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Combining Accelerometer and GPS Features to
Evaluate Community Mobility in Knee Ankle

Foot Orthoses (KAFO) Users
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Abstract— Orthotic and assistive devices such as knee
ankle foot orthoses (KAFO), come in a variety of forms
and fits, with several levels of available features that could
help users perform daily activities more naturally. However,
objective data on the actual use of these devices outside
of the research lab is usually not obtained. Such data
could enhance traditional lab-based outcome measures
and inform clinical decision-making when prescribing new
orthotic and assistive technology. Here, we link data from
a GPS unit and an accelerometer mounted on the orthotic
device to quantify its usage in the community and examine
the correlations with clinical metrics. We collected data
from 14 individuals over a period of 2 months as they used
their personal KAFO first, and then a novel research KAFO;
for each device we quantified number of steps, cadence,
time spent at community locations and time wearing the
KAFO at those locations. Sensor-derived metrics showed
that mobility patterns differed widely between participants
(mean steps: 591.3, SD =704.2). The novel KAFO generally
enabled participants to walk faster during clinical tests
(�6Minute-Walk-Test=71.5m, p=0.006). However, some par-
ticipants wore the novel device less often despite improved
performance on these clinical measures, leading to poor
correlation between changes in clinical outcome measures
and changes in community mobility (�6Minute-Walk-Test
– �Community Steps: r=0.09, p=0.76). Our results sug-
gest that some traditional clinical outcome measures may
not be associated with the actual wear time of an assis-
tive device in the community, and obtaining personalized
data from real-world use through wearable technology is
valuable.
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I. INTRODUCTION

IN RECENT years, the fields of prosthetics and orthotics
have seen the development of technologically advanced

devices that promise to improve function in people with lower
limb impairments. Advancements in computing power, light-
weight materials, and miniaturized sensors and actuators have
fueled the development of novel devices for personal mobility.
These include both microprocessor controlled-passive and
powered approaches to prostheses and orthoses, with features
that are meant to restore a more natural gait pattern, and help
users perform functional activities more efficiently [1]–[3].

While technologically advanced assistive devices can bring
significant improvements to patients’ quality of life, there is
still a lack of knowledge of their actual usage in everyday
life. Traditional self-report surveys [4]–[7] are used to gain
an understanding of whether a patient prefers using a new
device over their traditional device. In addition, clinicians
and engineers use standardized clinical outcome tests, such
as the 10-meter walk test (10mWT) or the 6-minute walk
test (6MWT), to measure performance of a particular device
for an individual within a clinical/research setting. However,
objective and quantitative data on how frequently somebody
will actually use a new assistive/orthotic device in the com-
munity, and which functional activities will be enabled by
it, is critical to facilitate reimbursement by health insurance
companies, given the high market cost that such assistive
technology typically have.

On the other hand, it is now possible to obtain large amounts
of personal mobility data from cheap personal wearable
devices, such as activity and Global Positioning System (GPS)
trackers, as well as smartphones. Personal devices can easily
and unobtrusively collect information on locations visited,
number of steps or types of physical activities performed [8],
[9], and are increasingly used in healthcare and rehabilita-
tion [10]–[12]. Given that such data can be collected continu-
ously, these approaches open up new possibilities to study how
people with disabilities move in the community [13] or use
their device [14], and therefore can provide insights into which
factors drive the actual adoption of different assistive devices.

Recent studies explored the use of wearable and mobile
technology, including iPods [15], to track usage of assistive
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devices such as wheelchairs [16] and prostheses [17], [18],
as well as functional capabilities in lower limb amputees [19].
GPS sensors have been used to follow mobility patterns
of individuals with disabilities [20], [21], as well as in
combination with wearable accelerometers to examine
number of community steps taken by amputees with different
levels of mobility [22]. Most of these studies highlighted the
utility of objectively monitoring assistive device usage [23];
for example, measuring wear time of KAFOs in children
with Cerebral Palsy [24] showed that parent-reported wear
times differed significantly from sensor-based measurements,
confirming the importance of obtaining objective data to
quantify device usage.

While these methods have been applied to a variety of
clinical populations, they have yet to be fully explored to
advance knowledge of orthotic devices usage. Specifically,
wearable technology could be used to compare the efficacy
of different orthotic devices, by directly measuring their use
in the community.

