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Abstract— Closed-loopdeep brain stimulation (DBS) par-
adigm is gaining tremendous favor due to its potential
capability of further and more efficient improvements in
neurological diseases. Preclinical validation of closed-loop
controller is quite necessary in order to minimize injury
risks of clinical trials to patients, which can greatly benefit
from real-time computational models and thus potentially
reduce research and development costs and time. Here
we developed an embedded multi-core real-time simulation
platform (EMC-RTP) for a biological-faithful computational
network model of basal ganglia (BG). The single neuron
model is implemented in a highly real-time manner using a
reasonable simplification. A modular mapping architecture
with hierarchical routing organization was constructed to
mimic the pathological neural activities of BG observed in
parkinsonian conditions. A closed-loop simulation testbed
for DBS validation was then set up using a host computer as
the DBS controller. The availability of EMC-RTP and the test-
bed system was validated by comparing the performance
of open-loop and proportional-integral (PI) controllers. Our
experimental results showed that the proposed EMC-RTP
reproduces abnormal beta bursts of BG in parkinsonian
conditions while meets requirements of both real-time and
computational accuracy as well. Closed-loop DBS experi-
ments using the EMC-RTP suggestedthat the platform could
perform reasonable output under different kinds of DBS
strategies, indicating the usability of the platform.

Index Terms— Basal ganglia, deep brain stimulation,
real-time simulation, multi-core calculation.

I. INTRODUCTION

PARKINSON’S disease (PD) is a neurodegenerative dis-
order with progressive motor and non-motor symp-

toms [1], [2], which is commonly seen in the middle-aged
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and elderly population [3]. Apart from static tremor, myoto-
nia, and some non-motor symptoms [4], abnormal brain
oscillatory activities are a typical clinical manifestation of
PD [5]. As an alternative of medical [6]–[8] and surgi-
cal treatments [9], [10], deep brain stimulation (DBS) is a
device-based therapy that has high efficiencies and fewer
side-effects in clinical treatment for PD [11]. This ther-
apy uses a stereotactic technique to implant microelec-
trodes into the Basal Ganglia (BG) [12], [15], the focal
area of PD, and to emit continuous high-frequency elec-
trical pulses to stimulate targets including the subthalamic
nucleus (STN) or the globus pallidus interna (GPi) with the
aim of diminishing abnormal brain rhythms to alleviate disease
symptoms [13]–[16].

Parameters such as amplitude, frequency and pulse width
of the DBS waveform directly determine the effectiveness
of the treatment [17]–[19]. Therefore, failure to optimize
stimulation waveform may account for suboptimal clinical
outcomes. Traditional approach to optimize stimulation mostly
relies on the clinician’s experience or on the use of the traver-
sal method which is artificially adjusted based on observed
clinical effects [20]–[22]. This approach not only requires
tremendous number of resources and time but also still may
fail to identify personalized strategies owing to individual
variabilities of different patients. Moreover, because sub-
ject’s response to simulation can and does vary from time
to time [23]–[26], continuous long-duration stimulation with
fixed mode i.e., open loop DBS (op-DBS) can induce excess
or shortage of stimulation which may cause a low success rate
of the pre-optimized strategy [11], [27]. In response to over-
come these drawbacks, closed-loop DBS (cl-DBS) approaches
were gradually developed [18], [22], [28]. It is essentially
a controller that receives the neural signal from the patient
and automatically determines the stimulation parameters in
conjunction with the normal state of the neural signal as
a reference signal [29]–[31]. Different physiological signals
such as action potentials (APs) [28], [32], local field potential
(LFP) [33]–[35] and electrocorticogram (ECoG) [36], [37]
have been used as feedback in the cl-DBS systems. It has
been proven that abnormal oscillations of the LFP in the
beta frequency band in cortical-BG circuits is correlated with
normal movement suppression and motor impairment in PD,
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and became the most used biometric for assessment and
treatment thusly [33]–[35].

Closed-loop experiments for improving the reliability and
validity of control strategy are the necessary step of clinical
DBS treatment for a patient. However, considering factors
such as ethics, huge experimental risks and costs, it is not
allowed to do a large number of reproducible experiments
directly on humans. Therefore, the use of computational
models to simulate the properties of relevant physiological
structures, characterize the relationship between DBS and
neural responses, and generate alternative data thus replacing
the specific brain circuits as the controlled object, provides
an effective solution to cross the gap between the theoret-
ical design and clinical application of cl-DBS [36], [37].
Different models of BG network have been constructed to
participate in this procedure. The conductance-based network
model of basal ganglia and thalamus proposed by Rubin and
Terman laid the ground work on the theoretical analysis of
DBS effects [38].

