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Abstract— User gait phase estimation plays a key role
for the seamless control of the lower-limb robotic assistive
devices (e.g., exoskeletons or prostheses) during ambula-
tion. To achieve this, several studies have attempted to esti-
mate the gait phase using a thigh or shank angle. However,
their estimation resulted in some deviation from the actual
walking and varied across the walking speeds. In this study,
we investigated the different setups using for the machine
learning approach to obtain more accurate and consistent
gait phase estimation for the robotic transfemoral prosthe-
sis over different walking speeds. Considering the trans-
femoral prosthetic application, we proposed two different
sensor setups: i) the angular positions and velocities of both
thigh and torso (S1) and ii) the angular positions and veloc-
ities of both thigh and torso, and heel force data (S2). The
proposed setups and method are experimentally evaluated
with three healthy young subjects at four different walking
speeds: 0.5, 1.0, 1.5, and 2.0 m/s. Both results showed
robust and accurate gait phase estimation with respect to
the ground truth (loss value of S1: 4.54e-03 Vs. S2: 4.70e-03).
S1 had the advantage of a simple equipment setup using
only two IMUs, while S2 had the advantage of estimating
more accurate heel-strikes than S1 by using additional heel
force data. The choice between the two sensor setups can
depend on the researchers’ preference in consideration of
the device setup or the focus of the interest.

Index Terms— Transfemoral prosthesis, gait phase esti-
mation, machine learning.

I. INTRODUCTION

HUMAN gait phase estimation has been studied for clin-
ical or rehabilitation purpose [1]–[4] and for developing
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Fig. 1. A phase variable (y-axis:Φ ∈ [0, 1]) can be mapped into a human
gait cycle (x-axis: 0-100%), indicating the user’s walking progression.

assistive robotic devices, such as powered prostheses [5]–[9]
or exoskeletons [10], [11]. For the clinical purpose, a set
of vision-based motion capture systems and force plate is
conventionally utilized to evaluate the rehabilitation process or
to monitor patient’s gait abnormalities by observing patient’s
motion in the well-controlled space [2], [4]. Gait phase esti-
mation is also crucial to properly control assistive devices
based on the user’s walking state [5]–[9]. Even though the
aforementioned built-in system has the advantage of precision
and accuracy, this setup is not suitable for assistive devices due
to the requirement of an on-board estimation of the user’s gait
phase in the daily living. Thus, human gait phase estimation
using wearable sensors has been widely studied to control
assistive devices. In this study, we limit our scope to the
robotic transfemoral prosthesis for developing the gait phase
estimation model. To achieve the seamless control for such
robotic devices, researchers have attempted to parameterize
the wearable sensor data into a single kinematic variable (i.e.,
phase variable) to represent the user gait progression (see
Fig. 1). The phase variable is bounded on [0,1], and is a
function of gait kinematic variables. It represents the gait phase
in a continuous and monotonic manner [6]–[9].

To obtain the phase variable for the robotic prosthesis con-
trol, many researchers attempted to use a thigh angle [5]–[7]
or a linearized hip position [8], [9] of the user. For exam-
ple, Thatte et al. [5] utilized a sensor-fusion approach using
angular position and velocity from the inertia measurement
unit (IMU) at the thigh and the encoders at the ankle and
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TABLE I
GAIT PHASE ESTIMATION STUDIES FOR THE ROBOTIC ASSISTIVE DEVICE

the knee, respectively. They achieved a robust and adaptive
gait phase estimation during the stance phase via an extended
Kalman filter (EKF). However, due to the missing estimation
at the swing phase, its application would be limited when
the swing phase estimation is needed. To estimate the user’s
gait phase over the entire gait cycle, a linearized hip position
was proposed as the phase variable in [9]. The linearized
hip position is known as one of the suitable candidates to
represent the human gait phase since it monotonically varies
along with the user’s movement [8], [9]. It can be calculated
by the inverse kinematics using the angles from the shank
and the thigh. Yet, two IMUs are required at the intact leg
of the user to obtain the hip position. This could limit the
autonomy of the prosthesis by mirroring the information from
the intact leg to control the prosthesis at the other side.
Also, using sensors on the intact side would not be preferred
by the user because having a sensor set on the intact side
may cause discomfort during daily use of the prosthesis.
Instead, Villarreal and Gregg [15]–[17] proposed a different
sensor location (i.e., thigh) to parameterize the gait phase
without the sensor set at the intact side. The thigh angle has
been widely used as the phase variable because it shows a
reasonable estimation with a single IMU only at the residual
leg even in several walking scenarios: slope [6], [7], [18],
perturbation [16], and different speeds [6], [19]. However,
an early saturated phase variable (around 80-90%) was found
in [18], [19] due to a varying range of motion of the thigh for
each step. Moreover, the thigh angle could highly vary under
the perturbation or the disturbance during walking, particularly
in the swing phase [16] and [18]. Thus, relying on only a single
sensor input may not be the best idea for a robust gait phase
estimation.

