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Abstract— Wearable tremor suppression devices (WTSD)
have been consideredas a viable solution to manage parkin-
sonian tremor. WTSDs showed their ability to improve the
quality of life of individuals suffering from parkinsonian
tremor, by helping them to perform activities of daily living
(ADL). Since parkinsonian tremor has been shown to be
nonstationary, nonlinear, and stochastic in nature, the per-
formance of the tremor models used by WTSDs is affected
by their inability to adapt to the nonlinear behaviour of
tremor. Another drawback that the models have is their
limitation to estimate or predict one step ahead, which intro-
duces delay when used in real time with WTSDs, which com-
promises performance. To address these issues, this work
proposes a deep neural network model that learns the cor-
relations and nonlinearities of tremor and voluntary motion,
and is capable of multi-step prediction with minimal delay.
A generalized model that is task and user-independent
is presented. The model achieved an average estimation
percentage accuracy of 99.2%. The average future volun-
tary motion prediction percentage accuracy with 10, 20,
50, and 100 steps ahead was 97.0%, 94.0%, 91.6%, and
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89.9%, respectively, with prediction time as low as 1.5 ms
for 100 steps ahead. The proposed model also achieved
an average of 93.8% ± 1.5% in tremor reduction when
it was tested in an experimental setup in real time. The
tremor reduction showed an improvement of 25% over the
Weighted Fourier Linear Combiner (WFLC), an estimator
commonly used with WTSDs.

Index Terms— Parkinson’s disease, pathological tremor,
deep neural networks, tremor prediction, voluntary motion
prediction, tremor estimation.

I. INTRODUCTION

PARKINSON’S Disease (PD) is a disorder that affects
the nerve cells in the deep parts of the brain called

the basal ganglia and the substantia nigra [1]. More than
ten million people worldwide are living with PD [2], [3].
PD signs and symptoms include tremor that is time varying,
nonlinear, stochastic, and nonstationary in nature [4]. Tremor
significantly affects and impacts people’s mobility and their
ability to perform activities of daily living (ADLs) [5]–[8].

The current approach for the treatment of PD tremor is
medication and deep brain stimulation (DBS) [9], [10]; how-
ever, medication is connected with a series of adverse effects
and DBS carries significant risks [10] and could cost up to
$100,000 per patient [3].

Recently, assistive technologies, such as wearable assistive
devices, have been considered and are being developed as
an alternative approach to manage tremor [11]–[21]. The
mechanical suppression of tremor by these devices serves
to assist individuals with tremor perform ADLs. However,
the performance of the assistive devices is directly impacted
by the tremor models that they use for control [8]. The models
use adaptive filtering techniques to estimate tremor. Initially,
the Fourier Linear Combiner (FLC) [22] was developed and
used. The FLC operates under the assumption that tremor
can be represented as a periodic signal that can be modelled
by a Fourier series; however, Timmer et al. showed that
tremor is not periodic but rather time varying, nonlinear, and
stochastic. The FLC works using a predefined frequency, and
it is not able to adaptively track tremor frequencies. The
Weighted-Frequency Fourier Linear Combiner (WFLC) was
proposed to overcome the drawbacks of the FLC. The WFLC
is a commonly used method in tremor estimation [23], which
adapts the frequency and amplitude of the model to the tremor
signal. Similar to the FLC, the WFLC assumes that tremor is
sinusoidal in nature, and it is unable to extract periodic signals
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containing more than one dominant frequency. As a result,
it cannot adapt to the frequency of the higher harmonics of
tremor, since the model uses Fourier series, and the frequency
parameters of the higher harmonics are set proportional to
the estimated frequency of the dominant harmonic. Therefore,
it cannot be used to accurately estimate tremor.

The Band-limited Multiple Fourier Linear Combiner
(BMFLC) is an algorithm that is based on the FLC. The
BMFLC was developed to address the shortcomings of the
WFLC. The limitation of the BMFLC is that it works with
a predetermined set of frequencies and is unable to accu-
rately track and adapt its frequency to tremor frequencies.
Studies have shown that the calculated errors tend to be
high [24], because the BMFLC is not robust to noise. Thus,
if there is noise within the frequency band, the BMFLC
will add the noise to the estimation as well. As a result,
the Extended-BMFLC (EBMFLC) [25] was developed to
overcome these limitations. It showed promising results in
both the accuracy and consistency of extracting tremor signals;
however, the tremor is still considered as a series of sine
and cosine signals, thus, the adaptive filtering methods face
challenges in estimating and extracting tremor accurately.

