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Abstract— Imagined speech is a highly promising
paradigm due to its intuitive application and multiclass scal-
ability in the field of brain-computer interfaces. However,
optimal feature extraction and classifiers have not yet been
established. Furthermore, retraining still requires a large
number of trials when new classes are added. The aim of
this study is (i) to increase the classification performance
for imagined speech and (ii) to apply a new class using a pre-
trained classifier with a small number of trials. We propose a
novel framework based on deep metric learning that learns
the distance by comparing the similarity between samples.
We also applied the instantaneous frequency and spectral
entropy used for speech signals to electroencephalography
signals during imagined speech. The method was evaluated
on two public datasets (6-class Coretto DB and 5-class BCI
Competition DB). We achieved a 6-class accuracy of 45.00 ±
3.13% and a 5-class accuracy of 48.10 ± 3.68% using the
proposed method, which significantly outperformed state-
of-the-art methods. Additionally, we verified that the new
class could be detected through incremental learning with a
small number of trials. As a result, the average accuracy is
44.50 ± 0.26% for Coretto DB and 47.12 ± 0.27% for BCI
Competition DB, which shows similar accuracy to baseline
accuracy without incremental learning. Our results have
shown that the accuracy can be greatly improved even with
a small number of trials by selecting appropriate features
from imagined speech. The proposed framework could be
directly used to help construct an extensible intuitive com-
munication system based on brain-computer interfaces.

Index Terms— Imagined speech, instantaneous
frequency, spectral entropy, deep metric learning, brain-
computer interface.

Manuscript received January 13, 2021; revised April 24, 2021 and
June 15, 2021; accepted July 9, 2021. Date of publication July 13,
2021; date of current version July 20, 2021. This work was supported
in part by the Institute for Information and Communications Technology
Promotion (IITP) Grant through the Korean Government (Development of
BCI-based Brain and Cognitive Computing Technology for Recognizing
User’s Intentions using Deep Learning) under Grant 2017-0-00451 and
in part by the Institute of Information and Communications Technology
Planning and Evaluation (IITP) Grant through the Korean Government
(MSIT) (Artificial Intelligence Graduate School Program (Korea Univer-
sity)) under Grant 2019-0-00079. (Dong-Yeon Lee and Minji Lee con-
tributed equally to this work.) (Corresponding author: Seong-Whan Lee.)

Dong-Yeon Lee and Minji Lee are with the Department of Brain and
Cognitive Engineering, Korea University, Seongbuk-gu, Seoul 02841,
Republic of Korea (e-mail: dongyeon_lee@korea.ac.kr; minjilee@
korea.ac.kr).

Seong-Whan Lee is with the Department of Artificial Intelligence,
Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea (e-mail:
sw.lee@korea.ac.kr).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNSRE.2021.3096874.

Digital Object Identifier 10.1109/TNSRE.2021.3096874

I. INTRODUCTION

BRAIN-COMPUTER interfaces (BCIs) refer to control-
ling the external devices by detecting brain signals [1].

Previous studies have mainly used external stimuli such as
visual stimuli, but recent research has focused on extensible
and intuitive paradigms for practical application [2]. The
BCI paradigm is divided into an exogenous paradigm that
measures brain waves responding to external stimuli and an
endogenous paradigm that measures spontaneous electroen-
cephalography (EEG) signals according to user intention [3].
The exogenous paradigm has the advantage of high classifi-
cation accuracy but has the disadvantage of requiring external
devices [4]. On the other hand, the endogenous paradigm does
not require external stimuli but does not perform as well as
the exogenous paradigm [2]. Because external devices are
not required, many endogenous paradigms have recently been
studied in the BCI field. Traditionally, motor imagery (MI)
was the most studied endogenous paradigm [5], [6]. MI refers
to measuring the brain waves generated when we imagine the
intention of movement [7]. Therefore, the number of classes
is limited because of the imagination of body movement (i.e.,
right hand, left hand, and foot). Therefore, it is not suitable
and intuitive for communication systems that require a large
number of available classes [7], [8].

Imagined speech has recently been studied as an intuitive
paradigm [2]. Brain waves generated by imagining pronunci-
ation without movement of the articulators are measured [9].
This paradigm is particularly suitable for building commu-
nication systems due to its intuitiveness. However, the per-
formance is still not as high as that of other paradigms.
Nevertheless, imagined speech has multiclass scalability [2],
thus showing the possibility of building an extensible BCI
system. When increasing the number of classes, it is inef-
ficient to repeat the whole training process. The process
of acquiring and retraining data is also a time-consuming
task. García-Salinas et al. [10] proposed a framework for an
extensible BCI system. They used a bag of features (BoF)
feature extractor and a naive Bayes classifier to classify-
ing 5 imagined words. Then, after constructing a BoF with
4 words, transfer learning was performed on the new word to
explore whether it could be composed of the previous features.
This study showed the possibility of predicting a new word
through a pretrained BoF feature extractor. However, this study
requires many trials for new words to train the classifier, and
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there is performance degradation compared to the baseline
accuracy.