Nevertheless, many computational methods were only
validated using non-real time numerical stimulation tools.
To ensure the effectiveness of the control strategy and make
it easier to interface with the DBS stimulation device, it is
essential and feasible to build a hardware real-time testbed for
pre-clinical trials, which is important to promote the clinical
application of cl-DBS in PD treatment. Many researchers have
done a lot of work on hardware implementation of biological
neural networks for closed-loop experiments. Park et al.
presented a 128-channel field-programmable gate array
(FPGA)-based real-time closed-loop bidirectional neural inter-
face system [39]. Piri et al. constructed a complete digital
circuit of the close loop system that is the bio-inspired
stimulator and the cortical population model are implemented
in hardware based on the dynamic model of astrocyte [40].
Hardware implementations such as FPGA and large-scale
integrated circuits could be difficult and costly to develop.
We want a hardware platform with high computing capabil-
ity, low power consumption, and scalability to be designed
and built. For a large number of nonlinear operations, this
platform needs to draw on the advantages of the above work
to achieve multi-core parallel computing and schedulability
through a specific architecture to accomplish the aforemen-
tioned real-time simulation of neural networks. It also over-
comes the deficiencies of hardware means such as FPGAs
for floating-point multiplication. The ARM architecture series
of microcontrollers (MCU) has received a lot of attention
in the industrial sector in recent years due to its good
working characteristics and low cost and easy development.
However, such MCUs are less used in hardware neuron
implementation.

In this context, we developed an embedded multi-
core real-time simulation platform (EMC-RTP) using
STM32 MCU. Based on the physiological structure of BG,
the mapping scheme between neural network and hardware
structure is designed. The implementation of BG is completed
in EMC-RTP and used as a testbed to construct a complete
cl-DBS real-time optimization system with host computer
included. After verifying the implementation of EMC-RTP,

the performance of different controller could be validated and
compared using this closed-loop testbed. The innovations of
this work include three aspects.

1) Based on the core requirement of real-time, a simplified
approach to the selected original BG network model is
proposed. The analysis of the simulation results proved
that the modified model can substantially improve the
computational speed during hardware implementation
while ensuring accuracy.

2) An EMC-RTP for BG network hardware implementa-
tion was built using an STM32 MCU. Single neuron
optimization model building was completed. Based on
the mapping of the BG network to the hardware archi-
tecture topology, the hierarchical architectural design
and construction of the EMC-RTP is completed. Point-
to-point delivery of discharge information is accom-
plished through a customized data frame format and
routing propagation mechanism.

3) A real-time closed-loop testbed system for DBS was
built using the EMC-RTP as the control object to verify
its usability, and the performance of DBS modulated
with different approaches including open-loop controller
(op-C) and proportional-integral controller (PI-C) was
validated and compared from the view of both control
effect and stimulation energy consumption.

The rest parts of this paper are organized as follow. The
BG network computational model used for hardware imple-
mentation is introduced in Section II. Section III briefly
describes the optimization process of the model and verifies
the feasibility of this approach. Section IV describes the
EMC-RTP building process and the way it was applied to
build the closed-loop simulation testbed for confirmatory DBS
experiment. Section V shows the results of the platform runs,
including the dynamical activity of the hardware BG network
within EMC-RTP and the effect of a simple validated DBS
optimization experiment, and analyzes the operating perfor-
mance metrics of the platform. Finally, Section VI concludes
this article.

II. COMPUTATIONAL MODEL OF THE BG NETWORK

We used the BG network model developed by
Rosa et al. [41] to build the platform. The network consists
of STN, GPe, GPi and TH. There are several, 16 in this
paper, neurons in each nucleus. The network and connectivity
patterns of individual neurons were illustrated in Fig. 1,
in which the number of excitatory/inhibitory inputs received
by each neuron is indicated by the number of arrows. For
thalamic cell, apart from the inhibitory input from a single
GPi neuron, it receives the input signal from the motor cortex
of the brain. The model can simulate the discharge activities
of the nuclei in BG network in normal state, PD state and
under DBS. The expressions for the neurons are shown
below:

Cm
dvST N

dt
= −IL − IK − INa − IT − ICa

−IAH P − IG Pe→ST N + Iapp_STN + ID BS (1)
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Fig. 1. BG network connection schematic.

Cm
dvG Pe

dt
= −IL − IK − INa − IT − ICa

−IAH P + IG Pe→G Pe − ISTN→GPe + Iapp_G Pe

(2)

Cm
dvG Pi

dt
= −IL − IK − INa − IT − ICa

−IAH P − IG Pe→G Pi − IST N→G Pi + Iapp_G Pi

(3)

Cm
dvT H

dt
= −IL − IK − INa − IT − IG Pi→TH+ IS MC . (4)

Here vcell are the membrane potentials of neurons, Cm =
1μF/cm2 is the membrane capacitance, IL , IK , INa , IT ,
ICa , IAH P and Iapp are the leak current, the sodium current,
the potassium current, the low-threshold calcium current,
the high-threshold calcium current, the after hyper polar-
ization potassium current and the bias current, separately.
Iα→β=gα→β(vβ − Eα→β)

