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Abstract— Electroencephalogram (EEG)-based neuro-
feedback has been widely studied for tinnitus therapy in
recent years. Most existing research relies on experts’
cognitive prediction, and studies based on machine learn-
ing and deep learning are either data-hungry or not well
generalizable to new subjects. In this paper, we propose a
robust, data-efficient model for distinguishing tinnitus from
the healthy state based on EEG-based tinnitus neurofeed-
back. We propose trend descriptor, a feature extractor with
lower fineness, to reduce the effect of electrode noises
on EEG signals, and a siamese encoder-decoder network
boosted in a supervised manner to learn accurate alignment
and to acquire high-quality transferable mappings across
subjects and EEG signal channels. Our experiments show
the proposed method significantly outperforms state-of-the-
art algorithms when analyzing subjects’ EEG neurofeed-
back to 90dB and 100dB sound, achieving an accuracy of
91.67%-94.44% in predicting tinnitus and control subjects
in a subject-independent setting. Our ablation studies on
mixed subjects and parameters show the method’s stability
in performance.

Index Terms—EEG, subject-independent, siamese
autoencoder, domain alignment, trend descriptor, tinnitus.

|. INTRODUCTION

INNITUS is a type of phantom perception caused by
neural activities related to disorder of the auditory system.
It is a common disease, covering over 17% of the general pop-
ulation and up to 33% of the elderly [1], and has been widely
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studied over the last decades. Despite, tinnitus is frequently
associated with unrecoverable hearing loss, it can also appear
with hidden hearing loss [2], [3], a clinical condition in which
hearing thresholds are normal, but patients complaint for
difficulties in listening in challenging conditions [4]. Currently,
the diagnosis of tinnitus largely relies on patients’ cognitive
reactions to questionnaires and auditory tests [5].

Extensive experiments and studies on exploring the causes
of tinnitus have led to the widely accepted opinion that
tinnitus may be triggered by temporarily stressful and annoy-
ing situations, but turned into a permanent symptom by an
unknown mechanism in central auditory pathways [6], [7].
This mechanism enlarges and reinforces the relationship
between the unpleasant situations and the tinnitus, and turns
out to be a persisting state at last. Some research proves
that patients’ responses to tinnitus will decrease if they turn
their attention from tinnitus to other irrelevant tasks [8]. This
discovery suggests that we may alleviate and terminate the
aberrant neural activity in the central auditory system by
breaking the association between tinnitus and negative emo-
tions or situations by habituation. Following this idea, sound
therapy aims to alleviate tinnitus via training patients using
session sounds. Until now, sound controlled tinnitus therapy
has proven effective [9] and become a common treatment
to tinnitus [10]-[12]. Considering that the subject variances
of different types of tinnitus (e.g., hidden hearing loss) and
individual variability (e.g., age), which will lead to difficulty
of recognizing proper sound therapy by humans, it is crucial
to schedule treatment based on individual patients’ feedback
in such therapy [4].

Compared with previous traditional auditory tests [13], [14]
that investigate patients’ tinnitus based on cognitive judge-
ment of patients, auditory brainstem response (ABR) recorded
through electroencephalogram (EEG) allows obtaining real-
time numerical feedback from the nervous system using non-
invasive wearable devices. While the neurofeedback can be
an effective data source for experts—who analyze and decide
the proper sound treatment for patients manually [15]-[17]—
machine learning and deep learning methods, e.g., support
vector machine (SVM) [18], neural network [19], [20], and
autoencoder [21], have achieved extraordinary performance
in EEG-based neurofeedback analysis. Recently, generative
models have shown the potential for overcoming subject vari-
ances in tinnitus neurofeedback analysis [22], [23], given its
capability in domain alignment and domain transfer. As subject
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variance can be viewed as characteristic information of a
domain, generative models can learn how to transfer the
information from one domain to another. Besides, generative
models can adopt domain alignment to embed the samples
from different subjects into a unified space and thus achieve
better classification. However, these methods rely on a large
amount of labeled data while tinnitus datasets are usually
small-scaled, and they fail to well-combine the deep learning
methods with hand-engineering features.

This paper introduces a novel hand-engineered descriptor
and an automatic representation learning model named
Siamese Autoencoder for small-scale datasets and
subject-independent experiments (i.e., no testing subjects in
the training set). Our designed features achieve remarkable
performance in distinguishing tinnitus patients from control
subjects. They can be used for either determining whether
a patient has recovered to a healthy state or predicting
the usefulness of certain sound in neurofeedback-based
sound therapy for tinnitus treatment. We make the following
contributions in this paper:

o We design a novel Siamese Autoencoder with extra
auxiliary accuracy loss, domain loss and alignment loss
for better autoencoder optimization, domain transfer, and
domain alignment, respectively. We further propose a
trend descriptor that can reduce the effect of electrode
noise to complement the autoencoder representations.
The proposed two features, in combination, achieve good
generalization in different experiments.

« We introduce a new split method, i.e., the Anchor Split
training procedure, for our Siamese Autoencoder. The
new split method contains the required information for
domain alignment, domain transfer, and class prediction,
and is a more suitable split method than conventional
randomly cross-validation split methods during training.

o We experimentally show our approach outperforms state-
of-the-art algorithms by 12.5% and 5.56% under two dif-
ferent conditions, respectively. We also study the impact
of our proposed two features on the final performance
and present ablation studies on the hyper-parameters and
sound classification.