In the current study, we harnessed the availability of
wearable sensor technology to study the community usage
of KAFOs when participants used their personal KAFO
and then a novel research KAFO. Using an activity tracker
(accelerometer) mounted on the KAFO and a GPS unit worn
by the participants, we tracked when each assistive device was
used and where. We compared mobility patterns in a cohort
of 13 individuals, as they used their personal KAFO and a
novel research KAFO device over a total period of 2 months.
We derived 4 metrics from the combined GPS and accelerom-
eter data to measure the amount of usage and walking per-
formed with each KAFO. We then measured the correlations
between the community mobility metrics and standardized
clinical outcome measures, to understand whether the sensor
metrics complement the information collected during clinical
visits, as a mean to understand community usage of different
KAFOs.

II. METHODS

A. Experimental Design

A total of 18 participants provided informed consent
and were enrolled in this Northwestern University IRB
approved study, which aimed at understanding the impact
of a computer controlled KAFO on personal mobility. The
study inclusion criteria included active use of a unilateral
KAFO for impairment: all participants in the study regularly
used a unilateral orthosis (KAFO) for ambulation, as a result
of neurological injury, traumatic injury, or neuromuscular
disease (see Table I).

KAFOs are devices that provide increased stability to the
knee and below and can have multiple types of knee joints.
Traditional, locked KAFOs block knee movement during both
the swing and stance phase; they provide the most stability but
are biomechanically and metabolically inefficient [25], [26].
Stance control orthoses (SCO) are an alternative to traditional
locked KAFOs. SCOs are a version of KAFOs that allow the
knee to flex during swing phase to allow a more natural and
efficient gait pattern, but may also be less versatile, leading to

safety concerns on uneven terrain. The novel research device
was an advanced KAFO that used on-board sensors to provide
variable dampening throughout the gait cycle. Sensor-based
dampening during stance and swing phase potentially allows
for better joint protection, stability, balance especially during
walking on uneven terrains, stairs, and ramps. The device was
tested in the lab and then provided to participants to assess its
use in the community.

The data collection consisted of activity monitoring during
community use of the KAFO, followed by a clinical eval-
uation. These phases were undertaken first for the personal
KAFO, and then for the novel one (Fig. 1). Specifically,
the first data collection involved monitoring the usage of the
personal KAFO used by the study participants regularly in
their lives over the course of 1 month (Remote monitoring
trial – Fig.1). Participants were instructed to use their KAFO
device as they typically do in their everyday routine. This
phase provided a baseline against which to compare the usage
of the novel KAFO in the second part of the experiment.
Following the remote monitoring trial with their personal
KAFO, participants returned to the lab where they underwent
a series of clinical outcome tests (Clinical Eval – Fig.1)
which included a 6-minute walk test (6MWT) and a 10-meter
walk test at self-selected speed (10mWT_ss or 10mWT as
abbreviated below), which are clinical measures of walking
speed and endurance [27]–[29]. Participants also reported their
satisfaction, as well as improvements in quality of life with
the KAFO by completing the Orthotic and Prosthetic Users’
Survey (OPUS) [30], which is a self-report questionnaire
consisting of multiple modules.

Following the first data collection, participants were fit-
ted for the novel KAFO. After that, they received 6 train-
ing/acclimatization sessions of 1-hour each, spaced by about
1 week (Training Visits - Fig.1) by a trained clinician on
how to use the novel KAFO, prior to starting the second
remote monitoring trial with the novel KAFO. During this
period, participants were instructed to use the novel KAFO for
their typical everyday functional activities. Finally, participants
returned to the lab where they underwent the same clinical
outcome evaluations, this time using the novel KAFO.