�
j S j

α describes the sum of all
synaptic currents from the presynaptic membrane cell α to
the postsynaptic membrane cell β, where

�
j S j

α refers to the
sum of the conductance of all presynaptic membrane cells
α, positive for excitatory signals and negative for inhibitory
signals. ISMC in the thalamic neuron model is a single pulse
with an amplitude of 3.5μA/cm2, a pulse width of 5ms, and a
frequency of 14Hz, representing the stimulation current from
the motor cortex of the brain. In this model, TH neurons
in the normal state will follow the ISMC to produce firing,
and the PD state will produce firing failure phenomenon, thus
characterizing the different physiological states. Particularly,
the LFP of GPi nucleus is used as the neural signature in the
following experiments, of which the expression is

LFP = IG Pe→G Pi − IST N→G Pi + Iapp_G Pi . (5)

The rest of the expressions in the above model and the
values of the parameters involved are listed in the appendix.

III. MODIFIED BG NETWORK MODEL AND VALIDATION

FOR HARDWARE IMPLEMENTATION

A. Model Simplification

The core requirement and advantage of the hardware BG
network proposed in this work is the real-time performance.
However, limited by the operating frequency and resources of

the selected MCU, a simple attempt proved that it is difficult
to meet this requirement with a direct implementation of the
above model using standard library functions. We evaluated
the time overhead of each step in the hardware porting process
of the above model. It is proven that the calculation of the
transmembrane ion current and its intermediate variables is
the most time-consuming, thus indicated a reasonable simpli-
fication of the neuron model is necessary. Further software
debugging illustrated that the excessive calculation of the
exponential function in the above step led to this phenom-
enon. Therefore, we use the following formula instead of the
standard exponential operation:

ex = lim
n→∞(1 + x/n)n. (6)

For example, the equation for the gating variable m∞ in the
original STN model is

m∞(v) = 1/(1 + exp(−(v + 30)/15)). (7)

This equation is then rewritten as

m∞(v) = 1/(1 + (1 + (−(v + 30)15n))n). (8)

The computational accuracy increases as n increases, but
it is also more time consuming. Therefore, the feasibility of
this simplified approach and the variation of error and time
overhead with n are discussed next using software method.

B. Modified Model Evaluation

The accuracy of the modified model is described by the
following two metrics. The first one is the root mean square
error (RMSE), which is defined as:

RM SE = 1

N
(
� (xo(i) − xm(i))2

x2
o(i)

)1/2, (9)

where xo(i) and xm(i) represent the value of original function
and modified function, respectively. N represents the amount
of sampling points. Using the normalized RMSE, we further
define the second accuracy metric as:

ACC = (1 − RM SE

xmax − xmin
) × 100%. (10)

To evaluate the performance of the simplified model in
terms of time overhead, we define the computational efficiency
as:

RC = tm/ta, (11)

where tm and ta represent the time overhead of the solving
process of modified functions and original functions, respec-
tively. The time consumption comparison process is performed
in the MCU.

We selected the STN model as an example to validate the
above metrics at four levels: gating variables, intermediate
variables, transmembrane currents and membrane potentials.
The selected variables are h∞(v), h, INa, and vST N . The
variation of the above metrics at different values of n was
tested first. The reason for choosing n as an exponential
power of 2 is to replace the standard function with repeated
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TABLE I
MODIFIED STN MODEL PARAMETERS CALCULATION ERROR (N = 210 )

multiplications, further optimizing the time overhead. This
procedure can be described in detail as

x := 1 + x/2k

x := x∗x
...
x := x∗x

⎫⎪⎬
⎪⎭ (ktimes). (12)

It avoids the need to use a circular structure for a specific
number of multiplications, and can make full use of the
powerful floating-point computing power of the FPU to ensure
the real-time performance of the simulation.

The validation of h∞(v) expression was performed in the
range of values containing the membrane potential of the
STN neuron. The chosen range is [−80,50] with a step size
of 0.01mV. The validation of h , INa, and vST N were then
performed for the complete simulation of the STN neuron with
a simulation time of 2000 ms and a step size of 0.02 ms.
The variation of ACC and RC with n is shown in Fig.2.
It can be seen that the accuracy of the simplified model
gradually increases as n increases, and at the same time
brings about a decrease in the computational speed. However,
the computational efficiency is still greatly improved. Eventu-
ally, n was chosen to be 210 to achieve a good compromise
between real-time performance and accuracy of the hardware
implementation of the neuron model.

Table I shows the error of each ion current versus membrane
potential in the optimized model. In this way, the modified
model can improve the computational speed to about 11 times
of the original model the calculation error of the membrane
potential is less than 0.1%, providing the possibility of real
time implementation of the BG network. The modified models
of the remaining three nuclei are verified to meet the accuracy
and real-time requirements as well. The above experimental
and analytical results demonstrate that this approach can be
applied to the hardware implementation of the BG network
model.