One common limitation of these estimators is the inherent
time delay that they introduce for tremor control in wearable
assistive devices [8], [26], [27]. Studies have shown that a
delay as small as 20 ms degrades the performance of wearable
devices [26], [27].

In an attempt to overcome the drawbacks of the FLC
and its derivatives and to increase tremor suppression,
Taheri et al. [20] proposed an algorithm that uses torque
to suppress tremor, showing promising results. Taheri et al.,
extended their work in [21] to estimate the muscle torque
that produced the tremor instead of estimating tremor, and
then applied an equal and opposite torque to suppress tremor.
Other research has focused on predicting future steps of tremor
in an attempt to improve tremor suppression; however, Velu-
volu et al. [27] demonstrated that integrating autoregressive
models, the WFLC, and the BMFLC with a Kalman Fil-
ter (KF) to perform one-step prediction of tremor, still resulted
in poor performance. The accuracies achieved were as low as
40% for up to 20 ms of future prediction. Recently, the WAKE
framework [28] was proposed, based on wavelet decompo-
sition and adaptive Kalman filtering; however, it is limited
to estimation and one-step prediction. Another framework,
PHTNet has been recently proposed by Shahtalebi et al. [29].
It is limited to the prediction of only one step ahead, and it
introduces a time delay of 100 and 150 ms before it can prop-
erly estimate the signal. This delay is detrimental when applied
to real-time control, as it will negatively affect the performance
of the wearable assistive devices that manage tremor.

Due to the challenges and limitations presented in the previ-
ous work, deep neural networks (DNN) [30] were considered.
DNNs have shown their robustness in learning from data,
and high prediction accuracies in different areas including
robotics and assistive devices that use motion data as their
input. As such, in order to effectively suppress tremor with
wearable assistive devices and overcome the time delay prob-
lem, this work implements a novel approach based on a

one-dimensional Convolutional-Multilayer Perceptron model
(1D-CNN-MLP) for multistep prediction. The robustness of
the 1D-CNN-MLP model for voluntary and tremor time series
prediction and estimation was shown in a previous study by
the authors [31], where it was demonstrated that the 1D-
CNN-MLP model was able to learn correlations between past
and present events, and future events. Given a time series, such
as tremor signals and voluntary motion, the 1D-CNN-MLP
model reads a string of numbers that represent tremor or
voluntary motion (e.g., acceleration, velocity, or position) and
predicts the number that is most likely to occur next.

In this paper, the performance of the proposed
1D-CNNMLP model was evaluated and compared to
four known DNN architectures that are based on Recurrent
Neural Networks (RNN) to find the best architecture that
could be used for WTSDs. Even though the networks
have never been used for WTSDs, nor for multi-step
prediction, the RNN-based architectures have been recognized
and shown to be robust when used with time-series
data [32]–[36]. The RNN-based architectures are the Long–
Short Term Memory (LSTM) [37], the Gated Recurrent Unit
(GRU) [38], the Bidirectional LSTM (BLSTM), and the
Bidirectional GRU (BGRU) [39]. While the 1D-CNN-MLP
has been shown to be robust to time-series data, it also
requires less computational power and performs automatic
feature extraction, as will be discussed in Section II.
As such, the 1D-CNN-MLP was compared to the RNN-based
architectures to find the best model to use with WTSDs. The
performance of the 1D-CNN-MLP was then evaluated and
compared to the Weighted Fourier Linear Combiner (WFLC),
which is commonly used with WTSDs.

Therefore, the contribution of this work is a model that
can learn directly from data, can adapt to the various tremor
frequencies and amplitudes, and can learn the nonlinear rela-
tionships between voluntary motion and tremor in order to
increase tremor suppression when used with WTSDs. Another
contribution of this work is a DNN model that can predict
10, 20, 50, and 100 steps ahead with high accuracy, and low
prediction time.

