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Abstract— Pattern recognition techniques leveraging the
use of electromyography signals have become a popular
approach to provide intuitive control of myoelectric devices.
Performance of these control interfaces is commonly quan-
tified using offline classification accuracy, despite studies
having shown that this metric is a poor indicator of usability.
Researchers have identified alternative offline metrics that
better correlate with online performance; however, the rela-
tionship has yet to be fully defined in the literature. This
has necessitated the continued trial-and-error-style online
testing of algorithms developed using offline approaches.
To bridge this information divide, we conducted an
exploratorystudy where thirty-two different metrics from the
offline training data were extracted. A correlation analysis
and an ordinary least squares regression were implemented
to investigate the relationship between the offline metrics
and six aspects online use. The results indicate that the
current offline standard, classification accuracy, is a poor
indicator of usability and that other metrics may hold
predictive power. The metrics identified in this work also
may constitute more representative evaluation criteria when
designing and reporting new control schemes. Further-
more, linear combinations of offline training metrics gen-
erate substantially more accurate predictions than using
individual metrics. We found that the offline metric feature
efficiency generated the best predictions for the usability
metric throughput. A combination of two offline metrics
(mean semi-principal axes and mean absolute value) signif-
icantly outperformed feature efficiency alone, with a 166%
increase in the predicted R2 value (i.e., VEcv). These find-
ings suggest that combinations of metrics could provide a
more robust framework for predicting usability.

Index Terms— Electromyography, myoelectric control,
offline training, online performance, pattern recognition.

I. INTRODUCTION

MOBILITY impairments are the leading cause of dis-
ability in the United States, affecting one in seven

adults [1], and are the third highest cause of disability in
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Canada, affecting one in fourteen adults [2]. These impair-
ments can be caused by disease, injury, or congenital defects
and can often have significant implications on an individual’s
ability to perform activities of daily living (ADLs). An inabil-
ity to perform ADLs can hinder a person’s independence and
potentially diminish their quality of life.

Consequently, assistive and rehabilitation technologies are
commonly used to increase the physical capabilities of
impaired individuals. An essential component of these tech-
nologies is the ability for the user to intuitively interact
with and control the device. Both assistive and rehabilitation
technologies, therefore, have leveraged pattern recognition
approaches to decipher user intent. One such method is
through the use of electromyography (EMG) signals from
residual functioning muscles [3]–[5]. The patterns generated
during muscular contractions can be decoded and used as input
for a human computer interface (HCI), prosthesis, or ortho-
sis, by mapping intent to control multiple degrees of
freedom (DOFs).

For decades, the performance of pattern recognition-based
myoelectric control has predominantly been assessed using
offline classification accuracy. Increasingly, however, studies
have found that this measure has little to no correlation with
online usability [6]–[8]. A recent study claimed that global
offline accuracy was highly correlated with the completion
rate of an online usability test (r = 0.90, p < 0.05) [9];
but, most studies suggest a more complex relationship
between offline classification accuracy and online usability.
Hargrove et al.observed that including transient contractions
in the training data set decreases offline classification accu-
racy but increases online usability during a virtual clothespin
task [7]. Similar findings demonstrated that a multiple binary
classifier with a statistically higher classification error rate
than a linear discriminant analysis (LDA) classifier produced
a more controllable system with faster clothespin placement
times and a higher completion rate [10]. Although there
is some evidence suggesting offline classification accuracy
provides meaningful information with regard to online perfor-
mance, the exact relationship between this metric and real-time
control has yet to be fully defined in the literature.

Researchers also have investigated the use of other
offline training metrics as indicators of usability, such as
separability- and repeatability-based metrics. A correlation
analysis between the usability metric completion time and
the separability metrics modified separability index and
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Bhattacharyya distance yielded correlation coefficients of r =
0.54 and r = 0.45, respectively [11]. This same study identified
no meaningful relationship between completion time and the
repeatability index (r = 0.018) [11]. Another study yielded
a correlation coefficient of r = 0.53 between the separability
index and testing error [12]. Although these results suggest a
moderate relationship between pattern separability and online
performance, there remains little consensus in the literature;
for example, a more recent study demonstrated no significant
correlation between separability and online accuracy [13].