Thanks to rapid advancements in machine learning, gait
phase estimation methods have evolved using multiple sensor

information. For instance, Seo et al. [10] estimated the gait
phase for their ankle exoskeleton, relying on a shank-mounted
IMU. To achieve a real-time estimation for their phase-
based control, they proposed to use Recurrent Neural Net-
works (RNNs) with additional information from the foot
pressure sensors during their model training. Similarly, in [11],
researchers also utilized a neural network learning model to
estimate the gait phase based on sensor-fusion: the encoders at
the hip, IMUs at the thigh and trunk. Regardless of the partici-
pants, they both achieved more robust and accurate estimation
of a continuous variable with the learning technique [10], [11].
These methods, however, are not applicable to the lower-limb
prostheses due to the difference between the exoskeleton
and the prosthesis. For instance, the proposed exoskeletons
were designed to assist the ambulation of individuals with
paraplegia, thus the researchers more focused on estimating the
gait phase at slow walking speeds [10], [11]. This is because
the exoskeletons for paraplegics are prone to be operated in
relatively lower speeds [20]–[24] than the prostheses [6], [25]
due to the limited ambulation of paraplegics. Even though
some exoskeletons can achieve faster ambulation, the crutches
are required for those systems [26]–[28]. So, a gait phase esti-
mation at faster walking speeds for the prosthesis application
is needed. More importantly, a transfemoral prosthesis user has
limited control over the shank’s orientation. For the prosthesis
application, [14] reported a good estimation result using a
deep learning algorithm; however, researchers still rely on the
data from the lower shank when they estimated the user gait.
Lower shank information can be used only with the transtibial
amputees, not with the transfemoral amputees for the gait
phase estimation. This is because, in the case of transfemoral
amputees, the shank part is dictated by the prosthetic control,
not by the user him/herself due to the knee joint loss. Thus,
considering the transfemoral prosthetic control, we need to find
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Fig. 2. A wearable sensor set for the gait phase estimation: two IMUs
at the thigh and torso, and a force sensor at the heel.

an appropriate sensor location which can be fully controlled
by the user regardless of the limb-loss.

To the authors’ knowledge, there are no machine
learning-based gait phase estimation models for transfemoral
prosthesis using a wearable sensor set. Thus, the aim of this
study is to implement a Long Short-Term Memory (LSTM)
method for continuous gait phase estimation based on appro-
priate sensor sets for a transfemoral prosthesis. In Section II,
we introduce the wearable sensor setup candidates (2 sensors
Vs. 3 sensors) to estimate the user gait phase. Also, a training
process with the proposed neural network model is described
based on the nominated sensor setup. The estimation model
is evaluated and tested in Section III with discussion. Finally,
we conclude this article in Section IV.

II. METHODS

In this section, we introduce a wearable sensor setup for
estimating the user’s gait in the prosthesis application. Then,
we explain how the gathered data is differed by the gait phase
and how to label it. We describe the network architecture
composed of LSTMs and bidirectional-LSTMs (Bi-LSTMs)
for the gait phase estimation.

A. A Wearable Sensor Set for Gait Phase Estimation

A wearable sensor set to obtain the input data for the
learning of gait phase is described in Fig. 2. Two 9-axis IMUs
(MPU9150, SparkFun Electronics, USA) were located at the
subject’s thigh and torso to measure their global angles. Also,
a force-sensitive resistor (FSR: FlexiForce A502, Tekscan,
USA), attached under the shoe insole, was used during loco-
motion to detect the heel-strike event for initializing the gait
cycle. All the sensor data was collected by a micro-processor
(BeagleBone Black, Texas Instruments, USA) at 200 Hz.

