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A Temporal-Spectral-Based Squeeze-and-
Excitation Feature Fusion Network for

Motor Imagery EEG Decoding
Yang Li , Lianghui Guo, Yu Liu , Jingyu Liu , and Fangang Meng

Abstract— Motor imagery (MI) electroencephalography
(EEG) decoding plays an important role in brain-computer
interface (BCI), which enables motor-disabled patients to
communicate with the outside world via external devices.
Recent deep learning methods, which fail to fully explore
both deep-temporal characterizations in EEGs itself and
multi-spectral information in different rhythms, generally
ignore the temporal or spectral dependencies in MI-EEG.
Also, the lack of effective feature fusion probably leads to
redundant or irrelative information and thus fails to achieve
the most discriminative features, resulting in the limited
MI-EEG decoding performance. To address these issues,
in this paper, a MI-EEG decoding framework is proposed,
which uses a novel temporal-spectral-based squeeze-
and-excitation feature fusion network (TS-SEFFNet). First,
the deep-temporal convolution block (DT-Conv block) imple-
ments convolutions in a cascade architecture, which
extracts high-dimension temporal representations from
raw EEG signals. Second, the multi-spectral convolution
block (MS-Conv block) is then conducted in parallel using
multi-level wavelet convolutions to capture discriminative
spectral features from corresponding clinical subbands.
Finally, the proposed squeeze-and-excitation feature fusion
block (SE-Feature-Fusion block) maps the deep-temporal
and multi-spectral features into comprehensive fused fea-
ture maps, which highlights channel-wisefeature responses
by constructing interdependencies among different domain
features. Competitive experimental results on two public
datasets demonstrate that our method is able to achieve
promising decoding performance compared with the state-
of-the-art methods.
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I. INTRODUCTION

THE brain computer interface (BCI) creatively provides
new ways for communication between human and com-

puters by analyzing the electric signals generated by brain
and translating them into real commands [1], which helps
to control the external devices. With fast development of
human-computer interaction technology, MI-EEG signals are
widely used in BCI researches, which study the triggered
neural activities in brain areas relevant to imagery body move-
ments [2]. If these imagery-movement based neural activities
are decoded correctly, people with severe motor diseases can
control external devices via the decoded MI-EEG signals [3].
Therefore, the MI-EEG based pattern recognition and correct
decoding are important in these BCI systems. However, it is
difficult to realize effective MI-EEG decoding due to the low
signal to noise ratio (SNR), non-stationarity in signals and
individual differences of subjects [4].

In order to realize MI-EEG decoding, many machine learn-
ing algorithms have been proposed [5]–[9]. For example, the
Common Spatial Pattern (CSP) was a powerful algorithm in
discriminating MI-EEG signals [6], which constructed spatial
filters and extracted time-frequency features effectively. Ang
et al. [7] utilized filter bank CSP (FBSCP) to extract the
optimal spatial features from a group of bandpass filters.
Saha et al. further [10] used CSP with Joint Approximate
Diagonalization (JAD) and applied wavelet decomposition as
the feature extraction method, which generated the subband
energy and entropy of EEG. However, these methods above
highly focused on the energy features of EEG, which failed
to obtain features with high discrimination from raw EEG
signals subject-dependently, and thus limited the decoding
performance of MI-EEG [9].

Deep learning algorithms tackled the above problems to
some extent by exploiting MI-EEG patterns in a data driven
manner. For instance, Chen et al. [11] developed a decoding
framework including a filter bank spatial filtering and a
designed convolutional neural network (CNN). Zhao et al. [12]
also built a multi-branch 3D CNN framework by transforming
EEG into series of 2D array, which focused on the spatial
distribution of electrode signals. Zhang et al. [13] further
designed a hybrid network for spatial and temporal feature
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extraction. However, the conventional convolution operation
behaves essentially similar to the low-pass filter, which leads
to the loss of component in high frequency bands [14]. These
deficiencies indicated that incomplete temporal or spatial
analysis in end-to-end CNN framework perhaps undermined
the severe non-stationarity of EEG. In summary, recent deep
learning methods were limited in MI-EEG decoding since
spectral, temporal and spatial information are seldom con-
sidered simultaneously and discriminative features are not
extracted effectively.

In order to address these weaknesses, some recent studies
started to explore multi-domain information in EEG recogni-
tion. Sakhavi et al. [15] utilized a FBCSP to generate temporal
representations of EEG which were then fed into a CNN for
the EEG classification. In addition, the spiking neural network
was used [16] and combined with OVR (One-Vs-Rest) FBCSP
which extracted temporal-frequency features from multiple
MI-EEG. Li et al. [14] further investigated multi-domain
representation of EEG and performed spectral and tempo-
ral analysis together with a designed CNN. However, some
limitations still exist in these methods. First, most widely
used methods decoded MI-EEG based on shallow feature
extraction, and the absence of deeper information leaded to
inaccurate decoding results. Second, these methods tended to
investigate temporal or spectral features separately and com-
bined the captured features directly, which probably leaded to
information redundancy since they neglected the importance of
effective feature fusion. Consequently, it is far from enough to
blindly combine parallel algorithms for discriminative feature
extraction. Recently, the attention unit named squeeze-and-
excitation (SE) was developed to emphasize the informative
channel-wise feature [17]. Inspired by its advantages, we aim
to adopt the highly recognition performance of the SE to boost
the most discriminative temporal and spectral features and
further implement feature fusion effectively.