Il. RELATED WORK

Much research has been conducted about EEG-based neu-
rofeedback neural activity training to alleviate brain sys-
tem disorders. This treatment has been widely used in
treating epilepsy [24] and attention deficit hyperactivity
disorder [25], and has achieved outstanding performance.
Tinnitus researchers similarly used neurofeedback to monitor
EEG status and applied brain training to keep brain maintain-
ing in a healthy state.

The early work on judging the health of neurofeed-
back mainly relied on the cognitive judgment of experts
with little statistics information. The first attempt of neuro-
feedback training on tinnitus treatment was carried out by
Gosepath et al. [15]. They researched on 40 patients and
15 control subjects. The treatment protocol was to increase
the Alpha-band activity and decrease the Beta-band activity
of EEG, which was considered to be related to tinnitus.

The experiment lasted for seven years, and all the patients
expressed a significant decrement of their tinnitus by the Tin-
nitus Questionnaire (TQ). Schenk ef al. [17] further replicated
the experiment in 40 patients. They conducted a stress-test
while monitoring the EEG of patients and control subjects,
and the experiment results showed that all the patients scored
tinnitus with less annoying and stressful in TQ by tinnitus
after training. Among the patients, 23 of 40 patients succeed
in increasing Alpha-band activities, but 13 of them failed
to decrease Beta-band activities. The experiment confirmed
the effectiveness in treating tinnitus with neurofeedback-based
EEG training but also showed that simple lifting of tinnitus
patients’ EEG did not equal to the healthy EEG state.

Researchers further began to use some statistical tools to
help judge whether patients’ EEG recover to a healthy state.
Weiler er al. [16] extracted the power value of Alpha-band,
Beta-band, Theta-band and Delta-band activities and compared
the z-score of tinnitus patients with 20 control subjects. The
protocol was to ameliorate the waves of patients to have a
similar z-score with the other observed 20 control subjects.
The experiment showed that tinnitus might be correlated to
the above all four bands. Milner et al. [26] applied slow
cortical potential (SCP) in neurofeedback tinnitus treatment,
which was a descriptor of overall cortical distribution shifts
in neural activities. The case report of this SCP-based neu-
rofeedback training showed that the reduction of frequency
in Delta-band and Theta-band could effectively decrease the
tinnitus loudness and pitch. These studies showed that tinnitus
might have a complicated relationship with EEG patterns,
which was hard for simple models to catch. The subject
variance might lead to the different patterns of the EEG.
All the above-mentioned research stayed on the stage of
relying on the cognitive judgments of experts and case-
specific analysis. Therefore, the research did not have a
clear criterion, and the experiment results differed from each
other.

Recently, researchers sought the help of machine learning
and deep learning methods for a solid criterion in the analysis
of tinnitus. Some efforts aim to distinguish tinnitus patients
from control subjects by machine learning. Sun et al. [20]
extracted Principal Components Analysis (PCA), Fast Fourier
Transformation (FFT), and frequency-domain statistical fea-
tures for analysis. Similarly, Li et al. [18] preprocessed data
in the frequency domain, and further extracted the features
by cosine mapping and main-phase computing. Both of the
works received good performance in the experiments. How-
ever, these studies [18], [20] were subject-dependent, which
meant that some of the test samples come from the same
subjects in training. Then, short-time sampling from the same
subjects would produce some similar samples, so subject-
dependent experiments may contain similar samples in both
train and test samples, which would overestimate the per-
formance of models. Wang et al. [27] studied the subject-
independent experiments in classifying tinnitus patients from
control subjects. It adopted FFT and concatenated the multi-
view information from multiple channels and bands, which
achieved good performance with the least squares SVM in a
dataset of 29 volunteers.
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Fig. 1. Model overview. We create two low-dimensional representations of raw data by a) using a trend descriptor and b) encoding the raw data

with an encoder from the Siamese Autoencoder. The sliding window annotation highlights the peaks and troughs in consecutive sliding windows
in different colors. For the encoder input, x, denotes the kth time point in an EEG signal Xn,. We depict the trend descriptor and the encoded
representation with blue and purple circles, respectively. v-SVM takes the combination of two features to predict whether the EEG data belong to a

tinnitus patient or a healthy subject.

Unfortunately, these tinnitus-related work only considered
how to distinguish patients from control subjects in a quiet
environment: control subjects would not hear anything, but
tinnitus patients would hear the phantom sound, which might
lead to a clear difference in EEG. Moreover, their model failed
to consider to help sound therapy for tinnitus, which needed
models to predict tinnitus patients from control subjects while
hearing a sound. Therefore, their models could not handle the
job of neurofeedback-based sound therapy for tinnitus.

Other EEG study fields have attracted many advanced
models and analysis tools. Some studies [28] utilized deep
learning to predict the sleep stages and activities in subject-
independent experiments; others [22], [29] applied generative
models to generate low-dimension features; finally, recent
studies [30] adopted domain transfer by generative models to
enhance the EEG analysis. However, these powerful generative
models would be limited in the data scale, which needed large-
scale datasets to optimize the massive network parameters.

In summary, most studies [31], [32] only took statistics
features (e.g. power value) and relied on the large scale dataset
for training; in contrast, most tinnitus EEG datasets had a
limited scale. Little work has been done to provide a reliable
subject-independent tool to assist sound therapy for tinnitus.
Therefore, we propose a novel trend descriptor that contains
better overall shape information, and we design a Siamese
Autoencoder intended for small-scale datasets and subject
variance learning in sound therapy.