The activity monitoring employed 2 sensors: all participants
had their personal KAFO instrumented with an Actigraph
wGT3X-BT activity monitor (Actigraph corp., Pensacola, FL).
The Actigraph is a tri-axial wearable accelerometer, which was
used to record accelerations at a frequency of 30 Hz and was
used to determine when a KAFO was worn, and the number of
steps taken with the KAFO. The Actigraph was placed as prox-
imal as possible on the thigh shell of the KAFO, along midline
(Fig. 1); the position was chosen to maintain security during
the remote trial. In addition, each participant was given a light-
weight GPS data logger (QStarz International, BT-1000XT),
which was worn around the waist and recorded the subject’s
geographic location every 10 seconds (0.1 Hz sampling rate)
to the local memory of the device (Fig.1). Less than 1% of
the data contained dropped samples or early samples. Portable
GPS units like this are useful for their accuracy (within 3
meters) and constant sampling rate, have shown reliability
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TABLE I
PARTICIPANTS DEMOGRAPHIC DATA

Fig. 1. (Left) experimental setup used to gather data on the usage of
a knee ankle foot orthosis (KAFO). An activity monitor was attached
to the participant’s KAFO, to record when the assistive device was
worn and the number of steps taken with it. A GPS was worn by the
participant on the waist to track the geographical locations visited. (Right)
Experimental protocol: sensors were used to gather KAFO usage data in
the community over the course of 1 month (remote monitoring trial) with
each KAFO device (personal and novel). At the end of each monitoring
period, participants underwent a clinical evaluation. Six training sessions
were also provided to participants to instruct them on how to use the novel
KAFO.

and validity in their spatial accuracy for outdoor movement
and are used often in physical activity and transportation
research [31].

Participants were asked to wear the GPS unit throughout
the course of their day and charge it overnight.

Of the 18 participants enrolled, only 13 (5F; mean
age = 54) were included in this analysis (Table I). Specif-
ically, four participants had a relatively lower number of
average GPS hours per day (<5) than the rest (>9 hours/day);
these participants were thus excluded due to their sparse
GPS data recordings. A fifth participant had to be excluded
because the Actigraph failed to record any data for one of their
trials.

B. GPS and Actigraph Data

Once the GPS data loggers were returned, the GPS data
was analyzed using the mapping software ArcGIS (Esri,
Redlands, CA): data recordings were divided into days, and
then the times at which the participant left and arrived at
destinations during each day were identified. Destinations were
identified using kernel density tools in ArcGIS. Based on
this analysis, each GPS data point was classified into one
of three categories: Inside/Around-Home, Trip or Community.
Inside/Around Home destinations were identified as all GPS
points clustered around the location where participants spent
the night. A community destination was designated by a cluster
of 30 points (i.e., 5 minutes sampled at 0.1 Hz) within 50 ft
of each other. Trips were identified by all other points not
belonging to a community or home cluster. To identify any
visit potentially missed by this method, we manually inspected
each person’s day and examined any clusters of points that
were labelled as trips but could have been short stops. Clusters
that were not by a street light/stop sign were examined in more
detail to determine if they were destinations of less than five
minutes, such as a gas station or drive-thru food restaurants.

The final output was an analytic data set of time periods
labeled as one of the 3 categories, aiding us to quantify
time spent in each. We limited our analysis to community
locations, since we were interested in analyzing usage of the
device outside the home. GPS data classified as Trip were
excluded from this analysis, as movement in a vehicle could
be misconstrued as wear time. Vehicle trips accounted for the
majority (98.5%) of al trips in our dataset, with only 1.5% of
these being walking trips.

Actigraph data was downloaded and analyzed using the
proprietary software Actilife 6.13. We used the ‘Wear Time
Validation’ feature to detect time periods when the activity
monitor was not worn using the Choi algorithm with default
settings. This algorithm identifies non-wear periods based
on acceleration counts over 1-minute periods, with non-wear
labels applied to each 1-minute period with a count of zero
that comprises part of a 90-minute window of continuous
zero counts, with an allowance for period of up to two
minutes with non-zero counts in the 90-minute window if the
30-minute windows before and after each such period have
only zero counts [32]. This approach was used to determine
when each participant wore the assigned brace during the
recording session. The output of this algorithm was a table
listing the start and end of each period of identified wear or
non-wear, to a resolution of one minute. All times within
the recording range of the file were assigned to one of
these two categories. The Actilife software (Actigraph LLC,
Pensacola, FL) was also used to obtain the step count for
every 10-second epoch when the KAFO was worn. To identify
steps, the algorithm implemented in Actilife computes the
instantaneous acceleration norm. The algorithm counts steps in
epochs of 10 seconds by identifying peaks in the signal with
a threshold range. The thresholds are dynamically modified
based on the signal frequency within that epoch. Previous
studies using the Actigraph device on the lower limb have
found reasonable comparison of the outputs of the Actilife



LONINI et al.: COMBINING ACCELEROMETER AND GPS FEATURES TO EVALUATE COMMUNITY MOBILITY 1389

algorithm with manual step counts, including for participants
with altered gait patterns [33]. Although the Actilife algorithm
is proprietary, its behavior under various conditions has been
characterized in prior literature [34].

