contralateral area of the right hand DS (“hotspot”, [60]).
DS hotspot for each subject determined during the second
session was recorded by the navigator and used in subsequent
experimental days. The coil was positioned tangentially to the
skull with the handle pointing back and away from the midline
by 45◦. The resting motor threshold (RMT) was determined as
the minimum TMS intensity able to evoke MEPs larger than
50 μV in at least five out of ten consecutive trials [60]. TMS
intensity was fixed at 110 % of RMT (37 ± 5%) and kept
constant. Figure 4 illustrates the experimental setup.

At the end of each experimental days except the first,
we measured the changes in MEPs amplitude during MI
relative to rest condition. For this purpose, we recorded the
MEPs in two states. First, we recorded MEPs during the rest
state (reference), when subjects were comfortably seated in a
reclining chair, with both arms positioned on armrests, eyes
open, and fully relaxed. Then, MEPs during MI state were
collected, when subjects were asked to kinesthetically imagine
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Fig. 4. Experimental setup for MEPs measurement after BCI NF training.
To obtain MEPs, nTMS oriented by individual 3D-MRI data were used.
During rest and motor imagery TMS was applied to the sensorimotor
cortex of the right hand. MEPs were recorded by EMG data from the
flexor digitorum superficialis muscle on the right hand.

repetitive right fist clenching. We asked the subjects to try to
perform the fist-clenching imagery with a frequency of 2 sec-
onds in order to record MEPs at the moments approximately
corresponding to the intentions of clenching movement. There
were three runs at rest and during the MI task. Each run
was 2 min long and consisted of 60 stimuli with 0.5 Hz
frequency. There was a break of 1 min between runs. EMG
data were monitored in real-time during the entire duration of
the MEPs measurement to ensure that the coil orientation was
stable across stimulus delivery, and was recorded for offline
analysis. We used Neuron-Spectrum.NET software to measure
the amplitude of MEPs from peak-to-peak. MEPs during MI
state were normalized to median MEPs amplitude at rest state
for each experimental day separate.

F. Statistical Analysis

The significance of differences between sessions was
assessed using pairwise comparison with Wilcoxon signed-
rank tests. Statistical analysis of the individual subject’s data
was performed using a pairwise Mann-Whitney U-test. The
false discovery rate method was used for multiple testing
adjustments. Differences were determined to be statistically
significant at p < 0.05. All analyses were made in R 4.0.2 soft-
ware (R Core Team, 2020). Descriptive statistics of the ERD
levels and MEPs amplitudes per group are represented as “M
[Q1; Q3]”, where M—median, Q1—first quartile (quantile
0.25), and Q3—third quartile (quantile 0.75) of the group
samples.

III. RESULTS

To study how much the vibrotactile NF training could
contribute to the sensorimotor cortical activations during MI,
we employed three characteristics: BCI performance as clas-
sification accuracy, the ERD level, and the MEPs amplitudes.

A. Classification Accuracy

Classification accuracy of three mental tasks (left, right
hand MI and rest) during BCI training was compared for two

Fig. 5. Classification accuracy MI-based BCI for three classes (left/right
hand MI and rest) with and without vibrotactile feedback. Mean values
are shown with the standard error of the mean indicated by whiskers
(n = 90).

Fig. 6. The peak ERD levels over the contralateral C3 (a) and C4
(b) electrodes for MI training with and without feedback and for the control
session for all subjects (n = 10). The horizontal red lines indicate the
median, first and third quartile values, while the whiskers indicate the
1.5 IQR, each dot represents one subject. ∗-p<0.05; ∗∗-p<0.01.

variants: with and without vibrotactile feedback. Individual
average accuracies for each subject are depicted in Fig. 5.
All subjects showed classification accuracy above the chance
level of 0.33 for three classes. Vibrotactile feedback applied
to the subjects did not lead to statistically significant accuracy
changes (p = 1). For BCI without feedback, the mean accuracy
was 61%, SEM = 2.51% (n = 10), ranging from 51.7% to
76.2%; and with feedback, the mean accuracy was 61.5%,
SEM = 2.75% (n = 10), ranging from 45.1% to 72.6%.
Accuracy was calculated for 500 ms intervals of EEG. In the
session with feedback, the time windows of vibro stimulation
presence were removed from the classification.