Fig. 2. The relationship between the computational accuracy and
real-time performance of the simplified model and the parameter n.

IV. EMC-RTP CONSTRUCTION AND BG NETWORK

IMPLEMENTATION

A. BG Network Model Mapping and Chip Selection

Before the concrete implementation of the multi-core plat-
form, the first task is the structural correspondence of these
chips to the BG network model, i.e., the mapping process.
Corresponding to the structure of the model mentioned above,
we divided the system design into two parts by function.
From this perspective, the platform needs to implement two
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Fig. 3. Mapping mechanism between BG network and the hardware
platform.

major functions, including model multi-core parallel solving
and routing communication scheduling. For each individual
neuron in the BG network, the first part is assigned to
complete the solution of the model of them. We name the chip
that accomplishes this task the basic computing unit (BCU).
Corresponding to the synaptic connections among neurons, the
other part is responsible for passing the discharging informa-
tion between BCUs and coordinating the parallel computing
process of them. On this basis, a 2-layer hierarchical routing
organization structure consisting of 5 chips is built to organize
them. There are 4 bottom routing units (BRUs) and one
top routing unit (TRU). Each of the 4 BRUs corresponds
to the 4 nuclei separately, while TRU is connected to them
at a higher level, forming a hierarchical routing structure.
This mapping mechanism between the neural network and the
platform structure is shown in Fig.3.

The core requirement for EMC-RTP is to fulfill the require-
ments of real-time performance. Besides, low power consump-
tion and scalability under the guarantee of a certain neural
network scale are preferred. Consequently, it is necessary to
choose a universal and high-performance embedded processor
equipped with abundant peripherals and energy-efficient. After
comparison, we selected the STM32F407 model MCU based
on ARM 32-bit Cortex-M4 architecture as the core CPU.
It integrates floating-point unit (FPU) and supports for the
DSP instruction set, which make it particularly suitable for
scenarios requiring a large number of floating-point operations.
It is completely free from the multiplier resource limitation
of FPGA, providing a guarantee for real-time neural network
simulation.

B. Single Neuron Hardware Implementation

Following the aforementioned mapping mechanism, the first
task to be completed was the implementation of the sin-
gle neuron model in BCU. We discretized the neural
model expressed as a system of differential equations as
follow:
vST N (k + 1) = vST N (k) + �t

Cm
(−IL − IK − INa − IT − ICa

−IAH P − IG Pe→ST N + Iapp_STN

+ID BS) (13)

vGPe(k + 1) = vGPe(k) + �t

Cm
(−IL − IK − INa − IT − ICa

−IAH P + IG Pe→G Pe − IST N→G Pe

+Iapp_G Pe) (14)

vGPi(k + 1) = vGPi(k) + �t

Cm
(−IL − IK − INa − IT − ICa

−IAH P − IG Pe→G Pi − IST N→G Pi

+Iapp_G Pi) (15)

vT H (k + 1) = vT H (k) + �t

Cm
(−IL − IK − INa − IT

−IG Pi→TH + IS MC). (16)

These equations were solved using the forward Euler
method. Here the k in the above equation represents the num-
ber of iterative steps. �t represents the time step, which means
the time that the neuron corresponding to each computational
cycle passes in the real environment. Shorter a step time will
bring higher simulation accuracy, but it is hard to achieve
real-time simulation. Too long a step time can lead to distorted
simulation results. The appropriate step time should be chosen
to achieve a compromise between simulation real time and
accuracy. Here we choose �t = 0.02ms after experimental
verification. Within the platform, the operation time step is
controlled by the timer interrupt provided by the MCU.

The experimental process of the single neuron model is
roughly divided into intermediate variable calculation, trans-
membrane current calculation, state variable update, discharge
state and other information output, and historical data storage.
The specific flow of the above implementation is briefly
illustrated in Fig.4, which depicts the two interrupt function
processes for state equation solving and synaptic variable
updating. Although in principle the number of neurons within
a BCU can be chosen arbitrarily, we implement only one
neuron model in each BCU under the premise of ensuring
real-time performance. The core process of the neuron model
hardware implementation is the model computation within
the timer interrupt. This process uses the simplified approach
presented in Section III, while using the float point unit (FPU)
integrated within the MCU, which greatly reduces the compu-
tation time and thus ensures that the time scale of this process
is consistent with the real process.

C. Hierarchical Routing Architecture Design

After completing the implementation of each neuron in
the BCU, these 64 chips were set as the bottom layer of
the whole platform. Next, the hierarchical routing organi-
zation architecture is constructed. The design requirements
of this part are to complete the point-to-point propagation
of discharge time among the underlying BCUs, to achieve
reasonable scheduling of multi-core parallelism, and to build a
hardware neuron network. Specialized routing units are used
to obtain and integrate the discharge information. To better
explain the design inspiration of this segment, we first discuss
the synaptic current in the model, i.e., Iα→β , in a more
detailed manner. As introduced in Section II, the expression
for the synaptic current is Iα→β=gα→β(vβ − Eα→β)

�
j S j

α ,
where both g and E are constants for the determined neuron.
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Fig. 4. Flow chart of single neuron implementation in BCU.