The brain signals during the imagined speech were asso-
ciated with speech signals. In a paper by Coffey et al. [11],
when receiving audio stimuli, the magnetoencephalography
(MEG) signals appeared analogous to the envelope of the
speech signals, and there was a slight delay. In a paper by
Watanabe et al. [12], a similar trend in EEG signals appeared
when receiving audio stimuli and when performing imagined
speech. Similarly, there was a little delay when performing an
imagined speech. Thus, it is considered that EEG oscillations
during imagined and perceived speech are synchronized with
the envelope of speech signals.

In this study, we proposed a novel framework to increase
the classification performance during imagined speech and
the number of classes even with a small number of EEG
trials for an intuitive, extensible BCI system. We used deep
metric learning, which refers to a method of distance training
by comparing the similarity between samples using deep
learning [13]. Siamese neural networks are a kind of deep
metric learning network and have the advantage of reducing
the dimensions of high-dimensional signals [14], [15]. The
instantaneous frequency and spectral entropy were used for
extracting suitable EEG features during imagined speech. The
instantaneous frequency can extract the frequency component
of signals that changes over time [16], and the spectral
entropy reveals the waveform of the signal in white noise [17].
These features have been widely used in the field of speech
recognition [18], [19].

Additionally, the incremental learning method was used to
check multiclass scalability in the proposed framework. This
method uses a pretrained classifier to classify new data that
have not been encountered [20], [21]. In other words, this
method aims to classify new data while not losing its original
capabilities [22]. In this study, we hypothesized that the newly
added data were a new class. At this time, the class used for
pretraining is called the base class, and the new class is called
the novel class. Specifically, a small number of EEG trials
were used whenever the number of classes increased using
incremental learning. To the best of our knowledge, there is
no approach to classify EEG signals during imagined speech
using conditional spectral moments of the time-frequency
distribution based on a deep metric learning approach. The
proposed framework improves the performance of imagined
speech systems and classifies the novel class while maintaining
the original capabilities. These results show the possibilities
for an intuitive BCI system using imagined speech.

II. RELATED WORKS

Imagined speech is the BCI paradigm that is drawing atten-
tion for intuitive and multiclass scalability [2]. Many studies
are reported in two directions; (i) extracting suitable features
for imagined speech and (ii) building optimal classifiers.

A. Feature Extraction

The common spatial patterns (CSP) is the most widely
used method for feature extraction in MI paradigm. This has

already been demonstrated as a distinguishing feature, such
as left hand, right hand, during MI [23]. Imagined speech is
a recently emerging endogenous paradigm and it has not yet
been known which feature extraction method is suitable. In this
respect, CSP is commonly used in imagined speech because
it is an endogenous paradigm such as MI [7]. This method
finds the optimal spatial filters, which maximize the variance
of the EEG signals of one class and minimize those of the
other class, using covariance matrices [24]. Dasalla et al. [23]
used CSP and a support vector machine (SVM) to classify
binary imagined vowels. The minimum classification accu-
racy was 68%, and the maximum was 78%. Lee et al. [7]
attempted to classify 13 classes (12 imagined words with the
resting state) to highlight the advantage of imagined speech
that many classes can be used compared to the existing
paradigm such as MI. A random forest (RF) model showed
an average classification accuracy of 20.4% for 13 classes,
including the resting state. The CSP algorithm has the advan-
tage of reducing the dimension of data and increasing the
distance between different classes but has the disadvantage
of being optimized in binary classes [25]. Therefore, many
studies have been performed to extract new features that are
suitable for multiclass classification and can take advantage of
the features of speech itself.

Coretto et al. [26] used the discrete wavelet
transform (DWT) as a feature extractor and an RF as
a classifier to classify 5 vowels and 6 words during
imagined speech. As a result, the 5-class vowel accuracy
was 22.72% and the 6-class word accuracy was 19.60%.
García-Salinas et al. [10] reported that 5-class classification
accuracy had an average accuracy of 68.9% using the BoF
approach. However, they did not give a random cue for
imagined speech. This is a limitation in that stimulation
should be presented randomly to exclude habituation effects
in the field of BCI [27]. They also admit that the high
performance is due to this characteristic of the paradigm.
Nevertheless, it is implied that the classification performance
of the imagined speech can be improved by selecting suitable
features [28].