B. ERD Levels Analysis

ERD levels were estimated for all the subjects using the
same EEG samples as for the classification accuracy calcu-
lation. The analysis also included the control session data.
EEG analysis in the control session showed that vibrotactile
stimulation did not induce pronounced ERD over the sensori-
motor cortex. Figure 6 depicts the peak ERD levels over the
electrodes C3 (a) and C4 (b) for MI training without/with
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Fig. 7. Comparisons of the peak ERD levels during right hand MI training over the contralateral C3 electrode (a) and during left hand MI training
over the electrode C4 (b) without and with applying vibrotactile feedback across all subjects (n = 210). Subjects with a significant increase in the
ERD in the presence of feedback are marked in bold. ∗-p<0.05; ∗∗-p<0.01; ∗ ∗ ∗-p<0.001; ∗ ∗ ∗∗-p<0.0001.

Fig. 8. Increase of MEPs amplitudes in flexor digitorum superficialis
(DS) muscle on the right hand during MI for all subjects (n = 10) after
BCI-based training sessions. The lines show individual changes for the
subjects.

feedback and for the control session. The maximum ERD
levels in the control session were −59.2[−65.6; −52.3]%
and −62.7[−78.2; −53.9]% for the C3 and Ñ4 electrodes,
respectively, and statistically differed from the ERD induced
by the MI (p<0.01). For the peak ERD levels over the
contralateral electrode C3 during right hand MI, no statistically
significant differences were found for BCI training with-
out (−82.1[−86.5; −77.0]%) as compared to (−86[−90.9;
−75.9]%) feedback (p = 0.193). However, applying the vibro-
tactile feedback during left hand MI training in BCI evoked
a significant decrease of the ERD over the electrode C4 (p
= 0.027). The peak ERD level on C4 was −84.5[−90.1;
−80.9]% and −89.7[−91.5; −85.7]% during left hand MI
training without and with feedback, respectively.

Figure 7 illustrates the ERD levels during MI over the
electrodes C3 (a) and C4 (b) of all subjects for BCI-based
training sessions without and with applying vibro feedback.
Three subjects (S4, S6, S8) showed a statistically significant
decrease in the ERD level for both right- and left-hand MI
training sessions in the presence of feedback. For subjects
S1, S2, and S5, feedback led to a significant decrease of the

ERD during only one hand MI (for S1, S2 - right hand MI;
for S5 - left hand MI). Subjects S9 and S10 did not show
significant changes in the ERD depending on the presence of
feedback. The feedback evoked a significant increase in the
ERD level for S3 during left hand MI and for S7 during the
right-hand MI.

C. MEPs Measurement

Using nTMS, cortex excitability measurement was per-
formed 30 min after all BCI-based training sessions (excluding
the first one). MI of right fist clenching resulted in a significant
(p<0.001) MEPs amplitude increase (Fig. 8) in flexor DS
muscle on the right hand for all subjects in all sessions with
median values ranged from 216% to 311% of the referential
state.

Figure 9 illustrates the results of within-subjects comparison
analysis of MEPs increases during MI after BCI-based training
without/with feedback and in the control. Feedback presence in
the MI BCI-based training led to statistically significant MEPs
amplitude increase for seven subjects (S1, S2, S4, S5, S8,
S9, S10) compared to training without feedback. Five subjects
(S3, S6, S7, S9, S10) showed the maximum MEPs increase
after the control session. The correlation analysis between the
MEPs amplitude increase and the ERD level did not reveal a
statistically significant relationship in the BCI-based training
sessions either without (Pearson’s r = −0.16, p = 0.66) or
with (Pearson’s r = −0.2, p = 0.58) feedback.

For all subjects, MI after BCI-training without feedback
resulted in a minimum MEPs increase (216[178; 246]%)
compared to the session with vibrotactile feedback and con-
trol (p<0.05) (Fig. 10). Analysis for the subject group did
not reveal a significant difference between amplitude MEPs
increase during MI after BCI-training with feedback (311[257,
391] %) and control session (307[195; 461] %) (p = 0.922).