Because offline training metrics fail to provide the necessary
information to evaluate online myoelectric control, the most
accurate performance assessments remain those that incor-
porate the use of the end device. This is necessary because
implementing the physical device’s control system introduces
many challenges associated with the stability of the EMG
recordings, the interference from non-targeted muscle groups,
the effects of tissue loading and arm dynamics, and the fit of
a socket [14]. Prostheses and orthoses, however, can be quite
expensive and often require a clinical population group to test
on, making them impractical for use in some experiments.

In an attempt to bypass the need for a physical myoelectric
device, researchers have proposed and implemented alternative
usability assessments that leverage virtual testing environ-
ments [7], [14]–[17]. Recently, Hargrove et al.justified the
continued use of virtual testing environments by demonstrating
a significant correlation between virtual and physical out-
come measures [18]. Virtual testing environments also allow
researchers to evaluate their control scheme without the influ-
ence of all the physical factors that come with implementing a
device. The following three virtual assessments incorporate the
user in the control loop and are among the more commonly
cited tests in the literature: the motion test [14], the Target
Achievement Control (TAC) test [16], and the Fitts’ Law
usability test [17].

It is generally agreed upon in the literature that the motion
test is an oversimplified version of real-time use. This is
because misclassifications and unintended movements are not
registered in the testing environment. The TAC test and the
widely accepted Fitts’ Law test are more challenging virtual
assessments compared to the motion test. Both assessments
provide users with the ability to modulate muscle activity,
contraction intensity, and the output of the test in real-time.
Although the Fitts’ Law and TAC tests have much in common,
they cannot be considered interchangeable [19]. A study
comparing the two methods suggests significantly higher user
error and reported confusion for the TAC test, concluding that
the Fitts’ Law test may be a more reliable tool for performance
evaluation [19].

While researchers have established the link between vir-
tual and physical device usability [18], the literature still
lacks an established link between offline training metrics
and virtual outcome measures. Performing usability testing
in a clinical environment, whether it be virtual or physical
assessments, takes time and resources. It is often impractical
to evaluate online performance for every individual fitted
with a myoelectric device. Therefore, when patients use their
devices at home, they may experience erroneous motions

and limitations in the dexterity of control, which have been
cited as common attributing factors for the abandonment
of myoelectric devices [3], [20]–[23]. If users knew that
the outcome of their training protocols might result in poor
practical use, they could retrain the system immediately to
avoid unnecessary frustration during activities of daily liv-
ing. Furthermore, training protocols could be targeted toward
improving training data characteristics known to be valuable
predictors of online performance. This would help users bet-
ter understand what is necessary for successful myoelectric
control. Establishing more representative metrics may also
help to improve the design for the actual use case rather
than for classification accuracy, which does not translate well
to real-time myoelectric control. More reliable use may in
turn lead to higher user satisfaction and acceptance of these
devices.

To the best of our knowledge, there has been no prior
work investigating a multi-variate relationship between users’
training data and their online usability. Past attempts to
quantify this relationship only consider a small set of offline
metrics and their individual correlations with online per-
formance. Influenced by the feature analysis presented by
Phinyomark et al. [24], this paper presents an exploratory
and unconstrained analysis using 32 offline metrics and six
online usability metrics to draw out and identify uni- and
multi-variate relationships.

II. METHODS

A. Participants

Twelve able-bodied subjects (9 male/3 female, age range:
22-63 yrs., mean and standard deviation of age: 33±15.2 yrs.,
median age: 25.5 yrs.) took part in this study. Ten participants
reported right hand dominance and two reported left hand
dominance. The procedures were approved by the University
of New Brunswick’s research ethics board (REB #2020-016),
and subjects provided written informed consent prior to par-
ticipating in the experiment.