The wear time and step count were finally synchronized
with the GPS data, by linking the timestamps from the GPS
device and the Actigraph; this allowed determining the pro-
portion of time spent wearing the KAFO device and number
of steps taken with it at each visited community location (see
“Wear Fraction” below).

C. Mobility Metrics

Based on the linked GPS and Actigraph data we calculated
4 metrics to assess usage and mobility in the community.
We reported average values for each participant across all
monitoring days:

• Daily Community Time: A person may spend time outside
their home without necessarily wearing the KAFO for
the entire time (e.g., if they are visiting a friend in
their home, they might remove the KAFO). As a relative
measure of the amount of time spent at community
locations, we computed the total time in community
locations for every day and averaged the value across all
monitoring days. This metric provided an estimate of the
time a participant spent outside their home, regardless of
whether they are wearing or not the device.

• Wear Fraction: In order to get an unbiased estimate of
the relative time each participant used a KAFO in the
community, we calculated the proportion of time, termed
wear fraction (WF), that the device was worn during each
community visit; then averaged the values across all visits
for each day. and reported the average daily wear fraction.
We chose to summarize the wear fraction for each day of
recording in this way to assess what proportion of time an
individual might be expected to spend using their device
at any given visit to a community location.

• Community Steps: The Actilife software provided the step
count for every 10-second epoch. For each day, we then
summed the steps for epochs during visits to community
locations to obtain the total steps per day. The reported
value is the average daily step count across all monitoring
days.

• Cadence: We computed cadence (steps/s) for each
10-second epoch containing steps as step count divided
by 10 seconds, and then averaged the values across all
visits to community locations for each day; we reported
the average daily cadence as a proxy for walking speed
in the community.

D. Statistical Analysis

To determine how the GPS- and accelerometer-based out-
come measures (Mobility Metrics) compare to existing clinical
outcome measures, we evaluated the correlations between
them using Pearson correlation coefficients. Specifically,
we tested whether higher clinical scores with the personal
KAFO device are also associated with higher usage of that
device in the community. Age and years of experience using

Fig. 2. Mobility metrics derived from GPS and accelerometer data for
each participant. The derived metrics quantify usage of the personal
KAFO in terms of steps, cadence, wear fraction as well as daily time
spent in the community. Bars show mean daily values. Error bars are
95% confidence intervals of the mean.

the personal KAFO were also included in the correlation
analysis. We also tested whether mean clinical and mobility
metrics changed significantly when participants used the novel
KAFO, relative to the metrics measured with the personal
KAFO (baseline). Wilcoxon signed-rank tests were used in
place of t-tests when the distribution of the data were not
normal. The Shapiro-Wilk test was used to evaluate normality
of the data distribution. Significance level was set to 0.05.
Python 3.7 was used to perform the data analysis.

III. RESULTS

A. Community Mobility With Personal KAFO

First, we sought to understand how participants used their
personal device in the community (Fig.2). Mean daily steps
in the community across all participants varied substantially
(Steps: 591.3, SD=704.2), with one participant being very
active community walker and taking an average of more
than 2500 steps per day, while others staying close to 0.
Mean cadence instead was similar across the group (Cadence:
0.30 steps/s, SD=0.08). Participants wore their device for an
average of 79% of the time while being in the community
(Wear Fraction: 0.79, SD=0.30), and spent outside an aver-
age of 4h per day (Time Community: 3.83h, SD=3.01); again
individual variation was wide, with some individuals spending
as many as 12h, or as low as 1h daily.