To address the issues above, in this paper, we develop
a novel end-to-end MI-EEG decoding framework, named a
temporal-spectral-based squeeze-and-excitation feature fusion
network (TS-SEFFNet), which involves five subblocks as
follows. First, raw MI-EEG signals are embedded into pre-
liminary representations via the spatio-temporal block, which
extracts coarse temporal representation and spatial dependen-
cies simultaneously. Second, the deep-temporal convolution
block (DT-Conv block) further employs several temporal conv
units to capture crucial dynamic temporal features from a
higher level. Meanwhile, the multi-spectral convolution block
(MS-Conv block) aims to obtain multi-spectral EEG represen-
tations corresponding to certain clinical frequency subbands.
EEG signals are further mapped into deep-temporal and multi-
spectral representations parallelly by the previous feature
extracting blocks. Moreover, in order to effectively fuse the
temporal-spectral features, the squeeze-and-excitation feature
fusion block (SE-Feature-Fusion block) is designed to apply
higher weights on more discriminative feature maps when
implementing the feature fusion, which alleviates the problem
of feature redundancy compared to the direct fusion. Finally,
the fused features are fed into the classification block. The
proposed TS-SEFFNet is evaluated on two public datasets and

gains better performance compared with the state-of-the-art
algorithms, demonstrating its efficacy in MI-EEG decoding.

Main contributions of this paper are summarized as follows:
1) We propose a novel TS-SEFFNet for MI-EEG decoding,

which integrates both deep-temporal and multi-spectral fea-
ture extraction into the deep learning model simultaneously.
Particularly, the proposed TS-SEFFNet captures features of
MI-EEG more sensitively and accurately than the widely used
spatio-temporal-based model.

2) We design a DT-Conv block to extract high-dimensional
information from MI-EEG, which generates important
dynamic temporal features of EEG signals and avoids the loss
of high-level representation in shallow networks.

3) We introduce a MS-Conv block to implement powerful
spectral feature extraction and supplement the decoding model
with discriminative multi-spectral information, which effec-
tively solves the problem of insufficient feature extraction in
single spectral networks.

4) An attention-based fusion method named SE-Feature-
Fusion is adopted to alleviate the problem of information
redundancy caused by direct fusion, which efficiently extracts
the most discriminative features while suppressing the less
informative features, and thus boosts the decoding perfor-
mance.

II. METHODOLOGY

This section describes the notations and definitions used
in this paper. First, we give a detailed interpretation of the
proposed TS-SEFFNet and describe each subblock of the
whole net, including spatio-temporal block, DT-Conv block,
MS-Conv block, SE-Feature-Fusion block and classification
block, respectively. Then, we show the overall scheme of
the MI-EEG decoding process. Finally, we summarize the
proposed TS-SEFFNet.

A. Notations and Definitions

The raw EEG signals are defined as E = {(Xi , yi )|i =
1, 2, . . . , N}, where Xi ∈ RC×K is a two-dimension array
representing the i -th EEG trial with C channels and K
samples. N is the total number of EEG signal trials. yi is the
corresponding label of Xi and takes its value from set L which
contains M classes in a motor imagery task. For example,
a four-type motor imagery dataset contains its corresponding
label set: L = {l1 = “le f t”, l2 = “right”, l3 = “ f eet”, l4 =
“rest”}. The shape of the feature map in the model is defined
as (m @ c × t), describing number, width and length of the
feature map respectively. The size of each convolutional filter
kernel is denoted as c × t , where c is the channel dimension
and t is the time dimension.

B. Temporal-Spectral-Based Squeeze-and-Excitation
Feature Fusion Network

In this section, we detailly demonstrate our proposed
TS-SEFFNet, which is showed in Fig. 1.

1) The Design of the Spatio-Temporal Block: EEG signals
contain abundant temporal, spatial and spectral features which
are difficult to define manually [18]. Therefore, as the first
part of the proposed decoding framework, the spatio-temporal
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Fig. 1. An illustration of the proposed TS-SEFFNet architecture.

block applies CNN to directly extract preliminary features
from EEG signals. Fig. 1(a) shows the structure of the spatio-
temporal block, which includes the shape transforming layer,
the temporal convolution layer and the spatial convolution
layer. Raw EEG signals are firstly transformed from the
original temporal representation into 2D maps. Additionally,
in order to extract spatial features and temporal depen-
dencies from raw EEG signals, the spatio-temporal block
firstly performs a convolution over time with the kernel
size 1× 11 [19], and then the second convolution implements
a spatial filtering with the size of c×1 over all channels.
These two layers implicitly transform EEG signals into a
combination of temporal and spatial representation. Expo-
nential linear unit (ELU) [19] and batch-normalization are
further adopted after the spatial convolution layer. As a result,
the spatio-temporal block generates a set of low-level EEG
representations, which are then fed into both MS-Conv block
and DT-Conv block for further feature extraction.

2) The Design of the DT-Conv Block: Since the above
spatio-temporal features obtained are relatively coarse and
not informative enough, deeper feature extraction method is
highly necessary. In this block, in order to further explore
deeper temporal features, a DT-Conv block is designed by
using successive convolution units among time dimension.

Fig. 1(b) is the layout of the DT-Conv block, which includes
U designed units named Temporal Conv unit, and the structure
of each unit is given in Fig. 2(a). Each unit starts from a max-
ing pooling layer with the size of 1× 3, generating a coarser
representation of EEG features by down-sampling [20].