B. Experimental Setup

EMG signals were recorded using a standard, non-invasive,
wireless EMG collection system (TrignoTM Wireless system,
Delsys Inc., USA). The signals were sampled at 2000 Hz
and filtered to remove power-line and digital interference
with 2nd-order Butterworth bandstop filters at 60, 180, 250,
and 300 Hz. A 3rd-order Butterworth high-pass filter with a
cutoff frequency of 20 Hz was also implemented to remove
motion artifact. Prior to positioning the electrodes, the skin
was cleansed with an alcohol swab to remove excess skin
oil and debris. Six electrodes were uniformly spaced around
the proximal third of the dominant forearm. Participants sat
in a chair with their dominant arm held unsupported, but
comfortably, at a 90-degree angle by their side and with their
forearm parallel to the floor.

C. Experimental Protocol

The experiment consisted of one 20-30 minute session
involving a training phase and a testing phase.
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Fig. 1. Adaptive classifier procedure.

1) Training: EMG signals for five motion classes were
collected: no movement, wrist flexion, wrist extension, power
grip, and hand open. Each cycle through these five movements
constituted a trial. In total, eight trials were conducted over the
user training period.

A screen guided training approach was implemented to
guide users through the training process [25]. An image of a
hand gesture prompted the user to perform a given movement,
and a progress bar informed the user how long to hold their
contraction. Subjects began movements at rest, transitioned
into the desired movement, and then maintained the con-
traction for the duration of the repetition. Users were given
minimal instruction with regards to their contraction intensity.
They were told to perform contractions at an intensity for
which they felt comfortable and would not fatigue over the
course of the experiment. The system recorded four seconds
of EMG data for each prompt followed by a two-second delay
period during which no data were recorded. The delay allowed
users to return to a resting position before the next prompted
movement.

This experiment employed adaptive LDA classifier training
based on the maximum likelihood output of the classifier [26].
An initial classifier was trained following the completion of the
first trial. The data from this trial were segmented into 160 ms
windows with a 64 ms overlap [27]. The four commonly-
used time domain features described by Hudgins [28] were
extracted at each of the six electrode channels for a total
of 24 features. These features were then used to train the
LDA classifier.

The data collected in the next trial were classified to
determine the windows of data that would be used to adapt the
classifier. Bayesian classification theory was used to provide
a score based on the likelihood outputs of the classifier [29],
[30]. A data window was concatenated to the existing classifier
data set if the class with the maximum likelihood matched that
of the training class. The classifier was retrained after each
trial.

This process of appending data to the classifier data set
continued for subsequent trials, with a forgetting factor of

four trials to limit the amount of data being used to train the
classifier. Following this approach, only data from the four
most recent trials were included in the classifier training set,
as shown in Figure 1. We adopted this adaptive procedure in
place of a classical static data collection to reduce the potential
impact of user learning. Adaptive algorithms have been shown
to significantly reduce classification error, reinforce good
decisions, account for slow drifts in the boundaries of the
classifier, and ultimately reflect changes in user behavior [26].

2) Testing: The classifier generated during training was
tested in a Fitts’ Law environment to determine its usability
during a virtual target acquisition task. Fitts’ Law was intro-
duced in 1954 by Paul Fitts and uses principles derived from
Shannon’s work in communication theory to demonstrate that
any human motor task exhibits a trade-off between speed and
accuracy [31]. Fitts’ Law-style testing has become an interna-
tional standard (ISO9341–9) for validating human-computer
interfaces, including mice, joysticks, touchpads, and human
motion. A Fitts’ Law usability test maps specific motions to
control the movement of a cursor in a virtual environment
during a target acquisition task. The user must respond and
correct for system misclassifications to successfully acquire
the target. Over the last decade, researchers have verified the
use of EMG as a control input using Fitts’ Law, making this
a popular approach in the literature for evaluating myoelectric
control [17], [19], [32].

The four active motion classes collected during training
were mapped to control the movement of the cursor on the
computer screen. In one DOF, hand open moved the cursor up
and power grip moved the cursor down. In the horizontal DOF,
the direction of wrist extension and wrist flexion was mapped
to match that of the subject’s reported hand dominance.
Proportional control was implemented using the procedures
outlined in [33] and [29]. Class-specific gains that map the
average class-specific amplitudes to 50% of full speed were
calculated during training. This allowed the strength of the
user’s muscle contraction to regulate the speed of the cursor.