II. ONE DIMENSIONAL CONVOLUTIONAL-MULTILAYER

PERCEPTRON AND RECURRENT NEURAL NETWORKS

A Convolutional Neural Network (CNN) is one type of
Neural Network (NN) architecture that takes advantage of the
concept of convolutions to learn higher-order features [31],
[40], [41]. CNNs are mainly used for image classification and
object recognition. They are also used for complex tasks such
as sound and text recognition [42]–[44]. CNNs are known
for their automatic feature extraction process, where they
learn an internal representation of n-dimensional data. The
same process can be exploited for one-dimensional sequences
of data, such as time-series data of hand motion that are
collected using Inertial Measurement Units (IMU). In this
work, the angular velocity data from the three axes (x, y,
and z) were used in the training and testing sets; however,
the prediction was performed on a single axis. CNNs learn
to map the internal features extracted from sequences of
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observations to follow a motion sequence. A sequence of
convolutions are performed in the first convolutional layer. The
sum of convolutions is passed through the activation function
f, followed by a sub-sampling operation before passing the
one-dimensional sequences of data to the following layers to
learn and extract the features. Herein, the output of the last
CNN layer was used in the prediction task that is performed
by the Multi-Layer Perceptron (MLP) layer [31] that esti-
mates and predicts voluntary motion. Due to the nonlinear,
nonstationary, and stochastic nature of PD tremor, a hybrid
of a one-dimensional CNN (1D-CNN) and a MLP network
were considered based on the previous work proposed by the
authors [31], as shown in Fig. 1.

The LSTM architecture was introduced by Hochreiter and
Schmidhuber [37] to solve the vanishing and exploding gra-
dients problem that RNNs face. The concept of LSTMs relies
on memory cells and gated units that regulate the flow of
information, and enables them to learn the important data
from the input sequence to make a prediction. The LSTM
cell consists of a forget gate, an update gate, an output gate,
and a memory cell [37]. The memory cell carries relevant
information throughout the processing of the input sequence,
and information is added to and removed from the memory
cell through the different gates. The forget gate decides which
information should be kept and which information should be
removed from the previous states. The update gate decides
which information should be updated, and which information
is important to keep from the current step. The output gate
decides what the prediction is and what the hidden state should
be.

The GRU architecture was recently introduced by
Cho et al. [38]. Similar to LSTMs, GRUs consist of gate units
but do not contain memory cells. The GRU architecture is
simpler than that of the LSTM, as it only consists of a reset
gate and an update gate. The reset gate allows the GRU cell
to drop any information that is considered to be irrelevant in
the future, thus, allowing for a more compact representation
of data. The update gate, on the other hand, controls how
the information from previous hidden states carries over to
the current hidden state. The update gate acts similarly to
the memory cell in the LSTM network. It allows the network
to remember long-term information, and decides whether the
hidden state is to be updated with a new hidden state.

The BLSTM and BGRU work by training the network
simultaneously in the positive and negative time direction.
In other words, the network will run from the past to the
future, and from the future to the past [39].

LSTMs and GRUs are able to preserve information from
both the past and the future at any point in time due to their
hidden states, which makes them robust for time-series data
analysis. The RNN-based networks have complex architec-
tures that require more computation and memory to hold the
information learned, while the 1D-CNN-MLP requires less
computational power and memory storage than the LSTMs
and GRUs, which leads to a faster training process.

Regardless of the limitations that the RNN-based archi-
tectures have, which are their complexity and their slower
training process, they have been shown to be robust with

time-series data. Moreover, the 1D-CNN-MLP model is a new
approach that has been shown to be robust with time-series
data [31]. As a result, the five architectures were considered
and compared to find the best architecture to be used with
WTSDs.

III. METHODS

To develop a voluntary motion estimator and a multi-step
predictor, a two-step method was followed. The first step
presents a comparison between the five different neural net-
work (NN) architectures. The best architecture was then
used in a simulation study that shows the model’s perfor-
mance when predicting voluntary motion. In the second step,
the model with the best performance in simulation is used in
a real-life experimental setup, where one degree-of-freedom
(DOF) motion data were reproduced using a DC brushless
motor. A second motor was used to track and predict the
voluntary motion using the best model from the first step.
The goal of this study is to find a method that is based on
neural networks, that can learn directly from data to estimate
and predict voluntary motion when used with WTSDs to
increase tremor suppression. The method was evaluated to
show the performance of the predictor on voluntary motion
up to 100 steps ahead.

The following subsections present the data collection and
preparation, the implementation and accuracy measures, and
the comparison of the five DNNs.

A. Data Collection

A total of 18 subjects with PD participated in this study.
The data were recorded at the Wearable Biomechatronics
Laboratory at Western University [5]. The participants were
recruited by a movement disorders neurologist, and the study
was approved by the Health Sciences Research Ethics Board
(#106172). The PD group included eleven males and seven
females with varying tremor severity. Their ages ranged from
60 to 84 (mean ± standard deviation is 69 ± 7). 16 out of the
18 participants were on medication (Levodopa, Pramipexole,
and Amantadine), but did not stop taking their medicine
before they arrived at the lab for data recording. Furthermore,
the tremor scores from the MDS-UPDRS Motor Exam Part
3 were recorded, and they are as follows: for Item 15, the mean
score was 1.56 ± 0.92. For Item 16, the mean score was
0.83 ± 0.71. For Item 17, the mean score was 2.72 ± 0.67. For
Item 18, the mean score was 3.61 ± 0.92. Data were collected
from the hand with the dominant tremor for each of the PD
participants.