Fig. 2. The architecture of the proposed (a) Temporal Conv Unit,
(b) SE-Feature-Fusion Block.

Then a temporal convolution with a kernel size 1 × 11 is
employed, which aims at producing deeper scale information.
Additionally, dropout and batch-normalization operations are
adopted in each unit which alleviate the overfitting problem
caused by the inadequacy of EEG data [21]. The DT-Conv
block arranges all the units in sequence, and deeper EEG
representations are then extracted from the elementary shallow
spatio-temporal features. The number of units U and the length
of kernel size are tuned by the classification performance,
which are demonstrated in Section-III in detail.

3) The Design of the MS-Conv Block: The efficient extraction
of EEG spectral component is important in MI-based BCI,
which is particularly challenging due to the non-stationarity
of EEG [22]. Therefore, in order to integrate spectral analysis
into an end-to-end model without increasing computational
cost, a MS-Conv block is proposed by using a series of
wavelet convolutions to obtain multi-spectral representations
corresponding to five clinical bands and further concatenate
them into multi-spectral features.

Concretely, Fig. 1(c) shows the layout of the MS-Conv
block. In order to integrate the spectral feature extraction into
the proposed TS-SEFFNet, we design a convolution operator
named wavelet convolution (WaveConv), which implements
the wavelet decomposition on EEG representation via convo-
lution layer [14]. Daubechies order-4 (Db4) wavelet has good
orthogonality property and efficient filter implementation [23],
which involves no learnable parameters in a WaveConv. Pre-
vious study also reported that Db4 wavelet is useful for the
spectral feature extraction due to its high correlation coeffi-
cients with brain signals [14], and thus Db4 is chosen in this
paper. After a series of WaveConv layers, the EEG represen-
tations are decomposed into coefficients corresponding to five
frequency subbands that satisfy the clinical interests [24], [25]:
0-4Hz (δ rhythm), 4-8Hz (θ rhythm), 8-12Hz (α rhythm),
13-30Hz (β rhythm), 30-50Hz (γ rhythm). Given the input
EEG representation x , the WaveConv at time sample t is
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defined by:
x A (t) =

∑R

r=0
x (s × t − k)× u (r)

xD (t) =
∑R

r=0
x (s × t − k)× v (r) (1)

where u and v represent a pair of wavelet filters, named
approximation filter and detail filter, xA and xD refer to
approximation coefficients and detail coefficients, respectively.
R and s are the kernel size and stride in a WaveConv. In order
to attain the five subbands aforementioned, the number of
WaveConv layer V is decided by the sampling rate of EEG
signals: V = ⌊

log2 ( fs)
⌋− 3. fs is the original sampling rate

of EEG signals, and �·� means the rounding-down operation.
The stride and kernel size of the WaveConv are set to 2 and
8 respectively [14], both of which consist with the order of
the Daubechies wavelet filter. Since we implement the wavelet
decomposition by the means of convolution, xA and xD are
calculated together in the same convolution layer and then
separated. Consequently, the number of output channel is twice
as large as the number of input channel, which guarantees the
same channel number after the following separating operation.
Suppose that input channel number is R, and the 2R output
channels are separated into approximation coefficients and
detail coefficients, which are defined by:

x A = {xw(c)|c = 1, 3, . . . , 2R − 1}
xD = {xw(c)|c = 2, 4, . . . , 2R} (2)

where xw is the output of each WaveConv, c refers to the
channel index. For each input channel, a pair of wavelet
filters (u, v) is applied and two output channels are generated.
In this way, xA and xD are arranged alternatively in the output
channels, so they need to be picked alternatively by Eq. (2).
Furthermore, we apply a special padding method to transform
the WaveConv results into periodic and smooth representa-
tions, which alleviates the distortion problem especially in
head and tail of signals after the wavelet convolution [14].
Given the 1-D input x A, the periodic padding is defined by:
x̃ A = x A(K − h/

2 + 1), . . . , x A (K − 1) ©x A (0) , . . . ,

x A (K − 1) ©x A (0) , . . . , x A(h
/
2− 2) (3)

where x̃ A represent the padding result of x A, and © refers
to the concatenating operation. K is the length of signals,
and h refers to the kernel size of wavelet convolutions.
As a result, the MS-Conv block generates parallel groups of
primary intra-rhythm spectral representations via the designed
WaveConv.

4) The Design of SE-Feature-Fusion Block: From the afore-
mentioned blocks, deep-temporal and multi-spectral features
are captured independently. However, although extracting
abundant features is proved to be helpful in MI-EEG decoding,
irrelevant or redundant information are usually inevitable if
directly combing all features [26]. Therefore, in order to
effectively fuse the features, a SE-Feature-Fusion block is
employed to solve the redundancy problem in feature fusion
and emphasize the most discriminative features.