In Dash et al. [29], they proposed the forward selection
algorithm using spatial selectivity of MEG signals. The aim
of this study is to minimize the number of sensors for neural
speech decoding. In specific, the optimal sensor subset of
the whole feature set was selected by removing redundant or
irrelevant MEG features from the data during speech decoding.
As a result, the authors obtained higher accuracy using only
nine sensors located near the Broca’s area compared to using
all channels.

B. Classifier Training

Since suitable features for imagined speech have not yet
been found, many studies are being conducted to improve
performance by automatically extracting features based on
deep learning. Saha et al. [30] extracted features using a
convolutional neural network (CNN) and a long-short term
memory (LSTM) network in parallel and then concatenated
these features. The channel cross-covariance was used as the
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Fig. 1. Proposed framework for classifying EEG signals during imagined speech. (a) In step 1, the classifier was trained using the base class
(‘up,’ ‘down,’ ‘forward,’ ‘backward,’ and ‘right’) without incremental learning. Each raw EEG data point consists of C channels and T time points.
The features indicate the instantaneous frequency and spectral entropy extracted from the raw EEG signals. x1 and x2 denote two trials chosen at
random regardless of class. f (x1) and f (x2) denote the reduced embeddings extracted through the Siamese neural network. Finally, dimensionally
reduced embeddings are classified through the k -NN classifier. One of the test trials is marked with a star. (b) In step 2, a novel class (‘left’) was
detected using incremental learning based on the pretrained classifier. The pretraining stage is the same as that in step 1. The weight in this layer
(called freeze layers) does not change when the network pretrained using five base classes is retrained to classify the novel class. But, the fully
connected layers of the Siamese neural network are fine-tuned.

network input, and the network was trained using a deep
autoencoder. In summary, they tried to use this network
to extract spatiotemporal information. This method achieved
averaged accuracy of 77.9% for 2-class classification. In their
recent work [31], they refined the previous method slightly,
replacing the LSTM networks with temporal CNNs to eval-
uate performance. This method achieved an average 2-class
classification accuracy of 83.42%, which was 5.52% higher
than that of the previous method.

Furthermore, Dash et al. [32] decoded five imagined
phrases using MEG signals. The authors used CNN applied
on the spatial, spectral, and temporal features in terms of
scalograms of the neuromagnetic signals. As a result, they
achieved an average accuracy of up to 93% during imagined
speech. However, although MEG signals have a high-temporal
resolution, this is limited to practical use in real BCIs due to
their high price, large size and weight [29].

Cooney et al. [33] used independent component analysis
with Hessian approximation preconditioning to eliminate elec-
trooculography signals. Using a CNN, it achieved a 32.35%
accuracy in 5-class imagined vowel classifications. In their
recent study [34], they used the same preprocessing method
and then classified word-pairs by applying DeepConvNet [35]
and ShallowConvNet [35], which are commonly used in
EEG signal classification. These methods achieved a 62.37%
classification accuracy for word pairs (2-class classification).

However, these studies were not aimed at finding suitable fea-
tures for imagined speech. They simply designed the optimal
structure of the network for high performance so that deep
learning could learn its features. Furthermore, they still have
the limitation of training classifiers again when applying the
new data for multiclass scalability.

III. METHODS

A. Overall Framework

The proposed framework consists of two steps. The first
step is to classify the base class, and the second step is to
detect the novel class. The overall flow of the two steps is the
same, but in the second step, fine-tuning is performed using
the weights of the network pretrained in the first step. Each
step consists of feature extraction and classification. First,
the instantaneous frequency and spectral entropy are extracted
from the raw signals and then merged into 2-dimensional data.
Then, the extracted data are input into the Siamese neural
network to learn the distance between the training sets. After
training the Siamese neural network, the initial inputs are
reduced to an 8-dimensional embedding. These embeddings
train the k-nearest neighbors (k-NN) classifier and can classify
the class during imagined speech.

Fig. 1 shows a detailed description of the proposed frame-
work. In the Coretto DB [26], there are six words such as
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‘up,’ ‘down,’ ‘forward,’ ‘backward,’ ‘right,’ and ‘left’. Here,
we suppose ‘left’ as the novel class. In step 1, the classifier was
learned using the base class. This is the baseline classification
without incremental learning. We used 5-fold cross-validation,
so 80% of the data is used for training and 20% of the
data used for testing. The raw EEG signals converted to the
instantaneous frequency and spectral entropy. These signals
are used as input into the Siamese neural network to reduce
the dimensions. Finally, dimensionally reduced embeddings
are classified using the k-NN classifier. When the test trial
is placed in an embedding space through the trained Siamese
neural network, the class is determined by considering the five
closest instances in this embedding space. In step 2, a novel
class was detected using the pretrained classifier shown in
step 1. In incremental learning stage, 20% of the base class
and 20% of the novel class ‘left’ are trained using pretrained
classifier. Data from 20% of the base class is selected from
the data used in step 1. The weight in freeze layers does not
change when the network pretrained using five base classes
is retrained to detect the novel class. But, the fully connected
layers of the Siamese neural network are fine-tuned. From the
perspective of overall training, the base class used 80% of the
data for training, but only 20% of the data in the novel class
are used.