IMUs were used to record the data, and they were placed as
shown in Fig. 2. IMU 1 was affixed to the wrist support (above
the ulna and radius bones) at the distal end of the forearm,
IMUs 2, 3, 4 and 5 were affixed to the thumb metacarpal bone,
the index and middle fingers metacarpal bones (dorsal side),
and the metacarpophalangeal (MCP) joints of the thumb and
the index finger, respectively. The motion of each target joint
was measured differentially with the two nearby IMUs. The
sensors communicated with an NXP LP1768 microcontroller
through a serial peripheral interface (SPI) at a sampling rate
of 100 Hz.
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Fig. 1. A sample of the network architecture configuration with 2 CNN and 1 MLP layers.

Fig. 2. Visualization of the placement of the IMU sensors on the wrist
support, the thumb support, the hand support, and the (MCP) joints of
the thumb and the index finger.

PD tremor can be classified into three types of tremor,
resting, postural, and action tremor. Resting tremor occurs
when a limb is in a resting position, postural tremor can be
observed when an individual with PD tremor maintains a hand
position against gravity, and action tremor is observed when
an individual with PD tremor performs a voluntary movement.
To assess the three types of PD tremor, the participants
performed six different tasks, as follows:

1) The participant’s hand was in a resting position with the
palm facing down.

2) The participant’s hand was in a resting position with the
palm facing up.

3) The participant’s hand was held in a postural position.

4) The participant was asked to extend and flex their wrist,
and pinch a pencil when extending the wrist joint.

5) The participant was asked to move a pencil with the
thumb and index finger when extending and flexing the
wrist joint.

6) The participant was asked to draw a spiral.
The data for the first three tasks were recorded for sixty sec-

onds. Both tasks four and five were repeated five times, and
the sixth task was performed once.

B. Data Preparation

Recent studies have shown that the frequencies of parkin-
sonian tremor range from 3 to 17 Hz [5], [8], and voluntary
motion frequencies range from 0 to 2 Hz [5], [8]. For the
network to be able to learn and distinguish the difference
between tremor and voluntary motion, it was trained on both
tremor and voluntary motion data. To extract the tremor signal,
the IMUs were aligned to the user’s joint in the direction
of flexion–extension, and the angular velocity data of the
three axes were used to train the neural network. A 4th order
Butterworth band-pass filter with cutoff frequency between
3 and 17 Hz was applied to the original motion from each
axis. To extract and differentiate the ground truth voluntary
motion from the action tremor, a low-pass filter with cutoff
frequency of 2 Hz was applied to the original motion data
of tasks four, five and six. After filtering the data, zero-phase
shifting with forward–backward filtering was applied offline
to remove the resulting phase shift before training the neural
network models.

In order to develop a generalized model and to assess its
performance on new unseen data, the data were divided into a
training set, a validation set, and a testing set. The training set
consisted of data from twelve PD participants, the validation
dataset consisted of data from a different set of three PD
participants, and the testing dataset consisted of a final set
with the remaining three PD participants. The test set was
only used to evaluate the performance of the neural networks
after they were trained using the training and validation sets.
The training process consisted of five-fold cross validation
that was repeated 50 times using the data from the training
and validation datasets combined to make sure that the model
was not overfitted. It was then tested on new unseen data
with the data from the testing set. The training, validation,
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Fig. 3. Visualization of randomly selected data from different PD
participants to show the difference in the data between participants.

and testing sets included all the repetitions of all the tasks
of the participants’ data that were in each set. Furthermore,
after analyzing the recorded data from the PD participants,
it was found that there is large variability in the data on which
the model can be evaluated, as can be seen in Fig. 3. These
data represent the unseen data from the testing dataset. The
voluntary motion frequencies differ from one participant to
another, and the motion is affected by the tremor that alters
the patterns in each participants’ data. Given this variability,
the data provides a realistic basis from which to assess the
applicability of the models to real-life scenarios.

C. Implementation and Accuracy Assessment

Data processing and the implementation of the five DNN
architectures were performed using Python 3.7 and Tensor-
Flow 2.0. The five networks were trained on an Intel® CoreTM

i7-9700 CPU @ 4.7 GHz PC, using an NVIDIA GeForce RTX
2060 to speed up the training process.

The root mean squared error (RMSE) metric was used to
assess the performance of the models, and it is calculated as
follows:

RMSE =
√∑N

i=1(ŷi − yi )2

N
, (1)

where ŷi is the predicted value, yi is the ground truth value,
and N is the length of the input sequence.