Ill. METHODOLOGY
A. Model Overview

Fig. 1 shows an overview of our proposed model with
feature construction and class prediction as two main steps.
The model takes the raw EEG signals as inputs and generates
two sources of features: a trend descriptor (which separates a
single signal into sliding windows and summarizes the trend
in each) and an encoder of the Siamese Autoencoder (which
learns subject differences and aligns samples from different
subjects into a unified domain). The classifier operates on these
two feature sources to predict the class: tinnitus or control.

Throughout this section, we define the EEG signal set as
X ={Xy1, X2, ..., Xy}, where X; denotes a signal for i.

B. Trend Descriptor Extraction

We propose a lower fineness trend descriptor to solve the
electrode noise problem in EEG signals. The trend descriptor
first finds the peak and trough points in sliding windows and
then collects the magnitude and number of peaks and troughs
in each window.

First, we introduce our lower fineness extreme point search-
ing method. Given an arbitrary input X;, we define x; as the
kth time point in the original input X;. Let a be window
size and S be sliding step, we first use sliding windows to
obtain sub-windows g,, to construct the sub-window set Q; =
{q1, 92, ...,quw} to represent X; as inputs for trend descriptor
analysis. More specifically, we define ¢ as a searching scope
to judge the trend of a time point, and u as a hyperparameter
which lowers the fineness of searching extreme points and
ignores the abnormal fluctuation caused by electrode noise.

Then, we have the sign function for time point x:

Up (p>d+p
Stable d+pu>p=>d—u) (1)
Down (p <d—pu)

Flow(xy) =

where p,d denote the largest point and the smallest point in
the scope {Xi+1, Xk+2, - - -» Xk+5}, respectively.

Then, the peaks and troughs in the sliding window are
readily identified by observing when the sign function changes
from Up to Down, or vice versa. We let the set of peaks and
troughs be E, and we can express the trend character of an
arbitrary sub-window ¢, by a 4-dimension vector composed
of Up/Down degree, and Up/Down times Trend(qy):

R={E;j:E; <Ejt1,Ej €qu}

D={E;j:E;>Ejf1,Ej €qup}

Trend(qu) = {|R|, > abs(E; — Eiy1),
E;eR

DI, D abs(E; — Ei1)) )

E;eD
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Algorithm 1 Trend Descriptor Extraction With Default Values:
Window Size a = 50, Step f = 50, Search Scope J = 10,
u=2

Require: EEG signal set X = {X1, X2, ..., Xp}
1: for i € [1,n] do

2 Split X; into slices Q; = {q1,92, ..., quw}
3 for j € [1, w] do

4 for m € [1,a] do

5: Sign x,, € g; by Eq. (1)

6 end for

7 Calculate Trend(q;) by Eq. (2)

8 end for

9:  Concatenate and obtain Trend(X;) by Eq. (3)
10: end for

11: for i € [1,n] do

12:  Normalize Trend(X;) by Eq. (4)

13: end for

Since E is time-ordered, a peak can only be followed
by a trough and vice-versa. Therefore, R and D denote the
prior point sets of peak and trough points to help locate
the peaks/troughs in sub-window ¢q,. We denote by |R]|,
| D| the number of elements in R, D, and by abs the absolute
value. Then, we can obtain the trend descriptor of a signal
Trend(X;) by concatenating the trend descriptor of sub-
windows of Q;:

Trend(X;) ={Trend(qu) : qu € Qi} 3)

The dimension of the trend descriptor will be 4 times the
sub-window number, depending on sliding-window size and
step. We show the procedure in Algorithm 1. Finally, we apply
z-score normalization:

Trend(X;) = Normalize({Trend(q;) : qi € Q;})
Trend(q;) — Trend(q*
a(Trend(in))

1qi € Qi) 4

where in = {in" : X; € X} denotes the set of sliding win-
dows from the same time of all signals; Trend (in) denotes
the mean value; and a(Trend(in)) denotes the standard
deviation.

C. Siamese Autoencoder Representation Learning

The proposed Siamese Autoencoder (Fig. 2) utilizes two
autoencoders as two extractors to provide low-dimensional
embeddings that carry out necessary information from original
input sensor data supervised by reconstruction loss Lag.
Different from the conventional siamese methods that only
use one criterion to supervise the siamese training, we use
both auxiliary classifier loss and domain prediction loss as
siamese 1oss Lgjgmese 10 supervise Siamese Autoencoder to
correctly predict the class information and subject domain
information, respectively. Moreover, to let autoencoders have
the ability to project different subjects’ samples into a unified
domain, we adopt an align loss Lgjign to supervise the encoded
embeddings of both autoencoders.

Pairwise Raw Data

Auxiliary Class 1+ 23 Domain ;<
Prediction .:@L Prediction \ >/

p Siamese S

True Class Label

@ L2 Loss

¢ Data Transfer

True D(;r-n-a-in Label
® Cross-entropy Loss

<> Shared Weight

Fig.2. Siamese Autoencoder Architecture. Xa, Xp, represent the raw data
from a train pair and X}, X}, denote the corresponding generated data.
Sa, Sp are the encoded representation. Lgjgmese CONsists of auxiliary
class loss and domain loss.

The proposed Siamese Autoencoder takes pairwise raw data,
meaning that for N input samples, we have (g’) training
pairs. Therefore, we can generate enough training samples to
optimize the deep-learning model even with the small-scale
EEG dataset. Given a raw data set X, we compose the pairwise
training batch B = {B1, Ba,..., By} by B; = {X,4, Xp
Xa, Xp € X} (details of construction of B in Section III-E).
We define s as the autoencoder representation, and the repre-
sentation pair of B; as S; = {s’, s} }, where si, s} denote two
corresponding representations of B;, respectively.