And the conductance S of a single presynaptic membrane cell
is determined by the following set of second-order differential
equations:�

d S/dt = z

dz/dt = 0.234u(t) − 0.4z − 0.04S.
(17)

During the computation, u(t) = 1 if the membrane potential
of the presynaptic cell crosses the threshold of −10 mV at
the moment t, which means that the presynaptic cell has
generated an action potential. Otherwise, u(t) = 0. For synaptic
connection like this, the postsynaptic membrane cell only
needs to obtain information about whether the presynaptic
membrane cell has generated an action potential or not. Such a
mechanism is very suitable to be implemented in our platform.
Fig.5 depicts the generation of discharge information and the
mechanism of data frame generation and delivery. We select
one general-purpose I/O(GPIO) port in each BCU to be
multiplexed into normal output mode. It is set high when
action potential is generated, otherwise it is set low, which
representing the status of the presynaptic cell. In this way,
the discharge information can be obtained simply by reading
the state of this pin. The synaptic model is integrated into
the BCU and solved together with the neural model, which
greatly reduces the time and resource cost of information
transfer.

On this basis, each BRU is connected to 16 GPIO ports,
ones are used as the membrane potential state output of
the 16 BCUs within the group. By continuously polling the
BCUs connected to it, a data frame indicating the current
discharge status is generated. The data frame is 8 bytes in
length and consists of three sets of discharge information and
tail validation, with each of the four parts occupying 2 bytes.
During the reading procedure, if a GPIO port is in the high
level, the corresponding bit in the data frame is set to 1 by the
BRU, otherwise it is set to 0. After completing the acquisition,

it is transferred to TRU. When data frames are received
from the BRUs, the TRU consolidates them by analyzing the
sources. Finally, a data frame describing the current state of all
neural potentials is generated uniformly and down streamed
to all BRUs. To prevent redundant processing, the BRU
upload process is performed only when the underlying neural
discharging state changes. Similarly, the BRUs perform a
comparison when they receive the downstream data frame.
Only when the discharging information of the connected nuclei
changes, it is transferred uniformly to the underlying BCUs.
By combining the tail and length checks of the data frame,
this process allows for simple, efficient, accurate and complete
information processing and transfer.

To implement the connectivity patterns described in
Section II and determine the presence or absence of connec-
tions between two specific neurons, we number the BCUs in
each nucleus. After receiving the data frame, the BCU reads
the discharge information of neurons that have connections
within itself and performs the update of presynaptic membrane
conductance variables. For example, without loss of generality,
GPe neuron #1 receives the inhibitory input from GPe neurons
#2 and #3. Thus, in a loop, this BCU gets the GPe input by

reading only bits 2 and 3 of the GPe part of the data frame
and calculating the synaptic current. This connection can also
be changed arbitrarily by programming.

The above communication processes are implemented
by the chip-integrated universal synchronous/asynchronous
receiver/transmitter (USART). It is important to select as high
a transmission speed as possible in the work to ensure that
a sufficiently high data throughput rate is provided. It can
be seen that each BRU and the 16 BCUs it controls form
a well-connected network of modular basic operator groups.
This group can be easily replicated and scaled up as chip
resources allow. It is also possible to change the number of
BCUs within an operator group.

Based on the above mechanism, a total of 69 STM32 chips
are used to build the EMC-RTP. Through reasonable allocation
and organization, the scaled parallel operation is completed.
This organization allows for a good hardware implementation
of the BG network model in real time. At the same time,
the platform equips the BCU with a large enough storage
facility to store the required historical data and leaves enough
peripheral resources for expansion.

D. Closed-Loop Simulation Testbed Construction for
DBS Experiments

After the completion of construction and BG network
porting, the EMC-RTP can be considered as an independent
system with external interfaces. We next use this platform as
the controlled object to build a closed-loop system to verify
its usability in the DBS optimization process and to compare
the effects of different DBS control strategies. Fig.6(a) shows
the structure of the testbed for DBS optimization experiments.
The EMC-RTP is used to stimulate neural dynamic activities
and can be regarded as a virtual BG which can switch between
normal and PD state to generate surrogate data. The switching
between the normal and PD states is achieved by changing
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Fig. 5. Discharge information data frame format and routing delivery mechanism.

the bias current Iapp of the three nuclei groups, STN, GPe
and GPi (see Table VIII in Appendix). We thus define a
Boolean type flag within each BCU. When the model state
needs to be switched, a command to change the flag bit is
issued to all BCUs via the TRU, which changes the value of
Iapp to achieve the switch between normal and PD states.