B. Feature Extraction

1) Instantaneous Frequency: The instantaneous frequency
of signals represents the average of the frequencies present
in the signal as it evolves [36]. It is estimated as the first
conditional spectral moment of the time-frequency distribution
of the input signals. It is calculated as follows:

finst (t) =
∫ ∞

0 f P(t, f )d f
∫ ∞

0 P(t, f )d f
(1)

where P(t, f ) denotes the power spectrum of time t and
frequency f . Since the instantaneous frequency is calculated
through one channel, the EEG signals of each channel are
concatenated into one dimension.

2) Spectral Entropy: The spectral entropy of a signal is
a measure of its spectral power distribution. The entropy
represents the uniformity of the spectral power distribution.
Hence, when signals other than white noise occur, it generates
a small entropy. On the other hand, when only white noise is
present, it produces the greatest entropy [37]. The concept
is based on the Shannon entropy (information entropy) in
information theory [18]. The spectral entropy equations arise
from the equations for the power spectrum and probability
distribution for a signal. For a signal x(n); (n = 1, 2, . . . , N),
the power spectrum is s(m) = |X (m)|2; (m = 1, 2, . . . , N),
where X (m) is the discrete Fourier transform of x(n) and
N is the total number of frequency points. The probability
distribution p(m) is calculated as follows:

p(m) = s(m)

�N
i s(i)

(2)

The spectral entropy H is as follows:
H = −�N

m=1 p(m)log2 p(m) (3)

TABLE I
NEURAL ARCHITECTURE FOR DEEP METRIC LEARNING

The normalized equation is as follows:

Hn = −�N
m=1 p(m) log2 p(m)

log2 N
(4)

where log2 N is the maximum spectral entropy of white
noise, which is evenly distributed over the frequency domain.
If the time-frequency power spectrogram S(t, f ) can be found,
the probability distribution is as follows:

p(m) = �t S(t, m)

� f �t S(t, f )
(5)

When calculating the instantaneous spectral entropy, the prob-
ability distribution at time t is as follows:

p(t, m) = S(t, m)

� f S(t, f )
(6)

Instantaneous spectral entropy at time t is as follows:
H (t) = −�N

m=1 p(t, m)log2 p(t, m) (7)

Similar to the instantaneous frequency, since the spectral
entropy is calculated using one channel value, signals in
each channel are concatenated in one dimension. Afterward,
the instantaneous frequency and spectral entropy, each com-
posed of 1 dimension, are reconstructed into a signal with
2 dimensions.

3) Feature Extraction Using Deep Metric Learning: It takes
much time to acquire a large number of EEG trials. In addition,
EEG features extracted through the instantaneous frequency
and spectral entropy still have a large dimension. To solve
these problems, we used Siamese neural networks for deep
metric learning. Siamese neural networks can reduce overfit-
ting by reducing the dimension of the signals and learning the
distance between the reduced embeddings. The neural archi-
tecture used for training is shown in Table I. This architecture
was used as an encoder to reduce the dimension of the data and
was trained using Siamese neural networks. In specific, this
type of network learns two inputs by randomly selecting them
regardless of their class in the training set [14], [15]. Each
input obtains a reduced embedding through each network and
this network has the same structure and parameters. Randomly
selected inputs are denoted by x1 and x2. The extracted
embeddings through the network are also denoted by F(x1)
and F(x2). Here, each parameter describes x1 ∈ R2×520, x2
∈ R2×520, F(x1) ∈ R8, and F(x2) ∈ R8. 2 × 520 comes
from Conv1, and 8 comes from Fc4 shown in Table I.
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The two extracted embeddings obtained through the network
are trained to be located close to each other if the classes
are the same and far apart from each other if the classes are
different [25]. A Siamese neural network requires two inputs
and a corresponding label at each iteration. The information
structure is [x1, x2, y]. y is a label indicating whether the
two inputs are of the same class (y = 1) or different classes
(y = 0). The two extracted embeddings are learned through
the Euclidean distance and the distance between the two
embeddings is calculated as follows:

D(x1, x2) =‖ F(x1) − F(x2) ‖2 (8)

Siamese neural network learns the contrastive loss based on
the above distance, and the loss function is as follows:

L = 1

2
y D2 + 1

2
(1 − y)max(m − D, 0)2 (9)

where m denotes a margin (m > 0). The purpose of this
parameter is to move two inputs farther than the set value
when they belong to different classes [13]. A Siamese neural
network was originally proposed to use deep learning while
avoiding overfitting when the number of training sets is very
small as with one-shot learning [14]. By using two inputs,
the number of training sets can be increased by the number
of combinations of inputs. In this study, we used as many
combinations of inputs as much as possible to increase per-
formance. We also tried to obtain a reduced embedding rather
than predicting whether two inputs are the same or different
through the Siamese neural network.