The Fitts’ Law test positioned targets at varying target
distances and in locations that required activation of one or
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both DOFs. The user successfully completed a trial by acquir-
ing the target and maintaining the cursor within the target
boundaries for one second. The allotted time to reach each
target was ten seconds, after which the trial timed out, and
the test automatically moved to the next target.

The testing phase included 32 single DOF targets
(e.g. right or down) and 32 dual DOF targets (e.g., left
AND up) for a total of 64 targets. The incoming test data were
segmented into 160 ms windows from which features were
extracted and classifications were made. This window length is
within the optimal range found by Smith et al.for myoelectric
control [34] and is the preferred setting for the software
package used in this study [25]. To ensure sufficient time to
process the data, a conservative update interval of 16 ms was
selected [29], [35].

D. Offline Training Metrics

Several offline training metrics proposed in the literature
were assembled into one expansive set and were designated as
potential predictors of usability. Currently, there is no accepted
means of determining how different types of offline metrics
relate to online performance. A total of 32 offline training
metrics were calculated using the 24-dimensional feature space
(i.e., four features x six electrode channels) obtained from the
training data outlined in Section II-C.1. Collectively, these
metrics provide a comprehensive view of the feature space
populated during training. Of the 32 metrics, seven were
variability measures, eleven were separability measures, nine
were complexity measures, three were classification measures,
and two were neighborhood measures. The analysis of these
measures leveraged the full training repetitions rather than only
the portions applied to the adaptive classifier to fully evaluate
the user’s behavior throughout training.

• The variability metrics quantified intra-class characteris-
tics. A full list of these metrics and formulations can be
found in Section V.

• The separability metrics assessed inter-class attributes.
A full list of these metrics and formulations can be found
in Section V.

• The complexity metrics leveraged feature space partition-
ing algorithms to examine regional class discriminability.
A full list of these metrics and formulations can be found
in Section V.

• The classification metrics were based on classification
performance using an LDA classifier. A full list of these
metrics and formulations can be found in Section V.

• The neighborhood metrics considered nearest neighbor
relationships. A full list of these metrics and formulations
can be found in Section V.

E. Online Usability Metrics

Fitts’ Law has been widely adopted to describe the infor-
mation bandwidth of a control scheme, such as the movement
of a pointer or cursor in a virtual environment.

The following usability metrics (i.e., virtual outcomes) were
extracted in the present study to evaluate online myoelectric
control:

• Throughput (TP, bits/sec) is the Fitts’ Law summary
metric and is considered to be the rate of information
transfer [17], [31], [36]. It is characterized by the target’s
index of difficulty (ID) and the movement time (MT) of
the cursor averaged across N trials.

T P = 1

N

N∑
i=1

I Di

MTi
(1)

The index of difficulty, defined as a function of the
target’s width (W) and distance (D), was calculated
using Shannon’s formulation [37]. The distance (D) was
measured as the distance between the starting point of
the cursor and the center of the target.

I D = log2

(
D

W
+ 1

)
(2)

• Effective Throughput (eTP, bits/sec) is a modified ver-
sion of throughput where the distance to the target during
the calculation of ID is adjusted based on the actual dis-
tance the cursor travels (De). If a user consistently stops
the cursor on the inner edge of the target, the effective
distance to the target becomes smaller. Likewise, if a
user stops the cursor on the outer edge of the target,
the effective distance increases.

I De = log2

(
De

W
+ 1

)
(3)

• Path Efficiency (PE, %) describes the system’s qual-
ity of control and is calculated as the ratio between
the shortest path to the target and the actual path
traveled [17], [36].

• Overshoot (OS) measures a user’s ability to stop on a
target by counting the number of times per task the user
acquired then lost the target before the dwell time was
reached [17], [36].

• Average Speed (AS, pixels/sec) highlights a user’s
gross ability to control the cursor and is computed
as the average non-zero speed of the cursor for each
task [17], [36].