To show the performance of the models when tracking
voluntary motion, the prediction percentage accuracy (PPA)
for multi-step future prediction, and the estimation percentage
accuracy (EPA) were computed. Estimation is the process of
approximation of past seen observations, while prediction is
the process of forecasting future unseen observations. The PPA
is calculated as follows:(

1 − | True Value − Predicted Value |
| True Value |

)
× 100. (2)

The EPA was calculated using the PPA equation and replac-
ing the “Predicted Value” by “Estimated Value”. The network
with the lowest RMSE was then used in the simulation analysis
and in the experimental analysis.

D. Statistical Analysis

A statistical analysis was conducted to compare the per-
formance of the five networks with five different numbers of
layers. The data were tested for normality, and it was found
that they are nonparametric. As a result, a Kruskal-Wallis test
was performed to identify differences between each predictive
model. The analysis was performed using the IBM Statistical
Package for the Social Sciences (SPSS version 25) statistics
software.

E. Network Comparison

To find the network architecture that performed the best,
the five networks were trained with tremor and voluntary
motion data separately, in order for the networks to learn
the difference between them. They were compared using the
5-fold cross validation repeated 50 times and with different
numbers of hidden layers, as presented in Fig. 4. The RMSE
accuracy measure was used to compare the models, as the
problem is a regression problem, and it gives a clear indication
of which one performed better. In the four RNN based archi-
tectures, 100 nodes were used in each layer. In the CNN-MLP
network, each of the CNN layers consists of 64 filters, which
are the learnable weights of the network, a kernel of size two,
and a 1D-MaxPooling layer of size two; the MLP network
consisted of one layer that consisted of 50 nodes, and the
output layer.

The activation function that was used in all of the hidden
layers is the Rectified Linear Unit (ReLU) [45]. The networks
were trained using the Adam optimizer [46] and a learning
rate of 0.0001 with a decay of 1e-6.

The results of the five DNNs showed that they performed
very well using hand motion data, where the average RMSE
of each of the five networks with different layers was below
0.5◦/s. The 1D-CNN-MLP network had the lowest RMSE
(RMSE < 0.003◦/s). One of the reasons why the 1D CNNs
performed well is because they were designed with a similar
concept to 2D CNNs. Vanilla CNN or 2D CNN are designed
to operate exclusively on 2D data such as images and videos,
and learn higher-order features from the data. To work with
one-dimensional data, a modified version of the 2D CNNs
has been developed. Recent studies [31] have shown that 1D
CNNs are advantageous when dealing with 1D signals, such
as time-series data. The forward propagation and backward
propagation of the 1D CNNs require simple array operations,
which result in a lower computational complexity compared to
2D CNNs and to RNN-based architectures. The first 1D CNN
layer defines a set of filters to learn multiple features, which
will be the input to the following 1D CNN layer. The second
1D CNN layer will also define a set of layers that will learn
more features, and so on. As a result, the 1D CNN is able
to automatically learn features about the data, which makes it
more robust compared to the RNN-based architectures, which
retain information using the memory cells, but do not perform
automatic feature extraction.

The statistical analysis showed that there is a significant
difference between the 1D-CNN-MLP with different layers
and with the other networks with different layers. The sta-
tistical analysis showed that within each of the first four
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Fig. 4. Comparison of the five neural network architectures with five
different layers. The black bars represent the standard deviation (±).
A significant difference (p < 0.05) between the number of layers in each
network is indicated by a “*”.

networks (GRU, LSTM, BGRU, BLSTM), there are significant
differences between the different layers.

With regard to the 1D-CNN-MLP networks, the results
showed that there is a significant difference between 1D-
CNN-MLP with one layer and five layers, and between
1D-CNN-MLP with two layers and five layers. There were
no significant differences between networks with any other
combination of layer numbers. Given what has been presented,
the 1D-CNN-MLP network with two 1D CNN layers was
chosen arbitrarily since the 1D-CNN-MLP with one 1D CNN
layer and the 1D-CNN-MLP with two 1D CNN layers had the
same performance and there was no advantage of choosing one
over the other. In addition to performance, and based on how
the data were structured and prepared for training, there was
no noticeable difference computation and training wise when
choosing one over the other, where both networks took the
same amount of time to train. As such, the 1D-CNN-MLP
network with two 1D CNN layers and one MLP layer was
used in simulation as presented in the following section.