C. Classification Using the k-NN Algorithm

Feature extracted embeddings were obtained from the high
dimensional original data through the instantaneous frequency,
spectral entropy, and Siamese neural networks. We used
the k-NN algorithm, which works according to the prox-
imity principle of the instance, to classify embeddings into
classes [15]. This determines a class by referring to the
class of the k-nearest instances in the arbitrary embedding
space. In other words, if instances are labeled, the labels
for unclassified instances can be decided by observing the
labels of their nearest neighbors [38]. Since a Siamese neural
network also learns the distance between data in arbitrary
embedding space, the k-NN algorithm, which classifies based
on distance, is more suitable for classification than other
methods. In other words, it is appropriate to use k-NN
algorithm as the distance-based classification method because
embeddings extracted through the Siamese neural network
have distance information. While k-NN has the advantage
of being simple and robust, it also has the disadvantage of
having a lot of computational burdens caused for training the
model [39]. Moreover, the accuracy of the high-dimensional
data is degraded due to the curse of dimensionality [40]. In this
paper, we tried to compensate for the drawbacks as much
as possible by reducing the dimension of the data through
a Siamese neural network.

1) Base Class Detection: The base class refers to an existing
class to which no new words have been added, and the
framework learned from the base class is set as the pretrained

framework. The base class detection framework is shown
in Fig. 1(a). First, the instantaneous frequency and spectral
entropy of raw EEG signals are input into the Siamese neural
network. Two inputs are required to be used in the Siamese
neural network. Therefore, two random samples are selected
from the complete training set regardless of the class. Each
sample trains a CNN branch and both branches have the same
structure and parameters. If the classes of the two datasets are
the same, the embedding extracted through the Siamese neural
network is learned to be close to each other, and in case the
classes of the two datasets are different, the embedding is
learned to be distant. As a result, the Siamese neural network
learns the distances between samples in the specific space.
By using Siamese neural networks over high-dimensional
data, we can obtain a dimensionally reduced embedding that
contains important information related to the distance. For
classification, the k-NN algorithm was used; it predicts the
classes of test data through the closest k instances in a specific
space.

2) Novel Class Detection: Novel class detection means clas-
sifying newly added classes in addition to the previously
learned classes. We conducted novel class detection to show
that the proposed method is robust to the extensibility of
imagined speech. Since an imagined speech BCI system
should be able to incrementally learn about the new class
while avoiding catastrophic forgetting [41]. Traditional neural
network approaches need to retrain the whole network and add
a large amount of data when increasing the number of classes.
In addition, most of the incremental learning methods in the
BCI system cannot preserve the original capabilities, which
refers to the ability to perform existing tasks excluding new
tasks when performing incremental learning [42]. To improve
these problems, we propose a framework that can maintain the
original capabilities while using a small amount of data.

The overall flowchart for incremental learning is shown in
Fig. 1(b). First, the Siamese neural network is pretrained using
the base class. Next, when a new class is added, fine-tuning
is performed with some of the data used in the base class
and the data of the novel class. The fine-tuning method is
the basic method used when performing incremental learning.
The network structure is the same as the structure used for pre-
training, and the pretrained weight is used as the initial weight.
Based on this weight, only the weights of the fully-connected
layers are adjusted. We hypothesized that the convolution layer
can extract optimal EEG characteristics through pretraining.
Thus, we fine-tune only the fully connected layers. It is
also assumed that fine-tuning only the fully connected layers
prevents overfitting and destroying the trained layer.

D. Training and Evaluation Scheme

We evaluated the performance on each subject using 5-fold
cross-validation. We also used the same number of training
sets per class. The Siamese neural network was trained using
a contrastive loss function and the Adam optimizer. We set the
gradient decay factor to 0.9 and the squared gradient decay
factor to 0.99. The rectified linear units (ReLU) function was
used after each convolution layer and fully-connected layer.
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We also set the margin m = 0.5 and the learning rate to
1 × 10−4. During pretraining, we set the batch size to 500 for
each iteration, and train 1000 iterations. In the incremental
learning phase, we set the batch size to 100 for each iteration,
and train 500 iterations. In the k-NN classifier, the number of
nearest neighbors is set to 5 (k = 5).

E. Statistical Analysis

We performed a statistical analysis to determine whether
the difference between the accuracy of the proposed method
and different methods is significant. One-way analysis of
variance (ANOVA) was used, and post-hoc analysis was
performed using a paired t-test. All the significance levels were
set to α= 0.05 with Bonferroni correction.