B. Gait Phase Division

Human walking can be defined as a single gait cycle. A gait
cycle is conventionally defined from a heel-strike to the next
heel-strike on the same leg. This gait cycle also can be divided
into several sub-phases as in Fig. 3: heel-strike (HS), flat-
foot (FF), heel-off (HO), toe-off (TO). Gait phase percentage

Fig. 3. Human gait cycle with important kinematic changes.

differs depending on the walking speed and personal gait
characteristics. However, in general, the faster the individual
walks, the smaller the percentage of HO and TO becomes [29].
As per [29], at 0.6 m/s of the walking speed, HO and TO
occur at 51% and 67%, respectively, while a walking speed
of 1.6 m/s results in HO at 31% and TO at 53%. In the case
of HS and HO, the gait phase can be found through the force
sensor at the heel, even though it is difficult to determine the
percentage of HO that depends on walking speed and gait
characteristics. Thus, some adaptive estimation methods based
on the simultaneous kinematics/kinetics sensor data are needed
to achieve more robust estimation.

With two IMUs (e.g., thigh and torso) and heel FSR sensor
shown in Fig. 2, position and velocity of the thigh and torso,
and heel force data are recorded in 200 Hz. The HS is widely
used as a gait phase initialization because the gait cycle is
conventionally defined from HS on the same leg to another HS.
The heel FSR was used to find the heel-strike event. When the
heel force sensor value exceeded a certain threshold, we set
this point as the HS. Taking into account the characteristics of
heel FSR, which is dependent on mass, 15% of the weight was
set as the threshold. We label the data in two different ways
with the point of HS: i) a linear interpolation method, and
ii) a polar coordinate encoding method. The linear interpola-
tion method uses the threshold of the heel sensor to obtain HS
points, and then linearly connects two consecutive HS points.
As a result, the estimated gait phase linearly increases from
0 to 1, and resets to 0 at the end of the gait cycle. As shown
with the black line in Fig. 4, when the linear interpolation is
used, the discontinuity cannot be avoidable at the HS. This
discontinuity around HS causes unexpected problems when
calculating the loss value in the training session. Loss value is
used to evaluate the estimation result based on the difference
between the ground truth and the prediction. When HS occurs,
the label instantly turns into 0 from 1, meaning that even a
single delayed sample (5 ms) at HS could result in a large
difference between the ground truth and prediction. As the
error due to discontinuity is much more significant than other
points, the network predominantly tends to find the HS only.
In order to solve this discontinuity issue, we transform the
labels into the polar coordinates [10], [11]. The percentage of
the gait phase, P , can be represented as an angle θ between
0 and 2π with equation 1. And then, we transform the polar
coordinate with equation 2 and 3 as new labels x1 and x2. They
represent a continuous sinusoidal function, which is bounded
in −1 and 1.

θ = P × 2π

100
(1)

x1 = cos θ (2)

x2 = sin θ (3)
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Fig. 4. Gait phase transformation. To eliminate the discontinuity, gait
phase is transformed into cosine and sine. For example, the gait phase
of 0.625 is the same as the pair of cosine and sine, (−0.707, −0.707).

Fig. 5. Typical structure of LSTM block. Yellow squares and pink circles
represent neural network layer and pointwise operation, respectively.

The output of the neural network is represented by the polar
coordinate, (y1, y2). To be used as a phase variable for the
prosthesis control, the estimated phase should be bounded in
[0,1]. Thus, additional transformation is needed as explained
in equations 4 and 5 [10], [11].

�θ̂� = tan−1(
y2

y1
) (4)

P̂ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�θ̂�
2π

y1 > 0 & y2 ≥ 0

�θ̂�
2π

+ 1

2
y1 < 0

�θ̂�
2π

+ 1 y1 > 0 & y2 < 0

(5)

C. Neural Networks Training

1) Long Short-Term Memory (LSTM): RNN has been widely
used in the field of translation, text, and time series prediction.
In this type of data, past events may affect future results.
However, RNN suffers from vanishing gradients as the number
of steps increases. In order to resolve the vanishing gradient
issue, the LSTM was proposed [30].