IV. SIMULATION RESULTS

In this section, the performance of the 1D-CNN-MLP model
for estimation and for multi-step future prediction of voluntary
motion is evaluated in different scenarios. Figs. 5, 6, and 7
show the performance of the model for different tasks that
were chosen randomly from the testing dataset. Fig. 5 shows
data from the original motion performed by Participant 16,
the ground truth voluntary motion (black) that was extracted
as discussed in Section III-B, and the estimated voluntary

Fig. 5. Visualization of a sample output of the 1D-CNN-MLP model
when the data of Task 6 for Participant 16 were used as an input. Task 6
represents the data when the PD participants drew a spiral.

Fig. 6. Visualization of a sample output of the 1D-CNN-MLP model
when the data of Task 5 for Participant 17 were used as an input. Task 5
represents the data when the PD participants were asked to move a
pencil with their thumb and index finger while extending and flexing their
wrist joint.

motion (blue). Figs. 6 and 7 show the performance of the
model on new unseen participant data. They show the original
voluntary motion (black), the estimated voluntary motion
(blue), and the motion predicted (green) 20 steps ahead, where
the prediction is highlighted in the second inset in both figures.
Table I shows the performance of the model when estimating
voluntary motion, and Table II shows the performance of the
model for different multistep predictions of voluntary motion.
The time it took the model for multistep prediction was also
measured, and the results are shown in Table III.

The 1D-CNN-MLP model achieved an average EPA
of 99.2% for voluntary motion when tested using the nine tasks
of new data with an RMSE of 0.000313◦/s. On the other hand,
the 1D-CNN-MLP model achieved an average PPA of 97.0%,
94.0%, 91.7%, and 90.6% for 10, 20, 50, and 100 steps ahead
of voluntary motion, respectively. The 1D-CNN-MLP model
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Fig. 7. Visualization of a sample output of the 1D-CNN-MLP model
when the data of Task 4 for Participant 18 were used as an input. Task 4
represents the data when the PD participants were asked to extend and
flex their wrist and tap their thumb and index finger together when their
wrist joint is extended.

TABLE I
VOLUNTARY MOTION ESTIMATION PERFORMANCE OF THE

1D-CNN-MLP MODEL DURING TASKS 4, 5, AND 6

TABLE II
VOLUNTARY MOTION PREDICTION PERFORMANCE OF THE

1D-CNN-MLP MODEL FOR DIFFERENT STEPS INTO THE FUTURE

TABLE III
MULTISTEP PREDICTION TIME FOR THE 1D-CNN-MLP MODEL

achieved an RMSE of 0.001, 0.0018, 0.007, and 0.04◦/s for
10, 20, 50, and 100 steps ahead, respectively.

The results presented in this section show the robustness of
the proposed model to track and predict voluntary motions.
The results also show that the proposed model outperforms
the ones proposed in the literature [8], [22]–[24], [27]–[29]
for both estimation and multistep future prediction. This is

Fig. 8. Visualization of the experimental setup—showing the two motors
connected by a coupler, one motor was used to simulate hand motion,
and the second was controlled by either of the models to track voluntary
motion and suppress tremor.

important and integral to the development and enhancement
of wearable tremor suppression gloves (WTSGs) and wearable
assistive devices, in order to improve the effectiveness of
tremor management delivered by these devices.

The following sections present the design of an experimental
setup for motion simulation. The proposed 1D-CNN-MLP
model will be compared to one of the most common estimators
used in robotic devices that manage tremor—the Weighted
Fourier Linear Combiner (WFLC) [23]. Both models will be
used and evaluated based on their ability to help a tremor
suppressor track voluntary motion while suppressing tremor.

V. MOTION REPRODUCTION: EXPERIMENTAL SETUP

This section presents the experimental setup used to com-
pare the WFLC and the proposed 1D-CNN-MLP model. The
objective of this experiment was to evaluate the performance of
the two models in tracking voluntary motion while suppressing
tremor. This is important since the end goal is to effectively
predict voluntary motion and help in tremor suppression when
integrated with WTSDs for individuals living with parkin-
sonian tremor.

A. Experimental Setup and Evaluation

The design of the bench-top setup is shown in Figs. 8 and 9.
It consists of two brushless DC motors, each with a planetary
gearhead (EC-max 16, reduction ratio 29:1, Maxon Motors,
with EPOS2 24/2 controllers). The first motor (motion gen-
erator) was used as a simulator to reproduce the recorded
motions of the index finger of the PD participants. The second
motor (voluntary motion predictor and tremor suppressor)
was controlled by the 1D-CNN-MLP model and the WFLC
to compare their performances. The data from the 18 PD
participants were used in the bench top experimental setup.
The recorded participants’ motion data were sent directly
to the motion generator’s motor controller using LabView
Software (Version 2014, NI). The voluntary motion predictor
was connected to the same PC described in Section III.C. The
two motors were connected by a coupler, and an IMU sensor
was placed on the right side of the coupler to read the motion
reproduced by the simulator. The data were then sent to the PC
to be processed. The processed data were used as the input to
the WFLC and the 1D-CNN-MLP models. The output of the
models—which is the estimated voluntary motion—was then
used as the command motion for the motor. The performances
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Fig. 9. A block diagram of the experimental setup that specifies the input
and the output signals.