B. Correlations of Clinical Outcome Measures With
Community Mobility Metrics

Given the variation in community metrics between individ-
ual participants when using their personal KAFO, we wished
to explore to what extent these metrics also correlated with
other factors already in use in clinical practice. We computed
the Pearson correlation coefficients between clinical tests
(speed, endurance, OPUS questionnaire), demographics (age,
years using their personal device), and the 4 mobility metrics
derived from GPS and accelerometer data. In particular, these
correlations can be used to evaluate the extent to which these
clinical tests correlate with direct measurement of community
mobility with a KAFO (Fig.3).
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Fig. 3. Correlations of the 4 mobility metrics with clinical and demo-
graphics data for the personal KAFO. Clinical walking tests (6MWT
and 10mWT) are correlated with steps and cadence in the community,
but not with time wearing the KAFO (wear fraction) or time spent at
community locations. Clinical tests of endurance (6MWT) and speed
(10mWT) were highly correlated with each other. Darker colors indicate
stronger correlations. (∗: p<.05, ∗∗: p<.01).

Clinical tests of walking endurance and speed showed
a significant correlation with both steps and cadence
in the community (Steps-6MWT: r=0.65, p=0.015;
Cadence-10mWT: r=0.63, p=0.022), thus confirming that
participants who walked faster in the lab also walked more
and faster in the community. However, the same clinical tests
were not correlated with the proportion of time wearing the
device (Wear Fraction-6MWT r=0.09, p=0.77), nor daily
time spent at community locations with either device.

The OPUS self-report score also did not show any sig-
nificant correlation with usage of the device in the commu-
nity (OPUS-Wear Fraction: r=-0.06, p=0.83; OPUS-Time
community: r=-0.25, p=0.40;), indicating that self-reported
comfort with the device is not strongly associated with
its use in the community. However, the OPUS score
showed a significant negative correlation with the clin-
ical walking tests (OPUS-6MWT: r=-0.63, p=0.020;
OPUS-10mWT: r=-0.61, p=0.028), as well as cadence
(OPUS-Cadence: r=-0.64, p=0.020), suggesting that partic-
ipants that walked slower also rated their personal device
as more comfortable. As expected, clinical walking tests
were strongly correlated with each other (6MWT-10mWT:
Personal: r=0.91, p≤0.001), since participants walking longer
distances in the lab were also faster walkers. The complete list
of correlation values is provided in Table II (Supplementary
Material).

C. Changes in Mobility Metrics Between KAFO Devices

We then asked whether clinical walking tests and mobil-
ity metrics changed significantly when participants used the
novel KAFO. We measured differences (�) relative to their
personal device (baseline), such that a positive value indicates
that the metric increased with the novel KAFO (Fig. 4).
Mean daily steps and cadence across participants did not
change significantly ( �Steps=-189.2, W= 33.0, p=0.38;
�Cadence=-0.01 steps/s, t=0.89, p=0.39); similarly, mean
changes in community time and wear fraction were also not

Fig. 4. Differences (Δ) in mobility metrics and in clinical scores for
each participant between the personal and novel KAFO. Positive values
indicate higher usage/performance with the novel device. Green (red)
indicates a metric increase (decrease) relative to the personal KAFO.

significantly altered overall ( �Community Time=-0.97h,
W=29.0, p=0.25; �Wear Fraction=-0.13, t=1.09, p=0.30).
Conversely, the mean distance walked and walking speed
measured in the lab by the 6MWT and 10mWT were both
significantly higher for the novel device across participants
(�6MWT=71.5 m, t=-3.31, p=0.006; �10mWT=0.17 m/s,
t=-3.04, p=0.01). Thus, the novel KAFO enabled participants
to walk faster in the clinical setting.

Although there were no statistically significant group
changes in community mobility, the sensor metrics highlighted
individual differences in wear and usage of the novel device:
some individuals showed a clear preference for wearing one
KAFO over the other: 2 participants preferred wearing the
novel device (4 and 14, �Wear Fraction=0.48 and 0.57),
while 3 participants favored their personal device (3, 9 and
13, �Wear Fraction≤-0.52); the �Wear Fraction for the
remaining individuals was within -0.28 and 0.09.