• Stopping Distance (SD, pixels) evaluates a user’s ability
to maintain no motion to stop within a target. It is
calculated as the total distance traveled by the cursor
during the dwell time [17].

F. Linear Regression

Linear regression models were generated using sets of one,
two, and three predictor variables on a given response variable.
An ordinary least squares regression was used rather than a
higher order polynomial regression to reduce the potential
of overtuning and to encourage generalizability. Overfitting
concerns were further addressed by restricting the number of
predictors to three or less. The relationship between offline
and online myoelectric control was evaluated using the offline
training metrics as predictors and the online usability metrics
as response variables. Both predictors and responses were
normalized to be between zero and one prior to training the
models. Normalization allows for the interpretation of the
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coefficient weights in the regression models. These weights
can be used to determine the relative contributions of the pre-
dictors on the prediction. The relative coefficient weightings
in this study were calculated by dividing the absolute value of
each individual predictor weight by the sum of the absolute
values of all the assigned predictor weights. Multicollinearity
was assessed using the variance inflation factor (VIF). While
there is no universal agreement for the VIF cut-off value that
should be used to detect multicollinearity, a VIF greater than
5 is often considered to be problematic [38].

1) Predictor Selection: We implemented a predictor selec-
tion approach similar to the consensus nested cross-validation
technique recently proposed by Parvandeh et al.for feature
selection [39]. This approach finds consistent and stable
features, with the goal of providing a more generalizable
model [39]. The technique also has been shown to be effective
for small sample sizes [39].

Following this selection procedure, we performed a
12-choose-11 subject calculation to establish twelve subsets
with eleven subjects each. Predictor selection was then per-
formed using a leave-one-subject-out (LOSO) cross-validation
technique within each subset. The minimization criterion was
the average mean squared error (MSE) between the model’s
outputs and the true validation values.

The number of predictor sets that were evaluated varied
depending on the number of predictors used in the model.
The one-predictor models assessed 32 predictor sets, equalling
the total number of offline metrics. The two-predictor models
considered 496 predictor combinations, which encompassed
all possible combinations of 32-choose-2 predictors. Finally,
the three-predictor models assessed 4960 predictor combina-
tions, based on 32-choose-3 predictors.

For the two- and three-predictor models, we identified
the top 50 combinations of offline metrics with the lowest
average MSE across the LOSO cross validations for each
subset. A consensus in the top predictor combinations was
then required across at least six of the twelve subsets. The
predictor combinations that met the consensus requirements
were selected for further evaluation.

2) Performance Evaluation: The predictive performance of
each selected offline metric combination was determined using
a LOSO cross validation across all twelve subjects. This was
repeated to assess predictor sensitivity for the one-, two-, and
three-predictor models against each of the response variables.
The predictor set demonstrating the lowest predictive MSE
was selected as having the “best” performance. Therefore,
each response variable had a corresponding model with one,
two, and three predictors. The goodness of fit and predictive
accuracy of these final models were evaluated using the
following metrics.

a) Measures of goodness of fit: Goodness of fit, also known
as the training error, refers to a model’s ability to predict
the samples used during parameter estimation. The list below
describes each of the measures of goodness of fit used in
assessing the performance of the trained prediction models.

• Mean Absolute Error (MAE): The MAE is an inter-
pretable metric that provides information about the aver-
age magnitude of error between the true and predicted

values [40]. All errors are equally weighted, and the units
match that of the response variable.

• Mean Squared Error (MSE): The MSE measures the
average squared error between the true and predicted val-
ues [40]. MSE assigns higher weights to larger errors, and
consequently, is more sensitive to outliers. MSE has units
equalling the square of the response variable, making it
arguably less interpretable than MAE.

• Root Mean Squared Error (RMSE): The RMSE provides
an estimate for the standard deviation of the associated
error distribution. It is the square root of the MSE and
has the same units as the response variable [40].