Considering the selection of feature subset can signifi-
cantly benefit the performance of the motor imagery EEG

classification [27], we introduce a variant of SE operation,
termed squeeze-excitation-convolution (SEC) unit, to enable
the model to emphasize the most informative features in the
feature fusion process. Fig. 2(b) depicts the structures of the
SEC-based SE-Feature-Fusion block. For the input feature
maps, the SEC unit recalibrates the features by performing
a “squeeze” operation, which aggregates feature maps across
time dimension to produce a descriptor [17]. Specifically, in
order to use the information of channel dependencies, the
“squeeze” operation firstly performs global-average pooling
on the input feature maps to squeeze global information,
which achieves the purpose of generating channel-wise statis-
tic features. Formally, the statistic output calculated by global-
average pooling are defined by:

zsq = 1

T

∑T

t=1
xs (m, c, t) (4)

where xs ∈ Rm×c×t is the input feature maps, T is the
length of the time samples, and zsq is the squeezing result.
After extracting channel-wise information from the “squeeze”
operation, the following “excitation” operation is applied to
fully utilize the channel dependencies. This is achieved by
two fully-connection (FC) layers, the ELU function and the
Softmax function. Then we apply the generated channel infor-
mation to the input features by a multiplication between the
learned channel weights and feature maps. The output of the
SE operation is denoted by:

zse = σ
(
W1ε

(
W2zsq

))
xs (5)

where W1 and W2 refer to the weights of first and second fully-
connection respectively, ε(·) is the ELU function, σ(·) is the
Softmax function, zse is the multiplying result of the SE oper-
ation. Compared with the original excitation operation [17],
we choose Softmax instead of Sigmoid, since the size infor-
mation between the input vectors are preserved after the
Softmax. Additionally, the reduction ratio r in SEC unit is set
to 8. All these nonlinear and hyperparameter settings will be
discussed in Section-III. After the channel-wise multiplying,
a 1-D convolution is applied to each channel to further extract
significant features and match the size of the temporal and
spectral feature maps. An adaptive pooling is then followed
to reduce feature shapes and generate coarser representations.
Finally, the output of the SEC unit is obtained by:

xsec = 1

T̃

∑T̃

t=1
Conv (zse) (m, c, t) (6)

where xsec is the final output of the SEC unit, Conv(·) refers
to the convolution, T̃ is the length of time samples after
the convolution, and the summation represents the adaptive
pooling. Finally, by concatenating the outputs of the two SEC
units, the SE-Feature-Fusion block generates fused feature
maps, which is shown in Fig. 2(b).

5) The Design of Classification Block: Based on the previ-
ously fused temporal-spectral features, the classification block
is designed to give the final decoding results. First, all feature
maps are flattened into 1-D feature vector. The vector is
then fed into the fully-connection layer. Finally, the Softmax
function transforms the outputs into classification probabilities.



1538 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021

Consequently, the label with the max probability is considered
as the final decoding result.

In summary, the optimizing procedure of the proposed
decoding framework is shown in Algorithm 1.

Algorithm 1: The Optimization Steps of the Proposed
TS- SEFFNet Method
Input: MI-EEG training set Etrain , validation set Eval ,
learning rate ζ , early stop patience τ , regularization
weight λ, the proposed TS-SEFFNet Net (·);
Output: The decoding results O of MI-EEG;
Initialize data Xi in one batch with i = 1, 2, . . . , N ;
Initialize parameters in the proposed TS-SEFFNet as
�(0), ζ = 1× 10−3, λ = 1× 10−2, q = 0, e = 0,
τ = 160, κmax = 0, epochmax = 1000;

1 while q < epochmax and e ≤ τ
2 q ++;
3 Generate conditional probability p j = Net (�(q), Xi );
4 Calculate loss J (q) on Etrain by Eq. (7);
5 Calculate the gradient g = ∇ J (q);
6 Calculate average accuracy κ(q) on Eval;
7 if κ(q) ≤ κmax

8 e ++;
9 else

10 e← 0;
11 κmax ← κ(q);
12 Update parameters �(q+1)← �(q) − ζ × g;
13 end while
14 Combine Etrain and Eval into one set E ;
15 while q < 2epochmax and κ(q) ≤ κmax

16 q ++;
17 Generate conditional probability p j = Net (Xi );
18 Calculate loss J (q) on E by Eq. (7);
19 Calculate the gradient g = ∇ J (q);
20 Calculate average accuracy κ(q) on E ;
21 Update parameters �(q+1)← �(q) − ζ × g;
22 end while
23 Get the decoding results O = Net

(
�(q), Xi

)
.

Specifically, the raw signals are firstly filtered into a
third-order Butterworth bandpass filter [28] before fed into
the TS-SEFFNet, which helps to minimize artifacts and infor-
mation with low relevance. Additionally, for two datasets,
we adopt an early stopping strategy [28] during the training
phase. The original training set is split into two folds (training
set and validation set). When the validation accuracy does not
increase after the early stop patience τ , the training process is
stopped. After that, the second training phase starts from the
parameters saved in the first stop. The early stopping generally
makes it possible to train on different datasets without deciding
the number of epochs manually. Moreover, the early stopping
avoids the overfitting problem since the training stops at the
best epoch. If the training continues after the best epoch,
the model generalization ability probably decreases badly.
Finally, the model is trained by minimizing the cross-entropy

loss J between model predictions and labels:

J =
∑N

j=1

∑M

i=1
− log (pi ) ω

(
y j = li

)+ λ ��� (7)

where p j is the j -th conditional probability generated by
the model, l j is the j -th class from label set L, ω(·) is the
indicator function. � represents learnable parameters of the
model, �·� is the regularization item for alleviating the over-
fitting problem, and λ refers to the trade-off regularization
weight. We normalize the initial weights �(0) of the proposed
TS-SEFFNet with zero mean and variance of 1. The detail
model initialization is given in Algorithm 1.