In the following, we introduce the autoencoder structure,
the siamese structure, and domain alignment representation
learning for the proposed Siamese Autoencoder, respectively.

1) Autoencoder Structure: An autoencoder consists of two
components: an Encoder and a Decoder. The Encoder
extracts the low-dimension representation, and Decoder
reconstructs the raw data from the representation. The rep-
resentation should contain all the essential information from
the raw data to allow the Decoder to recover the raw data.

Given an arbitrary data X;, we construct the Encoder with
two fully connected (FC) layers activated by the hyperbolic
tangent (Tanh) function. Here, we use the Tanh function
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because it can convert the input data into E € [—1, 1] and help
avoid the vanishing and exploding gradient problems. Then we
can obtain the representation s; of X; by:

Layer(X;) = Tanh(W % X; + b)
s; = Encoder(X;)
= Layer(Layer(X;)) 5)

where W, b denote the weights and bias of the Encoder,
respectively. Similarly, Decoder consists of two FC layers, but
only the first layer has the Tanh activation function. Our raw
data scope is out of the range of the Tanh function, so we drop
the Tanh function in the decoder output layer. Then, we have
the generated raw data X by:

X} = Decoder (s;)
= W x (Layer(s;)) + b 6)

where W, b denote weights and bias of Decoder, respectively.
We want the generated X; to be as similar as possible to
the raw data X;. Therefore, we apply the L2 loss function to
ensure the Encoder and the Decoder preserve the necessary
information from the raw data. This leads to the pairwise
autoencoder loss function, L4g, for an arbitrary pairwise
data B;:

Lae= > IXa—X 5+ D IXs= X315 (D
Xq.€B; Xp€eB;

where || X, — X ;II% denotes the L2 loss between the raw data
and the generated data. L 4g will ensure the representation S;
carries the essential information of raw data B; during training.

2) Siamese Structure: This section introduces the auxiliary
class enhanced siamese structure for domain transfer learn-
ing. Traditional siamese structure compares two samples and
determines whether they are from the same class. In our
model, we compare the pairwise representations S; and predict
whether they belong to the same subject domain. This domain
prediction lets Encoder transfer the domain information from
different subjects and learn how to generate the representation
with discriminative subject identity information. We also pro-
pose an auxiliary class loss, which prevents Encoder from
generating white noise representations.

Given an arbitrary pairwise representations S; = {sfl,sl’;}
from Encoder, we define the subject domain label D as 1
when s[’;, sli are from the same subject otherwise 0. Siamese
structure consists of two classifiers Class and Domain for
predicting class labels Y and domain labels D of a pairwise
representation Sj, respectively. Both classifiers contain two
FC layers and take Sigmoid Function as the activation function
of outputs. We apply the Cross-entropy Loss as our classifi-
cation loss function. Then, siamese structure 10sS Ls;amese:

Leis(y, y) = —ylogy — (1 — y)log(1 - y)
Lsiamese = Z Leps (Y, Class(s;)) + Les (Y, Class(sll;))
S,‘ES
+Leis (D, Domain(S;)) (3)

where Ls(y,y) denotes the Cross-entropy Loss function
between true label y and predicted probability y; ¥,, Y5 denote

the class labels of sé,sl’;, respectively. The first two terms
represent the accuracy loss, which offers the label information
during the training of autoencoder. Label information could
assist the optimization of autoencoder towards better predic-
tion results, and keep the key information for class prediction.
The last term is the domain loss, which hopes the repre-
sentations can contain the subject identity information. Sub-
ject identity information will make the representations more
diverse and enhance the robustness of algorithms on predicting
class labels from different subjects. Therefore, Lsjgmese Will
make the representations produced by autoencoder more easily
to predict the class labels and the subject source-domain.

3) Domain Alignment Representation Learning: The siamese
structure improves the subject information and class informa-
tion carried by the representations, but it fails to align the
sample domain into a unified classification space. Therefore,
we propose Lgjign to adopt domain alignment of the generated
representations from Encoder.

Given an arbitrary training batch set § = {S1, S2,..., Sx},
where S; = {s/, s} }, then we have:

D lish = spll3 = D lIsh = spli3
SieU sieT
s't'U:{Sl:st,:Ysl';}’ TZ{SIZYS};;EYS;)} )

Lalign =

where U, T denote the set of pairwise data from same and
different classes, respectively; sé, sl’; denote the corresponding
two representations of S;. Lgjign is designed to minimize
the pairwise representations difference from the same class,
and maximize the representation difference from the different
classes, in which way the class domain of different subjects
will be adapted into a unified domain after optimization. Based
on Eq. (7), Eq. (8), and Eq. (9), we could get the loss function
of our Siamese Autoencoder:

L = LAg + Lsiamese + Lalign (10)

where L zf is the basic autoencoder loss function; L§;amese 1S
intended for subject variance learning by domain transfer;
Lalign is designed for domain alignment in classification.