The storage of operational data can be adjusted according to
requirements. Generally speaking, a small amount of data can
be stored in integrated RAM, of which the maximum capacity
is about 700-800ms of historical data when storing only one
variable such as membrane potential with a simulation step
time of 0.02ms. For long time data storage, such as the
experiments carried out afterwards, the BCU supports SD card
as extended memory. In this way, the data storage capacity is
greatly enhanced. A 32GB SD card, for example, can store
about 47 hours of simulation data.

In this work, the controller part is implemented in the
host computer by software means. The process of closed-loop
experiments requires the implementation of several processes:
feedback signal sampling, controller calculation and control
variable transfer. The sampling and output parts involve data
transfer between the host computer and EMC-RTP. We use
the reserved USART to connect these two modules to achieve
this function, thus closing the loop. During the experiment,
the data to be collected which is generated by the hardware BG
network is transmitted to the host computer according to the
set sampling frequency. We designed a variable as a counter
for the iterative loop during the operation. A data transfer
is initiated when the count value reaches the set amount of
data. The DBS waveform generation is implemented in the
platform based on the received parameters. Fig.6(b) is the
physical diagram of the testbed. An oscilloscope is used to
visualize the Digital/Analog (D/A) converted output of the
hardware BG network. The construction of this system laid

the foundation for the DBS validation experiments carried out
next.

V. RESULTS

A. Hardware Modified Single Neuron Model Dynamic
Activities

Single neuron models of the four nuclei were first imple-
mented independently in the BCU to verify the ability
of the transplantation method. This process is done in
the STM32 MCU using the modified model described in
Section III. The first verification performed is the accuracy
of each variable in the hardware implementation. We selected
the intermediate variables H, the ionic current INa and the
membrane potential vST N in a single STN neuron for com-
parison with the MATLAB simulation results of the original
model. The results are shown in Fig.7. It can be seen that
the implementation of the optimized model in hardware only
introduces a certain error near the peak of the action potential
and is completely controlled within acceptable limits.

On this basis, since the DBS used in the subsequent
experiments was applied to the STN nuclei, we tried to apply
different amplitudes of DBS to the STN neurons using a
controller implemented in the host computer to ensure that
they could produce timely and accurate responses to the
control output. The results are shown in Fig.8(a). It can be
seen that the STN neurons gradually increase the frequency
of firing with the increase of DBS intensity. Moreover, since
only the transmission of DBS parameters is performed during
the output of the control volume, the control delay is greatly
reduced and the STN can produce a response in a very short
time.

The implementation of synaptic current Iα→β , which has
a similar mechanism to the IDBS was also experimentally
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Fig. 6. (a) Schematic of the closed-loop simulation testbed for DBS
experiment. (b) Physical diagram of the DBS simulation experiment
testbed.

verified. We selected a GPe neuron and transmitted a data
frame to it to simulate the action potential received from the
presynaptic neuron under a certain moment. The results of
the implementation of the synaptic current model are shown
in Fig.8(b). The GPe neuron also produced a rapid response.
The above experimental results demonstrate the accuracy of
our proposed single-neuron implementation mechanism, while
the information processing process integrated within the BCU
ensures the feasibility of the establishment of a real-time
network.

B. Simulation Results of BG Network in EMC-RTP

In this section, we ran the EMC-RTP individually to verify
that the designed hardware implementation can accurately
reproduce the oscillatory activity characteristics of the BG
network in healthy and PD states. Regarding the characteristics
of PD, two mainstream views were selected for assessment.
One is the diminished or even loss of thalamic response to
sensorimotor cortex (SMC) input, i.e., thalamic relay capacity,
and the other is the enhancement of Beta band (13-30Hz)

Fig. 7. Comparison of simulation results between the hardware modified
model and the original model.

Fig. 8. (a) Response of single STN neuron under different amplitude DBS
stimulation. (b) Results of the synaptic current model implementation in
hardware single GPe neuron. The black arrow represents the moment
when the data frame is received. The blue and red lines represent the
input from GPe and STN neurons, respectively.

oscillatory energy in electrophysiological signals. We first ran
the hardware BG network in normal and PD state, and the
results are visualized by an oscilloscope, while the source
data are collected via USART to a host computer for further
analysis and processing. Due to the operating characteristics
of the MCU, the output here is uniformly set between 0 and
3.3V, which is linearly proportional to the true amplitude. The
model of the oscilloscope is Tektronix MDO3024.

The membrane potentials of the 4 nuclei are shown in
Fig.9. From the time-domain characteristics, the GPe and GPi
neurons in the PD state showed a significant burst discharge
compared to the normal state, i.e., the synchronous discharge
phenomenon. In addition, to show the response of the TH



1336 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021

Fig. 9. Firing patterns of the 4 nuclei in hardware BG network in (a) healthy and (b) PD state.

neuron to the ISMC input, we used a dual-channel display and
acquired both the membrane potential of TH and the input
simultaneously. It can be seen that the TH neurons in the PD
state showed a response deficit, which are marked with red
arrows. This phenomenon is consistent with the first view of
measuring PD status.