LSTM learns by adding or removing information through
the cell state, ct , just like a conveyor belt, and three gates: for-
get ft , input it , and output ot . The forget gate ( ft ) determines
what information to forget and what information to keep,
while the input gate (it ) determines whether new information
is stored in the cell state. The output gate (ot ) determines
what information is output from the cell state. Input gates are
determined by concatenating the previous output (ht−1) and

Fig. 6. Sliding window sequence from the obtained input data. c is the
length of sliding windows sequence.

the current input (xt ). The input value that passed through
both the forget and the input gates becomes a new cell state
(Ct ) with the previous cell state (Ct−1) and operation. The new
cell state is transferred to the next block, and at the same time,
an output value (ht ) is generated through the output gate (ot ).

However, LSTM has a limitation in that the output tends
to converge based on a straight pattern since the input order
is chronological. In order to resolve this problem, Bi-LSTM
added a backward learning to the original forward learning,
which learns the past information from the future informa-
tion [31]. It has an advantage for long data sequences due to
bidirectional learning. Since our dataset is long, Bi-LSTM is
a suitable network.

2) Proposed Networks: In order to learn how LSTM changes
over time, a sequence called the sliding window is needed.
Sliding windows bind a sequence of a certain size as a unit
for training LSTM. It is important to find appropriate sizes
because the results of estimation vary depending on the size
of the sliding window. Fig. 6 shows sliding window for input
data. Since we sampled the data at 200 Hz, there is a difference
of 5 ms between the sliding window at time t0 and the sliding
window at time t1. As input data, we prepared datasets with
two different labelings: i) a polar coordinate with heel force
data, and ii) a polar coordinate without heel force data. Note
that the polar coordinate without heel force data refers to the
labeling with the polar coordinate along with the variables for
thigh position, thigh velocity, torso position and torso velocity.
We name this sensor set of four variables as S1 throughout this
paper. The polar coordinate with heel force data is the dataset
with the heel force data added to S1. This sensor set of five
variables are named as S2.

Fig. 7 shows the stacked LSTM network architecture. If the
range of raw data is too large or too small, it will not
be properly trained. In order to resolve the problem, pre-
processing was performed to place the raw data between 0 and
1. Several raw data are grouped as a sequence with a length
of c and transferred to the LSTM layer. There are five layers
for the LSTM to train the networks for gait phase estimation.
In the LSTM layer, the numbers of cells (ui ) are 256, 256,
128, and 128, respectively. The unit of Fully Connected (FC)
layer is two, the size of the input labels. In the output layer,
we select the last value in the sequence to get the gait phase
at time t .
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Fig. 7. Stacked network architecture. (a) Solid line is raw data recorded with sensors. Dash line is temporary data for sequence. tn has five recorded
data (i.e., heel, thigh position, thigh velocity, torso position, torso velocity) and its representative label at time n. Also, c indicates the sequence length.
Label can be either one or two depending on datasets. (b) The input layer creates a sequence by raw data. Each layer consists of ui cell. (c) The
LSTM layer consists of a stacked-layer with multiple LSTMs, Bi-LSTMs, and Fully Connected (FC). (d) Pn indicates the gait phase estimation at
time n.

We use Adam optimizer [32] with a learning rate
of 0.001 for training. The batch size is 128, and the sequence
size is 300. All models are trained using the mean squared
error (MSE) as the loss function, shown in equation 6.

M SE = 1

n

n∑
t=1

(Pi − P̂i )
2 (6)

In order to prevent overfitting, the model is trained for a
maximum of 100 epochs, stopping early if the validation loss
do not continue to decrease in 10 epochs. Also, we perform
shuffles and randomization for the data. For each sensor setup,
we divide the dataset into three subsets: 70% of the total data
is used for training, 20% is used for validation, and 10% is
used for testing.

III. EXPERIMENT

A. Experimental Protocol

To train and validate our network model, we conducted the
walking experiment on a treadmill with three healthy subjects
(age of 28.3 ± 1.5 years, height of 1.70 ± 0.15 m, and
weight of 65.0 ± 3.0 kg). Prior to the experiment, the subjects
gave informed consent to the protocol which was reviewed
and approved by the Institutional Review Board (IRB) at
Texas A&M University (IRB2015-0607F). In the experiment,
we have a total of five walking speed conditions: four constant
speeds (0.5, 1.0, 1.5, and 2.0 m/s) and one varying speed
condition: increasing from 0.5 to 2.0 m/s then decreasing to
0.5 m/s with the increment/decrement of 0.5 m/s. We changed
the walking speed conditions in random order to avoid any bias
in the experiment resulting from the influence of unknown fac-
tors that may affect the experiment. Before the data recording,
10 minutes of practice walking was provided to each subject
to get used to the experimental setup. The calibration process
for IMU was also preceded for 10 seconds at the neutral

Fig. 8. MSE loss value curve for epoch. Solid lines and dashed lines
indicate training and validation, respectively.

position of each subject. The proposed models were trained
on a computer with I7-9700 CPU (2.6 GHz) and NVIDIA
RTX 2060m GPU (6 GB). More details of the proposed work
can be found in [33] as an open-source for encouraging future
developments.