D. Classifier

We use v-Support Vector Machine (v-SVM) to predict class
labels. v-SVM takes both trend descriptors and autoencoder
representations as the inputs of the classifier. It aims to find
a hyper-plane that maximizes the sample distance to this
hyper-plane. In our tinnitus prediction, which is a binary
classification problem, we define the binary labels as {-1,1}.
Then, we denote the classification hyper-plane by

O=wlr+b (11)

where w denotes the normal vector of the hyper-plane;
b denotes a real number; r denotes the mapped point by
kernel function (e.g. radial basis function kernel). Note, w
and r are vectors with multi-dimensions. Then, we have the
sign function for class label y:

wTri—i-bzl

1
= 12
Yri [—l wlri+b< -1 (12)
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Now, our goal transforms into maximizing the gap between
classification margin 1 and —1, and we figure out the distance
of an arbitrary sample r; to the hyper-plane by

~_yiw'ri +b)

1

llwl] ()
where ||w]|| denotes the norm of hyper-plane normal vector,
and y; denotes the class label of sample r;.

Finally, we have the loss function for v-SVM [33]:

2
fw]]
arg min —

s.t. yi[wTri—i-b] >p—¢, 1ell,l]
P =Yi—&PpP ZO

(=0, ie[ll] (14)

where v denotes a hyper-parameter between 0 and 1; ¢ denotes
the error tolerance of prediction; p denotes the tolerated
sample sign; [ denotes the sample number; ¢; denotes the
relaxation variable. The optimization details are in [33].

E. Anchor Split Training and Procedure

Training batch split is a critical factor of generative mod-
els’ performance in domain adaptation [34]-[36]. Therefore,
we propose Anchor split for our Siamese Autoencoder that
includes subject difference and class difference in each training
batch. The proposed Anchor-split method allows the autoen-
coder to learn the characters of subjects and classes evenly.
First, we select a random sample from each subject as Anchor
to ensure each training batch will contain the information of
all training subjects. Second, we randomly pick a batch size
number of positive and negative unique samples belonging
to each Anchor without duplicated samples, respectively. The
selected samples will be combined as pairs with the cor-
responding Anchors that carry the class information. Then,
we further choose a random batch size number of positive and
negative unique samples belonging to the different subjects
from Anchors and merge them as pairs to transfer the subject
variance information to the autoencoder. Third, we keep the
selected pairs to build a data warehouse for each Anchor and
shuffle them randomly. For each iteration of a training round
(epoch), we will select a certain number of pairwise data from
each Anchor’s data warehouses to obtain a training batch. In
each epoch, we repeat the three steps to relocate Anchors
and rebuild the corresponding data warehouses to improve
the training diversity. We illustrate the training process
in Algorithm 2.

IV. EXPERIMENT
A. Experiment Setting

In the experiments, we aim to distinguish tinnitus patients
without obvious hearing loss and control subjects under dif-
ferent sound environments, which may be caused by the
hidden hearing loss. While limited ABR datasets can be
obtained, our experiments is carried out on a small-scale
dataset [4] under 90 dB SPL and 100 dB SPL environments.

Algorithm 2 Training Procedure With Default Values: Batch
Size = 128, Max Epoch = 300, Representation Dimension =
128, Learning Rate (Lr) = 0.001

Require: EEG signal set X = {X1, X2, ...
1: Split train/test subjects

2: Extract trend descriptor by Algorithm 1

3: while epoch < max epoch do

4 Set Anchors in train subjects

5:  Build data warehouse within train subjects
6

7

8

9

» Xn}

while Data warehouse not empty do
Pick up a pairwise train batch
Calculate L by Eq. (10)
W,b < Adam(lr, L)
10:  end while
11: end while
12: Encode samples of test subjects by Eq. (5)
13: Use v-SVM to predict classes with trend descriptors and
representations of test subjects by Eq. (14)

The dataset measured ABR by a Medelec Synergy T-EP
system (Oxford Instruments Medical). Disposable electrodes
(Nicolet Biomedical) are placed on the high forehead and the
ipsilateral and contralateral mastoids. Channel number is 1
and sampling frequency is 50.0 kHz. Electrode impedances
were 2 kQ. Stimuli were 50 us clicks presented via Tele-
phonics TDH 49 headphones at a rate of 11 clicks/s. The
bilateral signals were bandpass filtered (100-1500 Hz) and
averaged (8000 repetitions for 90 dB SPL, 6000 repetitions for
100 dB SPL). All the subjects are female. Mean age of
patients and control subjects are 36.3 years and 33.2 years,
respectively. All participants did not have obvious hearing
loss and had normal hearing (hearing thresholds < 20 dB
hearing level (HL) from 125 Hz to 8 kHz). There was no
significant difference in the average hearing thresholds up
to 12 kHz [4]. Therefore, in our experiments, distinguishing
tinnitus patients is consistent with detecting hidden hearing
loss. We conduct subject-independent experiments in distin-
guishing tinnitus subjects from control subjects for 90dB SPL
and 100dB SPL click-evoked EEG data, respectively.
We selected averaged waveforms from two tinnitus patients
and two control subjects as signals for testing and
used the remaining waveforms for training. This provided
216 waveforms for training and 49 waveforms for testing in
the 90dB SPL data, generating 23,220 pairs of training data;
we also have 148 waveforms for training and 43 waveforms for
testing in 100dB SPL experiment, which contains 10,878 pairs
of train samples. By this means, we generated sufficient data
for training our model.