IV. EXPERIMENTAL RESULTS

A. Data Description

We evaluated the classification performance on two public
datasets for imagined speech. The detailed comparison is
shown in Table II. The first is the open dataset from Coretto
DB [26]. It consists of imagined speech and overt speech in
EEG signals for a total of 15 subjects. We only used EEG
signals during imagined speech. Six electrodes (F3, F4, C3,
C4, P3, and P4) were used, and the reference and ground
were placed over the left and right mastoids, respectively.
In addition, some of the electrodes are located in Wernicke’s
area, which plays an important role in language process-
ing [28], [43]. The classes consist of 5 Spanish vowels and
6 Spanish words. Words are more intuitive to control external
devices than vowels. To evaluate the extensibility of the
words, our study only used signals for 6 words: ‘arriba’ (up),
‘abajo’ (down), ‘derecha’ (right), ‘izquierda’ (left), ‘adelante’
(forward), and ‘atrás’ (backward). These words were chosen
to intuitively control external devices.

The second dataset is the BCI Competition DB from
Track 3 in the 2020 International BCI Competition
(https://osf.io/pq7vb/) [44]. This dataset measured EEG sig-
nals during imagined speech and consisted of 15 subjects.
In total, 64 electrodes were used, and the ground and reference
electrodes were placed on Fpz and Fcz, respectively. The five
words consist of ‘hello’, ‘help me’, ‘stop’, ‘thank you’, and
‘yes’, which are useful commands for patients.

The two datasets consist of a total of 6 classes and 5 classes,
and each class includes 40 and 70 trials, respectively. In base
class detection without incremental learning, since we per-
formed 5-fold cross-validation, we used 32 and 8 trials in
each class in training and testing from Coretto DB [26],
respectively. Similarly, in BCI Competition DB [44], 56 and
14 trials were used for training and testing, respectively. When
applying to incremental learning, the training and test data
were divided for a rehearsal method. This method is used to
adapt some of the data that were used during pretraining to
maintain the original capabilities when performing incremental
learning [20], [41], [45]. In the rest of the classes (base class)
except one class (novel class), pretraining is performed using
32 and 56 trials for each class. The novel class is learned
by using 8 and 14 trials for each class of the pretraining set

TABLE II
COMPARISON BETWEEN TWO PUBLIC DATASETS

and 8 and 14 trials of the novel class together through the
incremental learning stage (Supplementary Fig. S1). In the
Siamese neural network, data of the same class or different
classes are used at the same time as inputs, so a small amount
of data of classes other than the novel class is stored and used.
Then, unseen 8 and 14 trials were tested in both datasets.
In other words, 32 and 56 trials were used to the pretraining
stage in the base class detection without incremental learning,
whereas only 8 and 14 trials were used for training when
applying incremental learning as the novel class.

B. Baseline Classification of Base Class

We trained all the classes to evaluate whether the pro-
posed framework can improve the performance of imagined
speech. Fig. 2 illustrates the confusion matrix of the two
datasets. The obtained accuracies of all the words were higher
than the chance level. In the Coretto DB [26], the 6-class
classification accuracy using our proposed pretraining frame-
work shows an average accuracy of 45.00 ± 3.13% across
all subjects. In the BCI Competition DB [44], the 5-class
classification accuracy using our proposed pretraining frame-
work shows an average accuracy of 48.10 ± 3.68% across all
subjects.

We compared four state-of-the-art methods. In addition,
to determine how effective deep metric learning is compared
to general deep learning, we classified the base class using the
cross-entropy loss based on the proposed CNN architecture.
Finally, we also compared the classification performance using
an SVM instead of the k-NN classifier in the proposed
framework. Table III shows the classification accuracy of
different methods averaged across all the subjects compared
to the proposed method. When we compared the classification
performance of the proposed pretraining framework and con-
ventional methods, there were significant differences between
the accuracies of the different methods (p < 0.001). The
proposed method outperformed the state-of-the-art methods
by 23.53% to 27.54% in Coretto DB [26]. Similarly, in the
BCI Competition DB [44], we achieved higher performance
than state-of-the-art methods, ranging from 10.86% to 28.31%.
We also showed significantly higher performance even when
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Fig. 2. Average confusion matrix of baseline classification across all subjects without incremental learning. (a) 6-class in Coretto DB [26] and
(b) 5-class in BCI Competition DB [44] during imagined speech.

TABLE III
COMPARISON OF ACCURACY RATE WITHOUT INCREMENTAL LEARNING

using the proposed methods with SVM and CNN, which are
part of the proposed method, on both datasets. As a result,
the proposed method in both datasets statistically performed
better than the other methods. This finding indicates that
the proposed framework is suitable for classifying imagined
speech.