B. Experimental Result

As we mentioned in Section II.C, we trained the network
model in the polar coordinate. Fig. 8 shows the loss value
curve for S1 and S2. Based on the loss value, the validation
results for both S1 and S2 were similar to the ground truth
with small errors (S1: 4.54e-03 Vs. S2: 4.70e-03). Both models
were appropriately trained without under- and over-fitting. The
trainable parameters of S1 and S2 are 957,698 and 958,722,
respectively.

Fig. 9 depicts the gait phase estimation error between the
ground truth and the testing prediction for 16 slow steps ((a)
0.5 m/s) and 16 fast steps ((b) 1.5 m/s). Negative errors
at slow walking speed suggest that the predicted value is
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Fig. 9. Gait phase estimation error between ground truth and prediction
at two different walking speeds: (a) 0.5 and (b) 1.5 m/s. Red indicates
the error of S1 setup, and blue indicates the error of S2 setup. All the
lines and shaded regions represent the mean and ±1 standard deviation
of 16 steps, respectively.

greater than the ground truth during slow walking. On the
other hand, positive errors at fast walking speed mean the
predicted is smaller than the ground truth during fast walking.
This indicates that the prediction is either faster or slower
than the ground truth, depending on the speed. The average
error for the slow walking speed was 1.67 ± 1.36%, while
for the fast walking speed, the error was 1.45 ± 1.47%.
At the slow walking, the largest differences were found
during the mid-stance (40-60%) of the gait cycle with the
largest standard deviation. This is because the sensor inputs
(i.e., thigh and torso) deviated more when humans tried to
balance themselves during the load transferring at the mid-
stance phase. As the walking becomes slower, the stance
phase maintains longer, thus the sensor inputs might deviate
more due to the longer mid-stance phase. On the other hand,
at the fast walking, there was no noticeable difference with
a small standard deviation. Regardless of walking speed,
S1 had a greater error than S2 near 0 or 100% of the gait
phase.

Table II shows the averaged HS detection errors of 12 con-
secutive steps at from 0.5 m/s to 2.0 m/s. It is clearly shown
that the errors in S1 are notably larger (4-6 times) than
those of S2 in the HS timing. Since S2 directly used the
heel force data as a parameter, it was not surprising that the
trained network including the heel sensor detects the HS more
accurately. Compared to S2, the network trained with S1 had
to track the HS only with the IMU data. Even though the
IMUs at the thigh and torso could detect the HS based on the
accelerometer information, they were less reliable compared to
a direct detection from the heel force sensor. Still, the temporal
error of S1 (�30 ms) may be considered acceptable for the

TABLE II
MEAN AND ONE STANDARD DEVIATION OF THE DIFFERENCE BETWEEN

GROUND TRUTH AND PREDICTION AT THE HEEL-STRIKE FOR

12 CONSECUTIVE GAIT CYCLES

gait phase because it was less than a short-latency response
time (�40-50 ms) from the reflex pathways of lower-limb [34].
In addition, the error of gait phase that occurred for 30 ms in
HS was a small of ±3%.

Fig. 10 describes the estimation of subject’s gait phase in
two different walking speeds (0.5 and 1.5 m/s) using two polar
coordinate datasets, S1 and S2. As shown in Fig. 10(a) and (b),
there was an apparent difference between S1 and S2 when the
HS occurs. In both walking speeds, S2 had smaller detection
errors (5 and 10 ms) at the HS. In the case of S1, relatively
greater detection errors (25 and 30 ms) were shown when the
HS occurs.