III. EXPERIMENTAL RESULTS

A. EEG Datasets

The effectiveness of the proposed TS-SEFFNet is evaluated
on two public MI-EEG datasets which are described in this
section.

1) BCI Competition 2008 IV 2a Dataset: (BCI IV 2a) [29]
consists of EEG data from 9 subjects. This BCI paradigm
is cue-based, including four different MI tasks (left hand,
right hand, feet and tongue). Each subject has two sessions
and there are 288 trials (72 for each class) per session. The
EEG signals were recorded at 250 Hz by 25 electrodes, and
the three EOG electrodes are not used for decoding. In this
paper, the proposed TS-SEFFNet is trained on the first session
(288 trials) and tested on the second session (288 trials). The
raw signals are filtered by third-order Butterworth lowpass
filter into 0-38Hz [28] before training and testing, which helps
to minimize artifacts and information with low relevance.

2) High Gamma Dataset: (HGD) [28] was recorded by
128 electrodes, including EEG signals from 14 healthy sub-
jects. HGD also consists of four different MI tasks (left hand,
right hand, feet and rest). Approximately there are 880 trials
for training and 160 trials for testing in each subject, and
the signal sampling rate is 500 Hz. In this paper, HGD is
pre-processed by following the same steps in [28]. First,
the 44 electrodes which cover the motor cortex are selected for
MI-EEG decoding. Second, signals are filtered by third-order
Butterworth lowpass filter into 0-125Hz. Next, the HGD is
resampled to 250Hz, i.e., the same as the BCI IV 2a. Note that
resampling for HGD is necessary, which makes it able to use a
unified hyperparameter settings for the proposed deep-learning
framework for both datasets. The 44 selected electrodes can
be found in [28].

For both datasets, EEG signals of each trial were extracted
by using the same time window [−0.5s, 4s] (relative to the cue
onset). In addition, the original training set for each subject in
both datasets is divided into ten folds (nine for training and
one for validation). Detailed data segmentation can be found
in Table I.

B. Evaluation Metrics and Models

In the experiments, we use classification accuracy (ACC)
[26], Cohen’s kappa coefficient (K) [11], F1-score (F1) [30]
and area under curve (AUC) [31] to evaluate the proposed
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TABLE I
DATA SEGMENTATION FOR EACH SUBJECT IN TWO DATASETS

TS-SEFFNet, where the Cohen’s kappa coefficient is denoted
by:

K = ACC − pe

1− pe

pe =
∑M

i=1 n:i ni:
N2 (8)

where pe represents the chance agreement. n:i and ni: are the
sum of the i -th column and the i -th row of the confusion
matrix respectively. M refers to the class number and N is
the sum of all entries in the confusion matrix.

We use three baseline models to make overall comparison
with the proposed method. All these models are retested on
two datasets in this paper. Brief descriptions of the compared
baseline models are given as follows:
1) Shallow ConvNet [28]: This is a deep learning model with

two simple convolution layers and a mean pooling layer,
which has shown its ability in MI-EEG decoding.

2) Deep ConvNet [28]: This is a deeper model compared
to Shallow ConvNet, using three more convolution layers
among time dimension, which is probably more suitable
when dealing with larger dataset.

3) CP-MixedNet [19]: This model uses multi-scale EEG fea-
tures generated from several convolution layers, and each
layer extracts EEG temporal representation from different
scales.

Additionally, for further investigating the importance of
each block in our TS-SEFFNet, we propose some simplified
models to conduct ablation studies, which are introduced as
follows:
1) Temporal-ConvNet: This convolutional network includes

the spatio-temporal block, the DT-Conv block and the
classification block, extracting deep-temporal features only.

2) Spectral-ConvNet: This network contains spatio-temporal
block, MS-Conv block and classification block, merely
extracting multi-spectral features.

3) TS-ConvNet: This network involves the spatio-temporal
block, the DT-Conv block, the MS-Conv block, and the
classification block, which uses naive feature fusion that
merely concatenates temporal and spectral features.

C. Overall Performance

The proposed TS-SEFFNet is a more competitive method
in the presence of the deep-temporal feature extraction, multi-
spectral analysis and effective feature fusion. In this section,
in order to evaluate the proposed TS-SEFFNet, we compare
our TS-SEFFNet with the above baseline models.

Table II and Table III summarize the decoding results on
both datasets by using the proposed TS-SEFFNet and base-
line methods. From Table II we can learn that the Shallow
ConvNet, Deep ConvNet and CP-MixedNet can achieve rel-
atively high average accuracies on 9 subjects. Especially, our

TS-SEFFNet reaches the highest average accuracy of 74.71%,
which is 1.79%, 2.72% and 7.54% higher than baseline
methods respectively, indicating its ability in learning discrim-
inative deep-temporal features while combining robust multi-
spectral representations. Moreover, for the average Kappa
value, our method outperforms all compared studies and gains
the highest value of 0.663. Meanwhile, our method yields
average F1-score of 0.757 and average AUC of 0.922, which
are the best among these methods. As a result, the proposed
TS-SEFFNet achieves promising results and proves its ability
in MI-EEG decoding.