As before, we sought to understand whether these changes
in clinical outcome measures or demographics were associ-
ated with changes in community mobility metrics; therefore,
we computed the Pearson correlation coefficients between
these differences, for each participant (Fig. 5).

Differences in 6MWT or 10mWT between the two devices
were not correlated with changes in steps or cadence in the
community (�6MWT-�Steps: r=0.12, p=0.70, �10mWT-
�Cadence: r=-0.05, p=0.87), nor with changes in KAFO
usage (�6MWT-�Time Community: r=-0.08, p=0.81;
�6MWT-�Wear Fraction: r=-0.20, p=0.51). Therefore,
higher walking speed or endurance measured in the clinical
setting did not correlate with higher usage of the novel
device in the community when compared to the personal
device. Similarly, higher rating of the novel device ver-
sus the personal device, as measured by the OPUS score,
was not associated with increased wear time (�OPUS-
�Wear Fraction: r=-0.18, p=0.55), while it showed a
significant negative correlation with changes in steps and
cadence (�OPUS-�Steps: r=-0.60, p=0.03; �OPUS-�
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Fig. 5. Correlations of changes (Δ) in mobility metrics and clinical
scores. Improvement in clinical scores (Δ6MWT and Δ10mWT) were not
associated with increased steps or usage of the device in the community.
(∗: p<.05, ∗∗: p<.01).

Cadence:r=-0.73, p=0.005). Increased wear fraction showed
a significant negative correlation with age (Age-�Wear
Fraction:r=-0.62, p=0.023), suggesting that younger users
were more prone to use the novel device. The complete list
of correlation values is provided in Table III (Supplementary
Material). Overall, changes in clinical measures were not
associated with individual changes of device usage and time
in the community.

IV. DISCUSSION

Tracking usage of assistive devices outside of the lab may
provide insights into personal preferences, adaptation to novel
devices, understanding appropriateness of device prescription,
and justification for higher insurance reimbursement, all of
which can aid clinical decision-making when an individual
has to be prescribed a novel assistive device. We combined
accelerometer and GPS data to quantify community mobility
when participants used first their personal KAFO, and then
a novel research KAFO. By combining information from
the 2 sensors, we were not only able to record time spent
at community locations, but also track how each assistive
device was used in terms of steps taken and time worn.
We then examined the association of these mobility metrics
with standard clinical outcome measures to determine how
well they reflected: 1) usage of their personal device and
2) changes in community mobility between the personal and
novel KAFO.

We found that increased walking speed and distance mea-
sured in the clinic were correlated with higher steps and
cadence in the community with the personal KAFO; how-
ever, mobility metrics varied widely between participants,
and neither clinical tests nor self-reported measures (OPUS)
were associated with usage of the KAFO or time spent at
community locations. This suggests that real-world monitoring
can provide additional information on how each individual
use and wear a device. Interestingly, participants who walked
slower in the clinic rated their personal device as more
comfortable on the OPUS questionnaire; this could indicate
that slower participants were also the ones who felt safer
with their own device, and therefore perceived it as more

comfortable. Alternatively, it is possible that faster walkers
perceived their personal device as less adequate and therefore
rated it lower.

Most participants used the novel KAFO as much as their
personal device, as no overall changes in community mobility
were found. This is remarkable, given that on average partici-
pants used a personal device for almost 30 years, and that they
have only received six sessions of training/acclimatization on
the novel KAFO. Usage of the novel KAFO in the community
indicates that they were able to quickly adapt to the new
technology and incorporated it as part of their daily routine.
Some participants did however use the new device significantly
more or less than their personal one: the 2 participants
who preferred wearing the novel device are relatively young
compared to the mean age of the group, while their years
of experience using their personal device are widely different
from each other (39 vs. 5 years). The 3 participants favoring
their personal device also had different diagnoses and levels of
experience from each other, but their age was greater than the
group mean (>= 65 years old). Long-term follow-up studies
are required to better understand the variation we found.