To visualize the levels of similarity between features in each
class, we depicted the multidimensional scaling (MDS) plot
and performed an agglomerative hierarchical cluster analysis
in both datasets. Fig. 3(a) illustrates the embeddings of the
data distribution obtained through the proposed feature extrac-
tion method. If features of each class were far enough away
to be classified, this means that the EEG features through
the Siamese network are well extracted. The raw EEG data
were extracted from the first-order feature through the instan-
taneous frequency and spectral entropy, and the second-order
feature was extracted through the Siamese neural network.
The different classes are clearly distinguished from each other
in the MDS plot. Fig. 3(b) shows that features of each class
are paired to form a cluster based on similarity. On the two

datasets, each class was not hierarchically close to a particular
class, all classes were at similar distances. This means that
there are no visibly particularly close or distant classes, and
each class is distributed at a certain level of distance from each
other so that they can be distinguished from each other. In this
regard, this could be evidence to support that the Siamese
network has extracted distinguishable features in each class
during the imaged speech.

In addition, we compared the performance using raw EEG
signals to investigate whether the instantaneous frequency
and spectral entropy extract important features of imagined
speech. The average classification performances for all the
subjects are shown in Supplementary Fig. S2. A higher
classification accuracy using the instantaneous frequency and
spectral entropy was observed than when using raw EEG
signals.

C. Classification of Novel Class

Table IV shows the classification performance in the Coretto
DB [26] and BCI Competition DB [44]. The baseline repre-
sents the classification accuracy using the base class (step 1).
The adaption method shows the classification performance
using novel class detection (step 2). The individual accuracy is
shown in Supplementary Tables S1 (Coretto DB [26]) and S2
(BCI Competition DB [44]). The performance of incremental
learning is slightly lower than the baseline accuracy. However,
there were no significant differences in the classification
performance in either dataset. Fig. 4 is a confusion matrix
using incremental learning. This finding shows that, even
with incremental learning, the classification performance is
maintained regardless of the adapted class. This result also
shows that our proposed method is suitable for incremental
learning. It also indicates that fine-tuning is properly learning
without breaking the network. Confusion matrices for all the
classes can be found in Supplementary Fig. S3.

We compared our method with that of
García-Salinas et al. [10] for expanding the number of
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Fig. 3. Similarity among the features in each class extracted through Siamese networks. (a) Multidimensional scaling (MDS) plot. These plots
show the Euclidean distances between these classes generated by the Siamese neural network. (b) Dendrogram plot on hierarchical cluster in (left)
6-class of Coretto DB [26] and (right) 5-class of BCI Competition DB [44].

TABLE IV
COMPARISON OF 6-CLASS AND 5-CLASS CLASSIFICATION PERFORMANCE WITHOUT OR WITH INCREMENTAL LEARNING

classes in imagined speech. The average classification
accuracy of all the subjects for each adaptation class is
shown in Fig. 5. Our performance was statistically higher
for all the classes in both datasets. Even in the paper by
García-Salinas et al. [10], the different classes of incremental

learning greatly affect the performance. In the paper by
García-Salinas et al. [10], there is a significant difference
for all classes. However, the performance difference for our
proposed method is not significant for the class to which it is
adapted (Table V).
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Fig. 4. Averaged confusion matrix of the classification across all subjects with incremental learning. In (a) the Coretto DB [26], ‘left’ was the novel
class, and in (b) the BCI Competition DB [44], ‘yes’ was the novel class.

Fig. 5. Comparison of the averaged accuracy between the method used by García-Salinas et al. [10] and the proposed method with incremental
learning. (a) The 6-class classification performance using the Coretto DB [26] and (b) the 5-class classification performance using the BCI Competition
DB [44]. The error bars indicate the standard deviation. ** indicates p-value < 0.01.

TABLE V
STATISTICAL RESULTS BETWEEN CLASSIFICATION PERFORMANCE

We additionally compared the classification performance in
the base class before and after incremental learning to explore
whether the original capabilities were well preserved (Fig. 6).
In other words, this figure indicates the 5-class (Coretto
DB [26]) and 4-class (BCI Competition DB [44]) classification
accuracy using the base class detection framework excluding

the corresponding class. In all the classes, there was no
significant difference in the pretraining and incremental learn-
ing performance. The results show that incremental learning it
does not affect the base class. The proposed method implies
that it is a possible method for increasing the number of classes
imagined speech to infinity.

V. DISCUSSION

In this study, we proposed a novel framework based on
deep metric learning using instantaneous frequency and spec-
tral entropy. Our proposed method significantly outperforms
state-of-the-art methods. There was also no performance
degradation through incremental learning when the novel class
was tested. We evaluated the extensible BCI system in that
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Fig. 6. Comparison of the classification accuracy in the base class before and after incremental learning. This class indicates the incrementally
learned class in (a) Coretto DB [26] and (b) BCI Competition DB [44]. The error bars indicate the standard deviation.

it was tested with only a small number of trials using a
pretrained classifier. Therefore, the proposed framework shows
the possibility of multiclass scalability for BCI communication
systems.