IV. DISCUSSION

In this study, we used nTMS and the ERD levels analysis
to investigate the impact of introducing vibrotactile neuro-
feedback to the MI-based BCI training on motor cortical
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Fig. 9. Comparison of MEPs amplitude increase in DS during MI across all subjects after three different types of BCI-based training: without/with
feedback and in the control (n = 183). ∗-p<0.05; ∗∗-p<0.01; ∗ ∗ ∗-p<0.001; ∗ ∗ ∗∗-p<0.0001.

activations in healthy volunteers. Our findings provide evi-
dence that applying tactile feedback during MI leads to (i) an
enhancement of the desynchronization level of mu-rhythm
EEG patterns over the contralateral motor cortex area corre-
sponding to the MI of the non-dominant hand; (ii) an increase
in motor cortical excitability in hand muscle representation
corresponding to a muscle engaged by the MI.

A. BCI Performance

In our study, the average online classification accuracy was
61%, which is significantly higher than chance level 33%
for the three-state selection paradigm. This value is not high,
nevertheless, it is consistent with the previous studies [20],
[32], [33], [61]. The relatively low correct rate achieved could
be explained by the fact that the real-time classification of
MI within short time windows (500 ms in our study) is
more challenging compared with the full several-seconds-long
trial classification commonly used in similar studies. When
vibrotactile feedback was provided during each trial and not
at the end of each trial as previously suggested [62], and
was synchronized with the subject’s MI, the resulting haptic
stimulation turned out to be more congruent and resembling
natural bio-feedback.

The application of vibrotactile feedback did not influence
the classification accuracy, which is consistent with our previ-
ous studies [62] and with other studies, which showed that
the presence of the feedback does not always lead to an
improvement of recognition accuracy [26], [63]. However,
there are several studies on using vibrotactile stimulation
in a different paradigm that were able to provide evidence
that MI-based BCI performance can be enhanced via tactile
input [33]–[35].

The proprioceptive input, e.g., vibrotactile stimulation,
itself can evoke somatosensory event-related potentials and
modulate the cortical activity in a similar way to MI, but
independently of any volitional subject intention [64]–[67].
Usually, the effect of proprioceptive input on brain activity
is investigated during the period of haptic feedback applica-
tion [20], [25], [33], [35], which potentially leads to overlap of
the MI-related cortical activity by the additional input of the
feedback modality. In our study, we tried to avoid it by taking
into account the task-related cortical activity in the absence of
feedback only.

B. ERD Levels Analysis

Vibrotactile feedback during MI training induced signifi-
cant enhancement of ERD activity only for non-dominant,
left hand over contralateral motor cortex area measured in
C4 electrode. Although the ERD reaction corresponding to
the right-hand MI over contralateral C3 also became stronger,
it was not statistically significant due to a large variation
between subjects. A more noticeable feedback impact on the
ERD during left hand MI could be explained by handedness,
which resulted in asymmetrical cortical activations between
dominant and non-dominant hand MI [68]. The asymmetrical
cortical activations between different hands MI may reduce
the ERD lateralization. A previous study showed that non-
dominant hand MI evoked stronger ERD in the ipsilateral
sensorimotor cortex than in the contralateral sensorimotor
cortex [69]. Mizuguchi et al. [70], [71] and Shu et al. [34]
revealed that applying the tactile stimulation to the imagined
hand can enhance the contralateral cortical activations. Thus,
the vibrotactile feedback impact on the ERD during non-
dominant hand MI could be more expressed.
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Fig. 10. Comparison of amplitude MEPs increase in DS during MI for
all subjects after three different types of BCI-based training: without/with
feedback and in the control (n = 10). ∗-p<0.05.

Feedback-induced increase in the ERD levels did not lead
to improved MI BCI classification accuracy. This fact could
be explained as the nonlinear relationship of these two char-
acteristics since feature extraction for the MI classification
using CSP takes into account the pattern of EEG activity at
all electrodes, not just at C3 and C4.