Fig. 10(c) shows the estimation results when the walking
speed was continuously changed. Regardless of the walking
speed, both configurations (i.e., S1 and S2) showed robust
estimation without noticeable differences throughout the entire
gait cycle. As we already mentioned, when the walking
speed was increased, larger deviations around the HS were
found. On the other hand, at the slower walking speed, larger
deviations appear at the mid-stance (40-60%).

IV. DISCUSSION

According to the results, the heel force sensor shows its
own benefit in finding the accurate HS. However, the heel
force sensor is relatively sensitive to the foot placement for
obtaining the sensor data in a robust manner. In this paper,
the heel sensor input can be robustly given regardless of the
foot placement because we put the sensor beneath the healthy
subject’s compliant foot. However, differing from human,
a prosthetic foot is usually made by relatively stiff material
(e.g., Acrylonitrile Butadiene Styrene (ABS)) or designed as
a rigid body. In this case, if the prosthetic foot has a poor heel-
contact, the heel force sensor would have a problem detecting
the heel-strike correctly.

It is difficult to directly compare our results with previ-
ous studies due to discrepancies in the sensor setups and
sensor-specific output range. However, our study has some
merits in gait phase estimation compared to previous studies.
For constant walking speed, the error of Kang et al. [11]
is 4.83 ± 0.62%, whereas our study shows a difference
of 1.67 ± 1.36%. Networks from our study and [11] have
the same sliding window size. Using MSE (our study) rather
than RMSE ( [11]) as a loss function and having a deeper
layer for LSTM may have reduced the mean error with slight
increases in the variability. Vu et al. [14] have, similar to our
study, used an RNN with one IMU and two force sensors in
a transtibial prosthesis application for gait phase estimation.
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Fig. 10. Robustness of gait phase estimation according to walking speed. (a) and (b) show gait phase estimation at two different constant walking
speeds: 0.5 and 1.5 m/s. In particular, the differences between ground truth and two data setups are highlighted around the HS. (c) shows the results
in increasing walking speed from 0.5 to 1.0 m/s, and decreasing walking speed from 1.0 to 0.5 m/s.

Fig. 11. A custom-built powered transfemoral prosthesis, AMPRO II.

The estimation error is 2.1 ± 0.1%, which is a slightly larger
error than ours but with consistent prediction. We postulate
that two force sensors helped stable and consistent prediction,
but fewer IMU sensors and shallower network layers caused
higher errors in multiple subjects.

There were some limitations in this study. Firstly, the heel
force sensor may have a durability issue due to the frequent
exposure of large impact at the HS. Secondly, during the data
analysis, we found the high-frequency noise in a particular
part of the torso data from one subject. We suspect that the
torso IMU was slightly vibrated on the subject’s clothes during
walking because the sensor was not fully tightened. Having

the noisy data in our analysis may reduce the reliability of
the data and hinder network learning. However, due to the
worldwide pandemic COVID-19, further experiments to gather
sufficient data were not possible. Also, the actual walking
experiment using the prosthesis is restricted. Although we
could not conduct an additional experiment for the amputee
subjects, we expect that the amputee subjects wearing the
robotic transfemoral prosthesis have a similar gait pattern
of healthy subjects. This is why we used the proposed
sensor sets from the healthy subjects. In the future study,
experiments will be conducted with the amputee subjects
with the given custom-built powered transfemoral prosthesis,
AMPRO II (Fig. 11), to validate the proposed idea. Also,
to obtain a more robust estimation, additional network training
is planned with the increased number of subjects’ datasets.
Thirdly, although the LSTM-based algorithm takes less time
than the short-latency response time, performance improve-
ment is necessary because it requires a lot of computing power
in real-time.

V. CONCLUSION

In this study, we investigated the optimal wearable sensor
setup for the robotic prosthesis to estimate the gait phase
based on the machine learning approach. Considering the
transfemoral prosthesis application, we proposed two different
sensor setups, and experimentally evaluated them with three
healthy subjects. Results showed robust estimation regardless
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of walking speed. However, there were slight differences in
the simplicity of the sensor setup and the accuracy of the
estimation depending on the setup. S1 had the advantage of a
simple equipment setup using only two IMUs, while S2 had
the advantage of estimating more accurate heel-strikes than
S1 by using additional heel force data. Thus, we would open
our conclusion of the choice between the two sensor setups
for the gait phase estimation in prosthesis application. The
optimal sensor setup can be chosen as per the researchers’
preference in consideration of the device setup or the focus of
the estimation.
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