of the WFLC and the 1D-CNN-MLP models were evaluated
by calculating the percentage reduction of tremor using the
power spectral density (PSD) of the outputs of the WFLC
and the 1D-CNN-MLP model. The PSD estimates the power
distribution of the input signal over a specific frequency range.
This frequency domain feature captures the overall frequency
content of the specific signal and is expressed as the Fourier
transform of the autocorrelation of the obtained tremor signal.
The PSD of both the original signal and the output signal of
the model were then calculated as discussed in [47] as follows:

φ( f ) = FFT(x)

N
, (3)

PSD =
f2∑

i= f1

φ(i)

T
= 1

Nts

f2∑
i= f1

φ(i), (4)

where x is the signal in the time domain, N is the length of
the signal, ts is the sampling period, and f1 and f2 are the
lower and upper limits of the range of interest. The tremor
PSD reduction was then calculated by subtracting the PSD of
the measured tremor motion after the tremor suppressor was
activated, from the PSD of the original tremor motion, then
dividing by the PSD of the original tremor motion, and then
multiplying by 100 as follows:

PSDreduction = PSDoriginal − PSDsuppressed

PSDoriginal
× 100. (5)

The RMSE was also used to calculate how well both models
performed in tracking voluntary motion.

B. Statistical Analysis

A statistical analysis was conducted to compare the per-
formance of the 1D-CNN-MLP model to the WFLC during
all six tasks. The data have been tested for normality, and
the results showed that they are not normally distributed for
the 1D-CNN-MLP with Tasks 1 and 3, and for the WLFC
with Task 4. As such, the Kruskal-Wallis test was performed
to identify differences between the two models across these
tasks, and a two-by-six repeated measures ANOVA with a
Bonferroni correction post hoc test was performed to identify
differences between the two models and the six tasks for the
normally distributed data. The α was set to 0.05. The analysis
was performed using SPSS.

Fig. 10. Comparison between the performance of the 1D-CNN-MLP
model and the WFLC in suppressing tremor. The figure shows the tremor
PSD percentage reduction by the WFLC, and the tremor PSD percentage
reduction by the 1D-CNN-MLP model. The black line indicates the
median, the box indicates the range between the 25% and the 75%
quartiles. The x axis indicates the task number, and the y axis indicates
the tremor PSD reduction.

Fig. 11. Visualization of a sample output of the WFLC when data of
Task 2 were used as an input. Task 2 represents the data when the hand
was in a resting position with the palm facing up.

C. Results and Discussion

In this section, the performance of the WFLC and the
1D-CNN-MLP models for tracking voluntary motion and sup-
pressing tremor is presented. The statistical analysis showed
that there is a significant difference (p < 0.05) between the
1D-CNN-MLP model and the WFLC across the six tasks, and
that there is interaction between the two main factors. Fig. 10
shows a comparison between the performance of the WFLC
and 1D-CNN-MLP model in reducing tremor across the six
tasks. It is important to note that the analysis showed that there
was no significant difference between the six tasks.

The results show that the WFLC achieved an aver-
age of 68.8% ± 7.5% in tremor reduction, while the
1D-CNN-MLP model achieved an average of 93.8% ± 1.5%
in tremor reduction, which is an improvement of 25%.

Figs. 11 and 13 show sample data with resting tremor and
the output of the WFLC and 1D-CNN-MLP in suppress-
ing tremor. Figs. 12 and 14 show the PSD of the original
tremor and the suppressed tremor by the WFLC and the
1D-CNN-MLP respectively.

Fig. 15 shows a comparison of the performance of the
WFLC and the 1D-CNN-MLP model when tracking voluntary
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Fig. 12. Visualization of PSD of the original and suppressed tremor for
the WFLC model.

Fig. 13. Visualization of a sample output of the 1D-CNN-MLP model
when data of Task 2 were used as an input. Task 2 represents the data
when the hand was in a resting position with the palm facing up.

Fig. 14. Visualization of PSD of the original and suppressed tremor for
the 1D-CNN-MLP model.

motion of Tasks 4, 5 and 6, where the analysis has also shown
that there was no significant difference between these tasks.