We next collected the LFP of the GPi nucleus and performed
a power spectrum analysis of this sequence to further illustrate
the anomalous Beta oscillations of BG network in PD state.
As shown in Fig.10 (a) and (b), the energy of the LFP in the
PD state is significantly higher in the Beta band than in the
normal state, which is found to be correlated with the PD
symptoms. These results demonstrate the ability of EMC-RTP
to reproduce the characteristics of the BG network in both
states.

C. Confirmatory Experiment Results Under Op-DBS and
Cl-DBS

To verify that EMC-RTP can be applied to cl-DBS experi-
ments and to observe the response of hardware BG networks
under the application of DBS, we next perform the DBS
parameter optimization experiments within the built simulation
testbed system. The DBS used in the experiments

was a bipolar rectangular wave, and the parameters con-
trolled included stimulus amplitude and frequency. To ensure
the clinical safety and usefulness of the DBS parameters,
the amplitude uA as limited to 200-400μA

and the frequency uf was limited to 100-200Hz. The pulse
width was not used as a control parameter and was fixed at
0.3ms [41].

Op-C and PI-C are implemented separately in the host
computer. For Op-C, of which the control output is a set of
fixed parameters, the experiment procedure is rather simple.
The DBS is exerted to STN nucleus directly from the host PC
with the hardware BG network running in the PD state. The
ODBS in the following experiment is a square wave with a
frequency of 130Hz, an amplitude of 3mA and a pulse width

Fig. 10. LFP of GPi and its power spectrum in normal, PD and different
kinds of DBS stimulated state.

of 0.3ms. The purpose of DBS stimulation is to eliminate
abnormal oscillations, and we therefore chose the Beta band
energy of the LFP of GPi nucleus as a feedback and control
indicator. We first run the hardware BG network in normal
state independently and collect LFP data with the sampling
frequency as 1kHz to get the reference input. These data are
divided into equal length time windows, i.e., control periods.
In each time window, the LFP is band-pass filtered, then the
oscillation activity power is calculated using Welch method of
power spectral density estimation. We accumulate the energy
in the Beta band to obtain the biometric

Zk used for control, where k represents the number of the
time window. The length of the time window in the experiment
was set to 0.5s. The PI-C algorithm is described as

u∗
k = k p · ek + ki ·

n�
i=0

ek, (18)
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where u∗
k represents the control output, ek represents the error,

n represents the total of time windows, kp and ki are the
controller parameters and the adjustment process of which is
carried out empirically. We set kp = 5 and ki = 0.5 in the
experiments.

The experiment results of the EMC-RTP working under
different type of DBS are shown in Fig.10 and Fig.11. In the
experiments of TH on SMC input relay capability, both of
them were able to bring this indicator back to normal from
the PD state. However, as can be seen in Fig.10 (c) and (d),
although the op-C modulated DBS can be useful in the
suppression of anomalous oscillations, the energy of all bands
is reduced. This demonstrates that op-DBS may cause adverse
effects on the patient or even new diseases may be induced
due to the brain overstimulation. Besides, the energy con-
sumption of a DBS stimulus WI is defined as the root-mean-
square (RMS) of its stimulus current value per unit time, which
is described as

WI =
	�t

i=1 I 2
D BSi

t
, (19)

where ID BSi represents the value of DBS current at the time i.
Reducing the power consumption of DBS stimulation can pro-
long the life of the battery for the DBS stimulation device, thus
can decrease the frequency of invasive surgeries [42], [43].
This metric was calculated to be 3.3 × 104μA/s1/2 and
2.0 × 104μA/s1/2 for op-C and PI-C, respectively. The above
experimental results demonstrate the usability of the con-
structed EMC-RTP for closed-loop DBS experiments on the
one hand, and reveal the advantages of cl-DBS over op-DBS in
terms of more personalization and lower energy consumption
on the other hand.

D. EMC-RTP Performance Evaluation

In this section we measure the working performance of
the platform to discuss its strengths and weaknesses. First,
we compared the difference in real-time performance between
EMC-RTP and software simulation in CPU, and also ana-
lyzed the scalability of the platform in terms of the number
of neurons implemented. We implemented different number of
neurons in a BCU separately while performing simulations of
the same scale within the software environment to observe the
change in real-time performance. We define the model solving
efficiency (MSE) as

M SE = ts/ta, (20)

where ts and ta represent the time overhead of solving the
neural network model and the real time of the same size model,
respectively. In this experiment each iteration of EMC-RTP
was shortened as much as possible in order to analyze its
scalability at maximum working capacity. The clock speed
of the MCU and the CPU used for comparison is 168MHz
and 3.0GHz, separately. The software tool is MATLAB2020b.
The experimental results are shown in Fig.12(a). It can be
seen that as the number of neurons increases, the real-time
performance of both is affected. However, EMC-RTP still has
a significant advantage over the CPU by virtue of its multi-core

Fig. 11. Relaying of SMC input by TH neurons in different states.

parallel computing mechanism. The results also show that the
working performance of the platform suffers when the number
of neurons within a single core rises, limited by the complexity
of the model. This is an issue that needs to be further explored
in future work.