For both experiments, we define tinnitus patients as 1
(positive) and control subjects as 0 (negative), and set
our Siamese Autoencoder with the same parameters: Ir =
0.005, batch size = 128, max epoch = 300, representation
dimension = 64; we also set window size o = 40, step
S = 40, search scope 6 = 10, 4 = 2 for our trend descriptor.
Due to the significant subject variance, we use the fixed test
sets for the experiments to carry out the further quantitative
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TABLE |
TINNITUS PATIENTS PREDICTION FROM CONTROL OBJECTS UNDER 90DB SPL

Model 0-Precision 0-F1 1-Precision 1-F1 Macro-Precision ~ Macro-Recall ~ Macro-F1 (Weighted-F1)  Accuracy
v-SVM 0.5333 0.5926 0.5556 0.4762 0.5444 0.5417 0.5344 0.5417
nCSP 0.6364 0.6087 0.6154 0.6400 0.6259 0.6250 0.6243 0.6250
CRAM 0.5202 0.6844 1.0000 0.5030 0.7601 0.6680 0.5937 0.6140
AE-XGB 0.6923 0.7200 0.7273 0.6957 0.7098 0.7083 0.7078 0.7083
EEGNet 0.8571 0.6316 0.6471 0.7586 0.7521 0.7083 0.6951 0.7083
ShallowNet 0.7059 0.8276 1.0000 0.7368 0.8529 0.7917 0.7822 0.7917
DeepNet 0.8000 0.4706 0.5789 0.7097 0.6895 0.6250 0.5901 0.6250
SiameseAE 0.8571 0.9231 1.0000 0.9091 0.9286 0.9167 0.9161 0.9167

TABLE Il
TINNITUS PATIENTS PREDICTION FROM CONTROL OBJECTS UNDER 100DB SPL

Model 0-Precision 0-F1 1-Precision 1-F1 Macro-Precision ~ Macro-Recall ~ Macro-F1 ~ Weighted-F1 ~ Accuracy
v-SVM 0.4000 0.3077 0.5385 0.6087 0.4692 0.4750 0.4582 0.4749 0.5000
nCSP 0.5833 0.6364 0.6250 0.5556 0.6042 0.6000 0.5960 0.5960 0.6000
CRAM 0.3807 0.5514 1.0000 0.4913 0.6903 0.6628 0.5214 0.5089 0.5233
AE-XGB 0.5556 0.5882 0.6667 0.6316 0.6111 0.6125 0.6099 0.6123 0.6111
EEGNet 0.6667 0.8000 1.0000 0.7500 0.8333 0.8000 0.7750 0.7722 0.7778
ShallowNet 0.6154 0.7619 1.0000 0.6667 0.8077 0.7500 0.7143 0.7090 0.7222
DeepNet 0.8750 0.8750 0.9000 0.9000 0.8875 0.8875 0.8875 0.8889 0.8889
SiameseAE 0.8889 0.9412 1.0000 0.9474 0.9444 0.9500 0.9443 0.9446 0.9444

analysis. We compared our method with several competitive TABLE Il

methods: (a) one of the v-Support Vector Machine (v-SVM),
i.e., nu-SVM [37], using raw data as the baseline, (b) Improved
Covariance Matrix Estimators (nCSP) [38], (¢) Convolutional
Recurrent Attention Model (CRAM) [19], (d) Autoencoder
enhanced Extreme Gradient Boosting (AEXGB) [22],
(e) Compact Convolutional Neural Network for EEG
(EEGNet) [39], (f) Shallow Convolutional Network
(ShallowNet) [40], and (g) Deep Convolutional Network
(DeepNet) [40].
We define Macro and Weighted criteria for evaluation:

1 .
Macro: = > )

lel
1

Weighted : ————
Zleﬁ [Vl

> Sl G, )

lel

15)

where £ denotes the set of labels; y;, y; denote the predicted
label and true labels; |y;| denotes the number of predicted
labels which have the label I; ¢(y;, ¥;) denotes the computa-
tion of Precision, Recall, or F1-Score for true/predicted labels.

B. Results

Table I and Table IT show our best performance in dis-
tinguishing tinnitus subjects from control subjects on 90dB
SPL and 100dB SPL EEG data, respectively. Note, 90dB SPL
experiment has the same number of positive and negative
samples, so Weighted-F1 has the same value as Macro-F1.
v-SVM cannot distinguish the tinnitus patients with raw data;
AE-XGB shows the autoencoder can effectively improve the
quality of the raw data; while traditional machine learn-
ing methods like nCSP fail to learn the difference between

TREND DESCRIPTOR (TD) AND SIAMESE AUTOENCODER (SA)
INDEPENDENT PERFORMANCE UNDER 90DB AND 100DB SPL

SPL | Feature | O-F1 | 1-F1 | Weighted-F1 | Accuracy
90dB TD 0.500 | 0.500 0.497 0.500
90dB SA 0.811 | 0.792 0.788 0.792
100dB TD 0.775 | 0.775 0.778 0.778
100dB SA 0.762 | 0.667 0.709 0.722

tinnitus and healthy EEG in subject-independent experi-
ments. Deep learning models have better performance in both
experiments—ShallowNet achieves 79.17% accuracy under
90dB SPL, and DeepNet obtains 88.89% accuracy under
100dB SPL, but neither of them has good performance in both
experiments.

Our proposed method outperforms other algorithms in both
experiments, which shows the siamese generative model’s
stronger ability to catch the subject variance and the robust-
ness of our algorithm. We achieve 100% precision and over
0.90 Fl-score in the prediction of tinnitus patients, which
means our model can find the most patients’ EEG accurately.
The overall accuracy of our model is over 90%, which shows
the eligibility in the EEG-based sound therapy.