We used the instantaneous frequency and spectral entropy
inspired by speech signals. During imagined speech,
Wernicke’s area (the superior temporal gyrus and superior
temporal sulcus) and Broca’s area (the inferior frontal gyrus)
are activated. These regions are essential for speech compre-
hension and production [46]. In particular, Wernicke’s area
is involved in both speech recognition and output [47], and
neural responses over the superior temporal gyrus are believed
to encode the amplitude of the perceived envelope [48].
Therefore, the characteristics of speech signals are considered
to be well represented during imagined speech. The classi-
fication performance using the proposed features was also
higher than that using raw EEG signals. The evidence is that
the proposed features based on time-frequency distribution
are suitable for classifying imagined speech. It also shows
deep metric learning can learn discriminant features from the
instantaneous frequency and spectral entropy of EEG signals.
In this regard, it seems that the instantaneous frequency and
spectral entropy have characteristics over time during imagined
speech, and deep metric learning operates as another feature
extractor.

In particular, our proposed method outperformed baseline
CNN methods. The traditional CNN uses the cross-entropy
loss, which is limited to learning the distance between data
because it learns the true predicted probability [49]. On the
other hand, the contrastive loss used in this study calculates
the distance between the embedding data. It learns to embed
close to each of the other samples from the same class and to
be embedded at a distance larger than the margin samples from
different classes [13], [15], [50]. Additionally, our performance
using the k-NN classifier was higher than that using an
SVM as the classifier. Since the Siamese neural network

reduces the dimension by learning based on the distance of
the data, the reduced dimension contains information about
the distance. Therefore, it is considered that k-NN, which
determines classes based on distance than SVM, can classify
the data more accurately.

As a result, our method showed an improvement of more
than 22.94% (Coretto DB [26]) and 10.86% (BCI Competition
DB [44]) over baseline methods. Moreover, the statistical
analysis showed significant differences between our proposed
method and other methods. The average accuracy across
subjects was 45.00 ± 3.10% (Coretto DB [26]) and 48.10 ±
3.68% (BCI Competition DB [44]). Therefore, we confirm that
the Siamese neural network reduces high-dimensional data
(specifically to 8 dimensions) while minimizing the loss of
information. Additionally, our Siamese neural network classi-
fies EEG signals from imagined speech without removing extra
noise (i.e., removal of electrooculography). EEG signals have
a low signal-to-noise ratio [50], which cannot be solved by
preprocessing alone. However, our method seems to partially
overcome this problem.

Although deep learning requires many trials, it was not
easy to acquire many EEG signals. With small EEG trials,
the deep learning method with cross-entropy does not learn
well and tends to overfit [51]. However, since the Siamese
neural network using contrastive loss was originally proposed
in one-shot learning, it can be used even with a small amount
of data [50]. The Siamese neural network also uses two pairs
of samples as input. Therefore, it has the advantage of being
able to increase the number of data points by the number
of combinations [14]. Our research has validated all possible
combinations to demonstrate improvements in classification
performance with a small amount of EEG data using a Siamese
neural network. In particular, there were no performance
differences depending on the novel class. This finding suggests
the possibility that users can extend the class to any word.
This is also an important factor in imagined speech because
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it is difficult to find a specific word for high performance.
Therefore, our framework can extend the imagined speech BCI
system to any class the user wants with a small number of EEG
signals.

VI. CONCLUSION AND FUTURE WORKS

In this study, we proposed a Siamese neural network
framework based on the instantaneous frequency and spectral
entropy to classify imagined speech using EEG signals. Our
approach consists of (i) training the Siamese neural network
using the conditional spectral moments of the time-frequency
distribution and (ii) classifying the obtained embedding data.
In addition, we proposed a deep learning approach that can
learn well without overfitting even when using a small number
of trials. Our results showed that the proposed framework
has the potential to classify imagined speech. Specifically,
the baseline accuracy improved, and the proposed framework
classifies the novel class without any performance degradation.
Therefore, our proposed framework has shown the possibility
of using the imagined speech paradigm as an intuitive BCI for
real-world environments.

In future work, we plan to apply other methods. The
proposed method is a one-stream method that extracts
features through deep learning. However, we modify the
two-stream architecture to simultaneously output feature
extraction and classification. Additional research is needed to
investigate the characteristics of EEG signals during imagined
speech. In this regard, we will explore whether the differ-
ence in EEG signals is due to pronunciation or meaning
when imagining speech. This research would bring us one
step closer to designing an intuitive BCI communication
system.
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