We also test the proposed TS-SEFFNet and baseline
methods on HGD to further evaluate their decoding perfor-
mance. From Table III we can see that our TS-SEFFNet can
achieve encouraging results of 93.25% in average accuracy
and 0.910 in Kappa value, which are at least 3.71% and
0.049 higher than the compared studies. Additionally, as for
F1-score and AUC, the proposed TS-SEFFNet reaches to
the highest results of 0.901 and 0.988, which outperform all
these methods. The above experimental results on two datasets
demonstrate the ability of our TS-SEFFNet for MI-EEG
decoding.

D. Performance Depending on the DT-Conv Block

To assess the effectiveness of the DT-Conv block in captur-
ing critical deep-temporal features, we conduct ablation studies
on the TS-ConvNet and the Spectral-ConvNet which are two
simplified models compared to the proposed TS-SEFFNet, and
results are given in Table IV. We can observe that, compared
with Spectral-ConvNet which excludes DT-Conv block, the
TS-ConvNet reaches higher accuracies on both datasets and
gains increases of 8.76% and 14.29%, respectively. Also,
the Kappa values show increases of 0.116 and 0.09. The
increases clearly demonstrate the effectiveness of the DT-Conv
block, which explores deeper temporal information embedded
in EEG signals and extracts robust deep-temporal features.
Fig. 3 illustrates how we optimize the number of the temporal
conv units and verifies its effectiveness by comparing results
from different unit numbers. From the average accuracy we
can see that the higher performance is achieved when applying
3 units. Reducing the number of blocks leads to decreasing of
the classification accuracy, while increasing the unit number
results in inadequacy of temporal representation, since EEG
feature maps are relatively short in time dimension after
3 temporal conv units. The influence of temporal convolution
kernel size is also evaluated by the cross-validation experi-
ments, and Fig. 3 demonstrates that the proposed TS-SEFFNet
shows its optimal performance at the size of 11 on both
datasets. Additionally, the ROC curves in Fig. 4 reach to the
highest AUC value of 0.93 and 0.988 respectively by using
3 temporal conv units. As a result, the above results indi-
cate that DT-Conv block captures essential temporal-domain
embeddings effectively.

E. Performance Depending on the MS-Conv Block

In this section, the efficiency of the MS-Conv block is
analyzed in ablation studies by comparing the TS-ConvNet
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TABLE II
THE OVERALL COMPARISON OF CLASSIFICATION PERFORMANCE ON BCI IV 2A

TABLE III
THE OVERALL COMPARISON OF CLASSIFICATION PERFORMANCE ON HGD

TABLE IV
ABLATION STUDIES ON TWO DATASETS

with the Temporal-ConvNet. From Table IV we can learn that
the TS-ConvNet outperforms the Temporal-ConvNet in both
average accuracy and Kappa value by using the MS-Conv
block. This improvement shows that only extracting temporal
features from EEG signals may omit important spectral infor-
mation [32], which proves the efficiency of the MS-Conv block
in extracting discriminative multi-spectral features. In addition,
we evaluate the impacts of each spectral subband by compar-
ing the classification accuracies on two datasets, and results
are shown in Table V. As for applying a single subband,
average accuracies range from 72.92% (θ rhythm) to 73.46%

Fig. 3. Accuracy comparison between different kernel sizes and
numbers of temporal conv units in DT-Conv block on (a) BCI IV 2a,
(b) HGD.

(δ rhythm) on BCI IV 2a and from 90.32% (β rhythm)
to 92.36% (δ rhythm) on HGD, which indicate that neural
activities corresponding to different frequency bands contain
different information for MI-EEG decoding. Additionally,
when using only δ rhythm representation, average accuracy
reaches 73.46% and 92.36% respectively, which are the high-
est among single rhythm analysis and show the importance of
δ rhythm. Moreover, compared with the single subband, the
multi-spectral network achieves the highest average accuracy
of 74.71% and 93.25% from two datasets, which intuitively
shows the effectiveness of multi-spectral analysis.
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Fig. 4. ROC curve comparison between different numbers of temporal
conv units in DT-Conv block on (a) BCI IV 2a, (b) HGD.

TABLE V
ACCURACY(%) COMPARISON BETWEEN RHYTHMS ON TWO DATASETS

F. Performance Based on the SE-Feature-Fusion Block

Apart from the spectral information analysis, the
SE-Feature-Fusion block also shows great effects on the
decoding results. We first consider the choice of nonlinearity
in the proposed SEC unit. For the activation function
employed, four options including ReLU, Tanh, Sigmoid and
Softmax are compared in Fig. 5 on two datasets. We can
see that using ReLU gets the worst average accuracy, while
replacing it with Tanh or Sigmoid gains higher decoding
results. The highest accuracy is obtained with Softmax
function, and this suggests that the construction of the
excitation operator is significant [17]. Moreover, for the
reduction ratio r in the SEC unit, we set values ranging
from 1 to 16 to find the best hyperparameter. Fig. 6 shows the
average accuracies on two datasets with different reduction
ratios, and we can observe that our proposed TS-SEFFNet
reaches the best classification accuracy with the reduction
ratio 8.

In order to evaluate the ability of the SE-Feature-
Fusion block, the proposed TS-SEFFNet is compared with

Fig. 5. Accuracy comparison between different activation functions in
SEC unit on (a) BCI IV 2a, (b) HGD.

Fig. 6. Accuracy comparison between different reduction ratios in SEC
unit on (a) BCI IV 2a, (b) HGD.