C. Trend Descriptor and Siamese Autoencoder Analysis

We use the same data split as in former experiments to
explore the impact of the trend descriptor and the Siamese
Autoencoder, respectively. Specifically, we use v-SVM to
show the performance of hand-crafted features and the clas-
sifier in siamese networks to show the effectiveness of
autoencoder-generated features. Table III shows either of the
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TABLE IV

PRESENTATION LEVEL PREDICTION ON MIXED SUBJECTS

Model 0-Precision 0-F1 1-Precision 1-F1 Macro-Precision ~ Macro-Recall ~ Macro-F1 ~ Weighted-F1 ~ Accuracy
v-SVM 0.7955 0.8642 0.8667 0.7027 0.8311 0.7684 0.7835 0.8040 0.8136
nCSP 0.6250 0.6494 0.6471 0.6197 0.6360 0.6351 0.6345 0.6345 0.6351
CRAM 0.9105 0.9379 0.9398 0.8897 0.9252 0.9058 0.9138 0.9196 0.9205
AE-XGB 0.8537 0.8974 0.8889 0.8000 0.8713 0.8366 0.8487 0.8611 0.8644
EEGNet 0.8182 0.8889 0.9333 0.7568 0.8758 0.8047 0.8228 0.8396 0.8475
ShallowNet 0.9722 0.9589 0.9130 0.9333 0.9426 0.9502 0.9461 0.9494 0.9492
DeepNet 0.8780 0.9231 0.9444 0.8500 0.9112 0.8729 0.8865 0.8958 0.8983
SiameseAE 1.0000 0.9722 0.9167 0.9565 0.9583 0.9730 0.9644 0.9664 0.9661
TABLE V
LEARNING RATE PERFORMANCE ON MEAN SCORE (STANDARD DEVIATION)
\ 90dB SPL | 100dB SPL
Ir | 0-F1 | 1-F1 | Weighted-F1 | Accuracy | 0-F1 1-F1 | Weighted-F1 |  Accuracy

0.001 | 0.846(0.038) | 0.836(0.025) | 0.841(0.031) | 0.842(0.031) | 0.917(0.046) | 0.926(0.044) | 0.922(0.044) | 0.922(0.044)
0.002 | 0.846(0.035) | 0.818(0.041) | 0.832(0.038) | 0.833(0.037) | 0.938(0.056) | 0.949(0.045) | 0.944(0.050) | 0.944(0.050)
0.003 | 0.831(0.010) | 0.797(0.040) | 0.814(0.023) | 0.817(0.020) | 0.899(0.021) | 0.901(0.023) | 0.900(0.022) | 0.900(0.022)
0.004 | 0.888(0.027) | 0.878(0.037) | 0.883(0.031) | 0.883(0.031) | 0.886(0.006) | 0.891(0.004) | 0.889(0.000) | 0.889(0.000)
0.005 | 0.891(0.013) | 0.874(0.022) | 0.882(0.017) | 0.883(0.017) | 0.919(0.046) | 0.925(0.043) | 0.922(0.044) | 0.922(0.044)
0.006 | 0.879(0.048) | 0.870(0.058) | 0.875(0.053) | 0.875(0.053) | 0.886(0.037) | 0.891(0.033) | 0.889(0.035) | 0.889(0.035)
0.007 | 0.871(0.035) | 0.858(0.035) | 0.864(0.035) | 0.865(0.035) | 0.863(0.032) | 0.870(0.023) | 0.867(0.027) | 0.867(0.027)
0.008 | 0.913(0.032) | 0.898(0.039) | 0.906(0.035) | 0.906(0.035) | 0.873(0.045) | 0.882(0.039) | 0.878(0.041) | 0.878(0.042)
0.009 | 0.879(0.030) | 0.846(0.042) | 0.862(0.036) | 0.865(0.035) | 0.926(0.049) | 0.934(0.044) | 0.931(0.046) | 0.931(0.046)
0.010 | 0.906(0.021) | 0.906(0.015) | 0.906(0.018) | 0.906(0.018) | 0.869(0.027) | 0.880(0.022) | 0.875(0.024) | 0.875(0.024)

ROC Curve of 90dB SPL

ROC Curve of 100dB SPL

two features cannot compete with their combination in per-
formance in either experiment. Trend descriptor has better
performance in 100dB SPL while merely provides useful
independent information in 90dB SPL; Siamese Autoencoder
can extract meaningful information from low signal-to-noise
ratio data but has worse performance than trend descriptor
in 100dB SPL. Compared with the previous experiment,
combining the two features delivers much better performance
in both experiments, meaning the features can complement
and improve each other.

D. Sound Classification

We further test our model in predicting the presentation
level in mixed subjects. We define 90dB as label 0 and
100dB as label 1. We select three tinnitus patients and two
control subjects for the test and use the remaining samples
for the train. Then we have 400 waveforms for training
and 56 waveforms for testing, which means 79,800 pairwise
samples for training. We compare our method with the same
algorithms in the prediction of tinnitus in Table IV. Prediction
of sound level is easier for algorithms, while we get a baseline
of 81.36%. The proposed Siamese Autoencoder only has lower
100dB precision than some of the state-of-the-art algorithms
but outperforms them in other criterion scores, which reveals
our model’s powerful ability to analyze EEG-related tasks.

E. Ablation Study

We investigate the robustness of our Siamese Autoencoder,
by showing receiver operating characteristic (ROC) curve
curves and testing the impact of learning rate (Ir) of Adam

\
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(a) ROC curve of 90 dB SPL. (b) ROC curve of 100 dB SPL.