Figs. 16 and 17 show sample data of Task 4 that con-
tains action tremor and voluntary motion. Fig. 16 shows the
performance of the WFLC in estimating voluntary motion,
while Fig. 17 shows how the 1D-CNN-MLP performed in
real time when predicting voluntary motion. The input to
both models was fed in real time using the data from the
IMU, which measures the motion reproduced by the simulator.
The 1D-CNN-MLP model was configured to predict 50 ms
ahead to compensate for the time delay introduced by the
system (data processing and motor response times). This is
important to move the motor to the predicted position to
follow voluntary motion and suppress tremor in real time.
When estimating voluntary motion, the RMSE achieved by the
WFLC in this scenario was 3.7◦/s, while the 1D-CNN-MLP
model achieved an RMSE of 0.07◦/s. The results of the WFLC
output can be seen in Fig. 16, where it cannot accurately

Fig. 15. Comparison between the performance of the 1D-CNN-MLP
model and the WFLC when tracking voluntary motion. The figure shows
the RMSE of the WFLC, and the RMSE of the 1D-CNN-MLP model. The
black line indicates the median and the box indicates the range between
the 25% and the 75% quartiles. The x axis indicates the task number,
and the y axis indicates the tremor PSD reduction. Note the different
scales in the y axis.

track voluntary motion. This is likely due to the fact that
the WFLC cannot track higher tremor harmonics adaptively
and separately. Furthermore, the WFLC estimates a signal,
which results in a delayed response from the motors, while
the proposed model can learn directly from the data to predict
the future steps.

The prediction accuracies of the 1D-CNN-MLP model
decreased slightly in the experimental setup compared to the
simulation results presented in Section IV, where the average
RMSE increased from 0.012◦/s to 0.12◦/s, however, it is still
considered relatively small. The increase in the RMSE could
be the result of different factors. One of these factors is that
the use of the model in the experimental setup is closer to
the real-life behaviour of motion data under study, and the
simulation results represent the behaviour of the model in an
ideal situation. Other factors to be considered are the data
transfer or missing data during data transfer, and motor(s)
response time. One main limitation of using the DNN model
proposed is the time it takes to find the optimal parameters
for the network, and the training time of the network.

Despite the slight increase in the RMSE when predicting
voluntary motion, the results of the 1D-CNN-MLP model
still showed its robustness to learn and differentiate between
voluntary motion and tremor from the data directly, and to
predict future voluntary motion with high accuracies. It was
able to increase the tremor reduction to 93.8% on average
compared to the reduction achieved by the WFLC.
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Fig. 16. Visualization of a sample output of the WFLC when data of Task 4 were used as an input. Task 4 represents the data when the participants
were asked to extend and flex their wrist, and tap their thumb and index finger together when their wrist joint is extended.

Fig. 17. Visualization of a sample output of the 1D-CNN-MLP when data of Task 4 were used as an input. Task 4 represents the data when the
participants were asked to extend and flex their wrist, and tap their thumb and index finger together when their wrist joint is extended.

Lastly, although finding the optimal parameters and training
the networks consumes time, once the network is trained it can
be used without the need to retrain and find the parameters
again. The computational time of the proposed model to
predict future voluntary motion was as low as 1.5 ms for
100 steps ahead.

VI. CONCLUSION

This work proposes the design and implementation of a
novel user and task-independent voluntary motion predictor
that is based on DNN. The results of the proposed work show
its potential when tracking voluntary motion, and predicting
up to 100 steps ahead with high accuracy. In both simulation
and an experimental assessment, the proposed 1D-CNN-MLP
model showed that it overcomes the drawbacks of the esti-
mators and predictors proposed in the literature, especially
the time delay for real-time tremor management required by
wearable assistive devices.

Future work will focus on investigating the factors that
contributed to the increase of RMSE when predicting vol-
untary motion for the bench-top experimental setup, and to
minimize their effect as much as possible so that the model
has better performance in a real-life situation. Future work will

also investigate the integration of the developed model with
the WTSD being developed in the Wearable Biomechatronics
Laboratory at Western University. It will also be important to
investigate whether there are any advantages to using the cloud
to train the network online and on the go; however, this will
require further investigation into encrypting patients’ data to
ensure that their privacy is not compromised. An alternative
is to investigate the use of a more powerful computing unit
(e.g., Nvidia Jetson Nano, Raspberry Pi4, or Google Coral)
to perform overnight training to increase the model’s perfor-
mance. However, the drawbacks of using a more powerful
computing unit are the increase in the price, size, and power
consumption of the device, along with the likely need for a
cooling mechanism.
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