TABLE VI
COMPARISON OF PARAMETERS AND COMPUTATIONAL COST

TS-ConvNet which excludes the SE-Feature Fusion block.
In Table IV, the proposed TS-SEFFNet reaches average
accuracies of 74.71% and 93.25% on two datasets, which
are 0.33% and 0.19% higher than the TS-ConvNet. The
improvements manifest that compared with naive concate-
nation method, the SE-Feature-Fusion block indeed helps to
alleviate the heterogeneity of redundant features and boost the
most discriminative features. Moreover, the experiment results
indicate that merely extracting features from DT-Conv block
and MS-Conv block is not enough for the MI-EEG decoding,
and the effective fusion significantly increases the decoding
performance. Therefore, we can learn that the SE-Feature-
Fusion block contributes to our proposed model in contrast
to the naive feature fusion.

IV. DISCUSSIONS

A. Efficacy of Model Compactness

Commonly, a model is expected to have as fewer learn-
able parameters as possible to ensure its robust generaliz-
ability [28]. In order to further evaluate the computational
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TABLE VII
COMPARISON WITH THE STATE-OF-THE-ART METHODS

complexity of the proposed network, we compute the number
of parameters in our TS-SEFFNet and compare it with baseline
methods, and the results are listed in Table VI. The proposed
TS-SEFFNet contains approximately 2.82 × 105 parameters,
which is similar to the Deep ConvNet with 2.84 × 105

parameters. Moreover, compared to the CP-MixedNet with
parameters up to 8.36×105 [19], our TS-SEFFNet is compact
enough for MI-EEG decoding task, which can reduces the
model complexity by approximately 66.63%.

Next, we test the model inference time, which is defined
as the duration when the trained model gives a classification
for one MI-EEG trial, and the results are shown in Table VI.
The computations are implemented on a standard computer
with a 2.6 GHz processor and 8 GB RAM. The training
and testing of the deep learning model are performed on
Nvidia Tesla V100 GPU with 32 GB memory. The inference
time is the average result calculated on all subjects of each
dataset. We can see that the CP-MixedNet and the Deep
ConvNet consume more time when making inferences, while
our TS-SEFFNet is relatively fast among these methods.

From the number of parameters and the inference time,
we can conclude that the proposed TS-SEFFNet achieves an
appropriate tradeoff between complexity and performance. The
compactness of our TS-SEFFNet is highly relied on the use of
WaveConv layer, which includes no learnable parameters and
has smaller filter size in convolution operations. Also, the max
pooling layers in DT-Conv block and global pooling layers in
SEC unit decrease the feature map length while retaining the
discriminative features. Additionally, we record the decoding
time of each method, which starts from raw EEG and ends
with decoding results. The decoding time of our TS-SEFFNet
on one EEG trial are 36.22ms and 27.24ms for two datasets
respectively, which are within 1s and suitable enough for a
real-time BCI system [1].

B. Comparison of Different Decoding Methods Reported
for BCI IV 2a and HGD

Table VII makes comparison between decoding results
reported by recent studies on both datasets. All these methods
train their models on the first session (288 trials for BCI IV
2a and 880 trials for HGD) and test on the second session
(288 trials for BCI IV 2a and 160 trials for HGD) for each

TABLE VIII
10-FOLD CROSS VALIDATION COMPARISON ON BCI IV 2A

Fig. 7. The confusion matrixes on both (a) BCI IV 2a, (b) HGD.

subject. The detailed data segmentation for two datasets can
be found in Table I.

From Table VII we can learn that the proposed TS-SEFFNet
illustrates better classification performance than most of
these methods for BCI IV 2a dataset. Compared with
methods in [15] and [28] which designed CNNs to cap-
ture temporal or spatial features, our method uses both
deep-temporal and multi-spectral features for MI-EEG decod-
ing and gains accuracy increases of 0.25% and 3.81% respec-
tively. Chen et al. [11] built a temporal-spatial CNN which
explored spatio-temporal features of EEG but resulted in
suboptimal performance compared with our method. This is
probably due to the lack of multi-spectral feature extraction
in their approaches. Moreover, in comparison with EA-CSP-
LDA [33] which tried to alleviate spatial discrepancies of EEG
trials, our method emphasizes the importance of deep temporal
features and reaches 1.18% higher in accuracy. Table VII
also lists comparison between our TS-SEFFNet and other
methods on HGD. For example, the Hybrid Net [28] combines
shallow and deep convolution layers for classification and
the CP-MixedNet [19] applies CNN to extract multi-scale
temporal features. In contrast, our method considers both deep-
temporal and multi-spectral features simultaneously, which
gains accuracy increases of 1.6% and 0.4%. Consequently,
the higher classification results demonstrate that the proposed
TS-SEFFNet can decode multi-task MI-EEG more accurately
and effectively.

Additionally, for BCI IV 2a dataset, some recent
studies [5], [8], [9], [12] report results by using 10-fold
cross-validation on merged data (576 trials) for each subject.
Therefore, in order to make a fair comparison with these con-
ventional methods, Table VIII gives the comparison between
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Fig. 8. The t-SNE visualization in 2-D embedding space of features learned by different methods from the third subject in BCI IV 2a and HGD.

the proposed TS-SEFFNet and recent studies on BCI IV 2a
by training on merged data (576 trials) for each subject.
Compared with Zhao et al. [12] who designed multi-branch
3D CNNs to generate spatial representation from EEG, our
TS-SEFFNet captures not only spatio-temporal features but
also multi-spectral features for MI-EEG decoding and gains
accuracy increase of 9.47%. Furthermore, Kumar et al. [5] uti-
lized a feature selection algorithm and Ai et al. [8] used a naive
concatenation for feature fusion. Compared with these two
methods, the proposed TS-SEFFNet uses an attention-based
feature fusion method to emphasize the most discriminative
feature maps and fuse the captured features effectively, which
achieves accuracy increases of 3.50% and 4.79%, respectively.