Fig. 3. ROC curves.

optimizer, batch size, and representation dimension on our
model’s performance, separately, with the other parameters
default to Ir = 0.001, batch size = 128, and representation
dimension = 64. We run the model for 10 times and calculate
the mean performance of the best five times to reduce the
adverse impact caused by randomization in our Anchor split.

1) ROC Curves: As shown in Fig. 3, our model can achieve
high true positive rates when the false positive rates are smaller
than 0.2 in both 90 dB SPL and 100 dB SPL experiments.
The model can obtain 0.3 and 0.5 of true positive rate without
false positive predictions, which indicates that our model can
perform better in 100 dB SPL environment. The ROC curves
illustrate the effectiveness of our model in tinnitus diagnosis
under different sound environments.

2) Hyper-Parameter Study: Table V, Table VI and
Table VII show varying results of different learning rates,
batch sizes, representation dimensions. We can observe that
larger Ir leads to better performance in 90dB experiments
but worse performance in 100dB experiments. Batch size
has only a small influence on the 100dB experiments but a
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TABLE VI
BATCH SizE PERFORMANCE ON MEAN SCORE (STANDARD DEVIATION)

\ 90dB SPL | 100dB SPL
Batch | 0-F1 | 1-F1 | Weighted-F1 | Accuracy | 0-F1 | 1-F1 | Weighted-F1 |  Accuracy
64 0.825(0.027) | 0.797(0.049) | 0.811(0.037) | 0.813(0.036) | 0.924(0.021) | 0.935(0.027) | 0.930(0.024) | 0.931(0.024)
9 0.832(0.047) | 0.832(0.047) | 0.832(0.043) | 0.833(0.042) | 0.926(0.049) | 0.934(0.044) | 0.931(0.046) | 0.931(0.046)
128 0.846(0.038) | 0.836(0.025) | 0.841(0.031) | 0.842(0.031) | 0.917(0.046) | 0.926(0.044) | 0.922(0.044) | 0.922(0.044)
160 0.780(0.039) | 0.737(0.028) | 0.758(0.033) | 0.760(0.035) | 0.913(0.024) | 0.919(0.031) | 0.917(0.028) | 0.917(0.028)
192 0.797(0.028) | 0.762(0.043) | 0.780(0.035) | 0.781(0.035) | 0.911(0.022) | 0.921(0.032) | 0.916(0.028) | 0.917(0.028)
224 0.848(0.040) | 0.812(0.070) | 0.830(0.054) | 0.833(0.051) | 0.913(0.050) | 0.919(0.047) | 0.917(0.048) | 0.917(0.048)
256 0.774(0.045) | 0.745(0.067) | 0.759(0.055) | 0.760(0.054) | 0.900(0.019) | 0.905(0.027) | 0.903(0.024) | 0.903(0.024)
TABLE VII
REPRESENTATION DIMENSION PERFORMANCE ON MEAN SCORE (STANDARD DEVIATION)
| 90dB SPL | 100dB SPL
Dimension | 0-F1 | 1-F1 | Weighted-F1 | Accuracy | 0-F1 | 1-F1 | Weighted-F1 |  Accuracy
16 0.770(0.027) | 0.761(0.027) | 0.765(0.022) | 0.767(0.021) | 0.897(0.022) | 0.908(0.026) | 0.903(0.024) | 0.903(0.024)
32 0.806(0.033) | 0.774(0.038) | 0.790(0.034) | 0.792(0.035) | 0.941(0.040) | 0.947(0.039) | 0.944(0.039) | 0.944(0.039)
48 0.796(0.019) | 0.786(0.026) | 0.791(0.019) | 0.792(0.018) | 0.913(0.050) | 0.919(0.047) | 0.917(0.048) | 0.917(0.048)
64 0.846(0.038) | 0.836(0.025) | 0.841(0.031) | 0.842(0.031) | 0.917(0.046) | 0.926(0.044) | 0.922(0.044) | 0.922(0.044)
80 0.839(0.025) | 0.800(0.053) | 0.820(0.037) | 0.823(0.035) | 0.912(0.030) | 0.921(0.027) | 0.917(0.028) | 0.917(0.028)
96 0.812(0.022) | 0.812(0.022) | 0.812(0.021) | 0.813(0.021) | 0.909(0.054) | 0.922(0.046) | 0.916(0.049) | 0.917(0.048)
112 0.828(0.017) | 0.817(0.021) | 0.823(0.018) | 0.823(0.018) | 0.910(0.028) | 0.922(0.028) | 0.917(0.028) | 0.917(0.028)
128 0.787(0.068) | 0.746(0.086) | 0.767(0.072) | 0.771(0.069) | 0.898(0.025) | 0.906(0.024) | 0.903(0.024) | 0.903(0.024)

larger influence on the 90dB experiments. 90dB experiments
need a relatively small or a large enough batch size to allow
the model to learn the representation better, while 100dB
experiments need a small batch size. Our model achieves
the best performance when using 32/64-dimension vectors.
The too-small or too-large, e.g., 16 and 128, may be unable
to express the subject information or introduce extra noise.
Overall, our model is robust over most parameters.

V. CONCLUSION

We propose a novel model that integrates a lower fineness
trend descriptor and a powerful Siamese Autoencoder to dis-
tinguish tinnitus patients from control subjects based on small-
scale subject-independent EEG signals. We further exhibit the
model effectiveness in the presentation level prediction. The
experiments indicate that our work is promising to be used
as a powerful criterion in the neurofeedback sound therapy,
which can give a reliable suggestion to the doctors whether
the EEG patterns of patients have recovered to a healthy
state.
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