• Adjusted Coefficient of Determination (R2
ad j ): The R2

ad j
is a recommended measure of goodness of fit when multi-
ple predictors are used in model development. It accounts
for the number of predictors by increasing in value only
when the addition of a predictor significantly improves
the fit of the model [41]. The R2

ad j decreases when the
model improvements are not greater than what would be
expected by chance.

• Corrected Akaike Information Criterion (AICc): AICc
measures the relative quality of a model by balancing
the tradeoff between goodness of fit and number of
predictors [42]. AICc is recommended for small sample
sizes and incorporates a correction or penalty to address
overfitting [42].

Smaller values of MAE, MSE, RMSE, and AICc imply that
the generated model more closely resembles the “true model”.
Higher adjusted coefficient of determination values suggest
that the parameters of the model better fit the observations.

b) Measures of predictive accuracy: Predictive accuracy is
concerned with the model’s ability to predict new instances,
previously unseen by the model. The following list provides
descriptions of each measure of predictive accuracy used to
evaluate how well the developed models predicted usability.

• Normalized (n) MAE, MSE, and RMSE: Unit- and scale-
independent versions of MAE, MSE, and RMSE were
obtained by dividing the metrics by their corresponding
range of true response values observed in the trained
model. Normalization allows comparisons to be made
across datasets.

• Mean Absolute Percent Error (MAPE): MAPE is an inter-
pretable and scale-independent metric commonly used to
measure forecasting accuracy [43]. It is calculated as the
average of the absolute percentage errors. It is important
to note that MAPE becomes undefined as the true values
approach zero.

• Variance Explained (VEcv): The VEcv metric, sometimes
referred to as the predicted R2, is based on cross-
validation and allows direct comparisons between accu-
racies of predictive models for data with different units,
scale, and variation [40], [44]. Negative VEcv values
indicate that the predictions generated by the model are
less accurate than using the mean of the validation data as
predictions [44]. Positive VEcv values demonstrate that
the predictions generated by the corresponding model are
more accurate than using the validation mean [44]. The
maximum obtainable VEcv value is 100% and occurs
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TABLE I
SUBJECT-WISE BREAKDOWN OF CLASSIFICATION ACCURACY (CA)

AND ACTIVE CLASSIFICATION ACCURACY (ACA) RESULTS.
A CEILING EFFECT IS OBSERVED FOR THE ACTIVE

CLASSIFICATION ACCURACY METRIC

when the model predictions are equal to their correspond-
ing validation values. According to Li, the performance
of predictive models based on VEcv measures can be
divided into the following five categories: very poor:
VEcv ≤ 10%, poor: 10% < VEcv ≤ 30%, average: 30
< VEcv ≤ 50%, good: 50 < VEcv ≤ 80%, excellent:
VEcv > 80%.

Increases in VEcv and reductions in nMAE, nMSE,
nRMSE, and MAPE indicate better predictive accuracy.

III. RESULTS

A. Offline Classification Performance

Table I displays the average leave-one-trial-out cross-
validation classification accuracy (CA) and active classification
accuracy (ACA) across the eight training trials for each sub-
ject. Because ramp contractions were collected during training,
the movement data contained trace amounts of the no motion
class. The ACA metric removes misclassifications due to no
motion from the accuracy calculation. Subject 4 obtained the
highest average CA at 96.4% ± 2.8% and subject 12 demon-
strated the lowest average CA at 78.5%±12.4%. Subject 4 also
exhibited the highest average ACA at 100.0% ± 0.1% while
subject 2 displayed the lowest average ACA at 98.3%±3.5%.

B. Online Performance

The range of the average usability metrics across subjects
is shown in Table II. Subject 7 achieved the highest average
throughput, effective throughput, path efficiency, and average
speed with values of 2.0±0.7, 4.1±1.1, 95.4%±8.5%, 65.2±
15.9, respectively. Subject 12 obtained the lowest average
throughput, effective throughput, average speed, and stopping
distance with values of 0.9±0.3, 1.8±0.8, 24.0±9.2, 3.9±2.2,
respectively. The lowest average path efficiency (79.3% ±
23.6%) and the highest average stopping distance (7.3 ± 3.4)
were achieved by subject 2. Subject 6 had the highest average
overshoot (0.7 ± 2.0) and subject 1 had the lowest average
overshoot (0.05 ± 0.2).