Note that for HGD, most studies only reported their results
by training on the first session (880 trials) and testing on
the second session (160 trials), and little literature merges
HGD from two sessions into one session (1040 trials) for
10-fold cross validation [19], [28], so the experiment results
of merged data on HGD are not provided in this paper.

C. Feature Discrimination Discussion

We exploit the effectiveness of the feature extracted by the
proposed TS-SEFFNet using confusion matrix, and experi-
ment results are presented in Fig. 7. We can see that our
TS-SEFFNet gains obvious accuracy improvements in four MI
tasks on both datasets, with a maximum increase of 13.9% in
“left hand” task (BCI IV 2a) and increase of 15.2% in “feet”
task (HGD).

In order to further investigate the discrimination of the
features extracted by our TS-SEFFNet, the t-SNE is uti-
lized to get visualization of the learned features [34]. The
t-SNE visualizes the extracted EEG features into a 2-D
embedding dimension, which is shown in Fig. 8. Compared
with Shallow ConvNet, Deep ConvNet and CP-MixedNet
which omit the spectral features, our TS-SEFFNet implements
multi-spectral feature extraction and captures more separable
features from MI-EEG. In addition, the feature visualiza-
tions from the Spectral-ConvNet, the Temporal-ConvNet and
the TS-ConvNet are relatively ambiguous in contrast to our
TS-SEFFNet, since the proposed model is able to extract both
temporal and spectral features from EEG signals. Moreover,
with the SE-Feature-Fusion block, the proposed TS-SEFFNet
generates more separable features than the TS-ConvNet, which

Fig. 9. The network-prediction correlation maps for our TS-SEFFNet on
(a) BCI IV 2a (subject A03), (b) HGD (subject 3).

can efficiently distinguish different types of MI-EEG signals.
Therefore, we can clearly see that our TS-SEFFNet extracts the
most discriminative EEG features, indicating the best decoding
performance.

D. Channel Correlation Analysis

We compute the network-prediction correlation on the pro-
posed TS-SEFFNet in different frequency bands, which is
visualized in Fig. 9. The visualization on the scalp maps
presents spatial distributions expected for MI tasks in the
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corresponding rhythms, directly reflecting how the proposed
network behaves when making inferences on MI-EEG data.
For example, in Fig. 9(a), the positive correlation region on
the scalp of “left hand” task (4-8Hz) indicates that model
predictions are positively correlated to these corresponding
electrodes and frequency bands. Our TS-SEFFNet increases
its classification probability on “left hand” when the positive-
correlation electrodes gain higher amplitude values, where
these results are in line with [28]. In summary, the channel
correlation analysis shows the relationships between EEG
channels with different motor tasks in the corresponding
frequency bands. It is useful to match the feature distributions
learned by our TS-SEFFNet with different MI tasks in different
frequency bands, which reveals potential relationships between
body movements and their associated changes in the brain
activities.

E. Limitations and Future Directions

Although the proposed TS-SEFFNet achieves robust
decoding results, our present work still suffers from sev-
eral limitations. First, EEG electrodes are selected manually
(i.e. HGD), which probably omits the spatial information of
EEG sensors [35], and this neglecting of spatial dependen-
cies in EEG signals may leads to the suboptimal decoding
performance [36]. Therefore, our important future work is
to apply adaptively-selecting method which focuses on the
most discriminative channels. Second, although our method
shows the effectiveness in subject-specific MI-EEG decoding
scenario, it cannot be used for cross-subject MI-EEG decoding
task directly, where the model is applied to a completely new
subject after training. This is mainly because that our method
is not able to handle the drifting in distributions between
data from different subjects [37]. Therefore, the transfer learn-
ing [33], [37], [38] will be considered in our feature work to
improve our TS-SEFFNet method.

V. CONCLUSION

In this paper, we propose a novel temporal-spectral-based
squeeze-and-excitation feature fusion network (TS-SEFFNet)
for MI-EEG decoding. Specifically, our TS-SEFFNet first
extracts preliminary spatio-temporal embeddings from raw
EEG signals via the spatio-temporal block. Next, the
DT-Conv block learns discriminative high-level EEG infor-
mation through a series of temporal conv units. Meanwhile,
the proposed MS-Conv block is adopted to capture essential
spectral representations, which integrates multi-level spectral
analysis into the end-to-end model. Moreover, in order to
effectively fuse the extracted features, the SE-Feature-Fusion
block is further employed to emphasize the most discrim-
inative features and reduce redundant feature information.
We conduct experiments on two public MI-EEG datasets
to evaluate the effectiveness and generalization of the pro-
posed TS-SEFFNet. Our method shows promising results in
accuracy, Kappa value, F1-score and AUC value compared
with other methods. The experimental results confirm that the
proposed method is able to decode MI-EEG efficiently, which
can be regarded as a powerful tool for MI-EEG based BCIs.
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