Interestingly, improvements in clinical outcome measures
(6MWT or 10mWT) and self-report measures (OPUS) with the
novel KAFO did not correlate with increased usage or number
of steps during community monitoring, relative to the personal
device. For many physical rehabilitation populations, previous
research suggests that clinical tests of speed and endurance can
successfully differentiate individuals with different walking
abilities [35]–[37]. However, such tests do not necessarily
predict actual mobility in the community [22], [38], [39].
Similarly, self-report measures of mobility poorly correlate
with activity quantified through step monitors [40]. While
clinical measures appear to reasonably assess community
mobility across individuals, our results suggest that subtler
changes in mobility within an individual – such as when
trialing a new device – may not be captured by changes in
these same clinical measures.

Here, we did not evaluate the specific types of commu-
nity destinations where the KAFO was used. The type of
community destination may be associated with increased or
decreased walking with KAFO. For instance, an individual
may walk more at a grocery store than at medical facility.
Such analyses may in the future indicate whether a novel
device provides greater advantages for specific destinations
or activities, helping to prescribe devices suited to individual
needs.

This monitoring strategy could be used to quantitatively
compare the effect of different assistive devices on community
mobility. While our sample was too small to draw definitive
conclusion on device preference and quality of life, and par-
ticipants only used the novel device for 1 month, we were able
to use wear times to detect differences in personal preferences
in 5 out of 13 individuals (2 preferring the novel device
and 3 preferring their personal device). Therefore, combining
features from accelerometer and GPS data can be used to more
directly answer important clinical questions and complement
survey-based measures about the appropriate assistive device
for an individual.
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Here we used a GPS unit that participants wore on their
waist to track their community mobility. Missing data par-
tially occurred because participants occasionally forgot to
wear and/or charge the device. Additional reminders and
approaches to improve battery life may aid with better com-
pliance [41]. Alternatively, smartphones and smartwatches are
also capable of recording GPS location data with sufficient
fidelity [42], [43] and could result in better compliance, as they
are already part of the typical daily routine and don’t require
carrying a separate device. However, GPS enabled smartphone
applications can drain batteries and the accuracy varies by
participant’s phone model types. As technology progresses in
this area, new devices or smartphone applications may help to
improve overall compliance.

A. Study Limitations

The primary limitation of this study is the small sample
size. With only 13 participants completing both the GPS and
accelerometer tracking components of the study, it is difficult
to fully analyze the differences in behavior while using the
personal and novel KAFO devices. The small sample size also
limits the potential generalizability of our results. While few
participants showed strong device preferences there is insuf-
ficient data to fully evaluate the underlying factors that may
relate to that: in our study, age was the only demographic or
clinical measure to show correlations with device preference,
but there are many potential confounding factors, such as the
underlying cause of impairment and previous exposure to the
devices.

Because participants were only trained and monitored on
the novel device for a relatively short time, participants may
not have fully adapted to the new device and become experts,
and our data may not reflect long-term differences in device
preference. This may explain why we observed no significant
difference in community mobility when participants used the
novel device vs. the personal device. It is also possible that
improvements in clinical measures are more correlated with
device usage after participants have fully accommodated to the
new device, which may take more time than the six sessions of
training used in this study. Furthermore, participants monitored
during the wintertime might have been affected by the weather
conditions, and therefore used either device less for outdoor
usage. All these factors would be accounted for by monitoring
participants for longer periods of time. Finally, while studies
have shown good agreement between the outputs of waist- and
thigh-worn Actigraphs [44], more work is needed to explore
its accuracy in individuals wearing a KAFO, which may
require the need of custom step count and activity recognition
algorithms [45], [46].

V. CONCLUSION

Long-term monitoring of patient behaviors relating to assis-
tive device use and community mobility is possible by com-
bining GPS and accelerometer sensor data. While this study
focused on the application of these technologies to monitoring
orthotic devices, the same technique can be applied to a much
broader range of assistive devices, such as prostheses and

wheelchairs. In particular, this approach could complement
standard clinical outcome measures, and offer greater ability
to quantify improvements in quality of life provided by new
assistive devices, as well as personal preferences for using
one device over another. With this additional insight, we may
be able to better anticipate which patients will have better
community mobility with different types of devices. With an
increasing number of available technologies and a wide variety
of individual patients, it is all the more important to understand
how to match the best device to the individual. We hope
that future studies will incorporate this method, in order to
better understand the impact of mobility-assistive devices on
the behaviors of those who use them and impact the design
and prescription of future devices.
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