C. Correlation Analysis

Shapiro-Wilk tests were performed on each offline and
online metric to evaluate whether they obeyed a normal dis-
tribution. When the assumption of normality was not violated,
the Pearson correlation coefficient was calculated between the

TABLE II
THE MINIMUM AND MAXIMUM AVERAGE VALUES ACROSS

SUBJECTS FOR EACH USABILITY METRIC

TABLE III
SIGNIFICANT CORRELATIONS BETWEEN THE OFFLINE TRAINING

METRICS AND THE ONLINE USABILITY METRICS. BOLD TEXT

INDICATES SIGNIFICANT CORRELATIONS AT THE 95% CONFIDENCE

LEVEL. METRICS FOLLOWED BY AN ASTERISK

VIOLATED THE ASSUMPTION OF NORMALITY

corresponding offline and online metrics. When the assump-
tion of normality was rejected, Kendall’s coefficient of rank
correlation was implemented [45]. The resulting significant
correlations are summarized in Table III.

Of the 32 offline training metrics investigated in this work,
at most two correlations for each online metric were signif-
icant. Feature efficiency (FE) and intra-inter fraction (IIF)
both demonstrated moderate correlations with throughput,
(r = 0.52, p = 0.02) and (r = −0.46, p = 0.04), respec-
tively. FE also exhibited a moderate association with effective
throughput, (r = 0.49, p = 0.03). Bhattacharrya distance
(BD), (r = −0.60, p = 0.04), and Hellinger Distance (HD),
(r = −0.55, p = 0.01), were significantly correlated with path
efficiency. Fisher’s discriminant ratio (FDR) and the rescaled
purity metric (rPU) had significant correlations with average
speed, (r = 0.61, p = 0.03) and (r = 0.62, p = 0.03),
respectively, and stopping distance, (r = 0.71, p = 0.01)
and (r = 0.62, p = 0.03), respectively. While there is no
consensus as to how the strength of the correlation coefficient
should be interpreted, Akoglu presents three commonly used
scales in [46]. The highest correlation coefficient observed
in Table III is 0.71 which may be considered very strong,
strong, or moderate depending on the scale. The lowest
correlation coefficient observed in Table III is 0.46 which may
be considered strong, moderate, or fair.

D. Predictive Modeling

Table IV shows the results of the measures of goodness
of fit and the measures of predictive accuracy for the six
response variables. The models highlighted in Table IV are
the baseline model using classification accuracy (CA) alone
and the previously selected one-, two-, and three-predictor
models for each response variable. Table IV also displays
the relative coefficient weightings for each predictor in the
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TABLE IV
MEASURES OF GOODNESS OF FIT AND PREDICTIVE ACCURACY FOR EACH RESPONSE VARIABLE USING THE SELECTED MODELS. THE RELATIVE

COEFFICIENT WEIGHTINGS FOR EACH PREDICTOR ARE SHOWN IN PARENTHESIS. POSITIVE AND NEGATIVE SIGNS INDICATE

A DIRECT AND INDIRECT RELATIONSHIP, RESPECTIVELY, WITH THE RESPONSE VARIABLE. PREDICTORS

WITH A VARIANCE INFLATION FACTOR ABOVE 5 ARE INDICATED WITH AN ASTERISK (*)

selected models, indicating how important each metric was in
generating predictions. The measures of goodness of fit in the
table generally support the idea that the three-predictor models
provide the best fit. The general consensus across the measures
of predictive accuracy is also that the selected three-predictor
models generate the best predictive performance. A graphical
representation of the VEcv metric for the CA-predictor model
along with the selected one-, two-, and three-predictor models
is illustrated in Figure 2.