C. Cortex Excitability Measurement

In line with previous studies [46], [47], [72], [73], we saw
that MEPs were significantly enhanced during the hand MI
task in all subjects. In this study, we found clear evidence
that applying the vibrotactile stimulation and including it
as the feedback into MI training significantly increased the
motor cortical excitability. For seven subjects out of 10,
MI practice with feedback resulted in a significant MEPs
increase compared to MI after training without feedback. For
two subjects (S3, S7) feedback application did not lead to
statistically significant MEPs changes. For the subject S6,
MI training with feedback led to the MEPs decrease.

Interestingly, five subjects (S3, S6, S7, S9, S10) showed
the maximum MEPs facilitation after the control session. This
is probably due to the fact that in the control session vibro
stimulation was applied constantly with an interval of 500 ms
(simulating 100% accuracy of the MI task recognition). This
led to the fact that the number of tactile stimuli in the control
session was about 40% higher than in the MI BCI training
session. Such intense proprioceptive input can evoke strong
activation of cortical areas.

These results did not reveal a difference between MEPs
increase induced by BCI-training with feedback and by only
vibrotactile stimulation in control session. This indicates that
the motor cortical excitability increase can be evoked by the
vibrotactile stimulation. A key aspect of integrating the vibro-
tactile stimulation with the decoding of movement intentions
using a BCI is an artificially chosen sensorimotor feedback
loop. The synchronization of proprioceptive stimulation with
movement intention is likely to evoke increased cortical plas-
ticity due to Hebbian-type learning rules and can be used in
stroke rehabilitation [1], [20], [74].

In this work, an increase in the motor cortex excitability
was recorded 30 min after NF training. Long-lasting increase
in cortical excitability induced by the combination of afferent
feedback with MI was also demonstrated in another study [54].
It indicates that BCI-based vibrotactile NF training can entail
long-term effects that can improve stroke therapy.

We did not find the correlation between the MEPs amplitude
increase and the ERD levels. Although subjects (S1, S2,
S4, S8) with the strongest ERD level tended to have a
higher increase in cortical excitability, a statistically significant
correlation was not observed. This finding is consistent with
the similar study of Kaplan [50]. This can be explained by
the fact that the MI-induced ERD is an indicator of the
general inhibitory input into the vast cortical areas. In contrast,
motor cortical excitability represents the state of the particular
neuronal circuit corresponding to a discrete muscle. It was
believed that MI promotes activation of local cortical pathways
engaged in the imagined movement, but does not necessarily
affect the general inhibitory output of thalamocortical circuits.

This research, however, has several limitations. The first
one is the small number of subjects and the absence in subject
group people with motor disabilities. Secondly, the age of
the subjects does not allow extrapolation of the results to
the elderly people, who constitute the majority among people
for whom BCI can be helpful in restoring motor function.
It is well known that motor acts in elderly subjects have a
number of features of sensorimotor integration [75]–[78],
which will undoubtedly affect the result and effectiveness of
neuro-feedback in this case. The study of how a BCI-based
vibrotactile neurofeedback training can influence the motor
cortical excitability of elderly persons and stroke patients may
be a subject for future research. In this regard, our approach
for delivering haptic feedback through vibrotactile stimulation
has a number of advantages for use in clinical conditions
such as usability, portability, and low cost in comparison
with other types of proprioceptive feedback systems such as
exoskeletons devices.

V. CONCLUSION

In this work, we explored the effects of vibrotactile
feedback on MI BCI-based training. We found that applying
the vibrotactile stimulation and its including as the feedback
in the MI training paradigm significantly enhances the motor
cortical excitability. Moreover, we showed that adding the
vibrotactile feedback in the MI-based BCI increased the
contralateral ERD level for non-dominant hand MI. Thus,
integrating MI training with vibrotactile feedback can lead
to plastic changes in the motor cortex. Finally, our results
demonstrate the benefits of using the BCI-based vibrotactile
neurofeedback training for recovery of motor function, e.g.,
after stroke. The findings of our work could be relevant for
improving training protocols for rehabilitative interventions
after damage to motor cortical areas.
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