Another noteworthy issue is that the delivery of data frames
in the routing architecture built in this work is implemented
using the serial interrupt, whose priority is higher than timer
interrupts, the process of neuron model solving. It implies that
if the platform size grows with the number of implemented
neurons, too frequent discharge information transfer process
could affect the real-time performance of the model compu-
tation. To analyze this operating performance of the platform,
we selected a BCU and applied simulated data frame inputs
of different frequencies to it with different chosen baud rate
to observe the change in MSE.
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Fig. 12. (a) Comparison of hardware platform and CPU model solving
efficiency. (b) The effect of data frame input frequency on the real-time
performance of BCU computation at different baud rates.

TABLE II
POWER CONSUMPTION OF HARDWARE PLATFORM

TABLE III
RESOURCE COST OF HARDWARE PLATFORM

Fig.12(b) shows the experimental results of the effect of
data frame transmission on MSE. At the scale of the network
implemented in this work, the average data frame transmission
frequency is around 1 kHz, and the baud rate is chosen

TABLE IV
TH MODEL EQUATIONS

as 600000. The MSE of EMC-RTP won’t be affected under
this condition. However, even if at higher baud rates, the real-
time performance of the platform will be compromised
when the transmission frequency of the discharge information
reaches around 10 kHz. At smaller orders of magnitude, this
problem can be compensated by optimizing the computational
efficiency of the BCU. However, as the number of chips
and network size continue to increase, further exploration is
required. For example, more optimized topologies or more
efficient data frame delivery methods may be adopted to
resolve the conflict between parallel computing network size
and information delivery efficiency.

The hardware resource and power consumption of each
part in the platform are listed in Table II and Table III.
We measured the power consumption of the CPU for the same
computing task in software, and the average value is about
17.32W. The EMC-RTP accomplishes the desired task with
low hardware resource usage and power density.

VI. CONCLUSION

In this paper, the EMC-RTP for real-time BG network
simulation is built. A simplified approach for the physiological
model is chosen and validated, laying the foundation for
large-scale real-time hardware implementations. A two-part
system of basic computing units and hierarchical routing
organization architecture is designed. Through the custom
data frame structure and routing information processing mech-
anism, the multi-processor structured parallel operation is
realized. The reasonably simplified hardware BG network was
implemented using 69 STM32 MCUs. The closed-loop simu-
lation testbed system was constructed on this basis, in which
different DBS control strategies are validated and compared
in real-time. The running results show that EMC-RTP can
accurately reproduce the dynamical activity of the BG network
with low power and resource consumption. The validated
closed-loop experiments demonstrate the usability of the plat-
form for future DBS optimization experiments.

As an exploratory design for cl-DBS, this work has the
following limitations. Firstly, in terms of modeling, richer
physiological properties were not introduced. Also, the use
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TABLE V
STN MODEL EQUATIONS

TABLE VI
GP MODEL EQUATIONS

of patient physiological data to achieve individual variabil-
ity at the model level is lacking. In terms of control laws
only two algorithms, op-C and PI-C, were validated. At the
hardware level, the platforms implemented so far are not very
large. Hardware facilities with higher integration should be
designed and manufactured to achieve better flexibility and
scalability under the current architectural design architecture.
In addition, the current tree topology is rather homogeneous.

TABLE VII
PARAMETERS FOR SYNAPSES CURRENT

TABLE VIII
APPLIED CURRENTS IN HEALTHY AND PD CONDITIONS

In future work, we will improve the integration of the circuit
structure in the hardware design, and establish a modular
architecture makes it easier to scale up. The computational
power and adaptability of the platform could be enhanced
at the same or lower power consumption level. Besides,
the working capability of the platform can be further extended
by adding other peripheral resources to make it compatible
with more types of models to get more application scenarios.
More diverse topologies could be attempted in the routing
structure to solve the possible conflict between network size
and information delivery. More importantly, other pathological
features can be implemented by the platform. The model
can be optimized. For example, local axon collaterals inside
the STN and the hyperdirect pathway (cortex to STN) are
discussed in some works [44]–[46]. Richer model details can
improve the accuracy of the description. More accurate and
high-performance control algorithms should be designed and
implemented to the online optimization of cl-DBS to advance
its clinical application. The patient’s physiological data can be
used to enable the platform to implement cl-DBS hardware-
in-loop simulation with individual variability.

APPENDIX A
DETAILS OF THE BG NETWORK MODEL

See Tables IV–VIII.
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