c) Throughput: The model using CA as a single predictor
for throughput demonstrated lower predictive accuracy across
all measures than the selected one-, two-, and three-predictor
models. The best performing individual predictor was feature
efficiency (FE). This metric rendered a significant correlation
with throughput (r = 0.52, p = 0.02). Although the positive
VEcv value of 17.4% indicates that this metric generates
predictions with lower errors than predicting using the mean
of the data, the predictive performance is still considered to be
poor according to Li [44]. The two-predictor model selected
mean semi-principal axes (MSA) and mean absolute value
(MAV) as predictors. Both metrics obtained non-significant
individual correlation coefficients with throughput, (rM S A =
−0.51, p = 0.09; rM AV = −0.03, p = 0.92). Using these two
predictors separately in single-predictor models yielded very
poor VEcv values of 3.7% and −56.3% for MSA and MAV,
respectively. However, pairing these predictors in a multiple

regression generated a model with a VEcv value of 46.3%.
This is a 166% increase in VEcv compared to the FE-predictor
model and suggests average predictive accuracy according to
Li [44]. Similarly, even though the compactness measure (C)
had a correlation of (r = 0.20, p = 0.54) with throughput
and an individual predictive VEcv of −67.1%, adding it to
the two-predictor model increased the VEcv from 46.3% to
64.7% — a 39.6% increase.

d) Effective throughput: The models generated for effective
throughput exhibited similar predictive behavior and goodness
of fit as those for throughput. Furthermore, the same offline
metrics were chosen for the selected models with near equal
coefficient weightings. The three-predictor VEcv value for
effective throughput was 65.6%, which is slightly higher than
that for throughput (VEcv = 64.7%).

e) Path efficiency: The selected one-, two-, and three-
predictor models for path efficiency all exhibited higher
predictive accuracy than when using CA as a single pre-
dictor. The Bhattacharyya distance (BD) was the preferred
offline metric for the individual-predictor model. Although
it rendered a significant correlation with path efficiency
(r = −0.60, p = 0.04), the predictive accuracy of the model
based on the measures in Table IV was categorized as poor
(VEcv = 15.0%). The two-predictor model specified the mean
within-repetition repeatability index (mwRI) and intra-inter
fraction (IIF) as predictors, both of which demonstrated low
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Fig. 2. Model predictive performance based on VEcv (%).

and insignificant correlations with path efficiency, (r = 0.31,
p = 0.33) and (r = 0.12, p = 0.64), respectively. The individual
predictive performance of the corresponding single-predictor
models generated very poor VEcv values of -46.1% for mwRI
and -19.3% for IIF. Similar to the effects seen for throughput
and effective throughput, the combination of two predictors
led to a substantial 175% increase in VEcv compared to the
BD-predictor model. This same trend was also observed for the
offline metrics in the three-predictor model, which exhibited
the highest predictive performance and goodness of fit.

f) Overshoot: The CA-predictor model, single-predictor
model, and two-predictor model were each unable to reli-
ably predict overshoot. However, a combination of three
predictors generated a model with good predictive capacity
(VEcv = 50.6%). This model selected Bhattacharrya distance
(BD), neighborhood separability (NS), and rescaled collective
entropy (rCE) as its predictors. Their individual correlations
with overshoot were (r = 0.44, p = 0.15), (r = 0.22, p = 0.49),
and (r = 0.14, p = 0.67) for BD, NS, and rCE, respectively.

Even though the offline metrics had limited predictability
on their own, combining these metrics led to a functional
predictive model.

g) Average speed: The selected one-, two-, and three-
predictor models exhibited higher predictive accuracy com-
pared to the CA-predictor model. The best performing
single predictor was rescaled purity (rPU), leading to a VEcv
of 20.3%. A 115% increase in VEcv was observed when
Fisher’s discriminant ratio (FDR) and repeatability index (RI)
were combined in a two-predictor model. The three-predictor
model generated the highest VEcv with a score of 59.8% —
a 195% increase compared to the rPU-predictor model.

h) Stopping distance: The stopping distance predictions
also improved as the number of selected predictors increased
from one to three. The CA-predictor model exhibited a VEcv
score of -3.5%, indicating worse predictability than simply
using the mean of the validation data. The rescaled purity
(rPU) metric led to a performance increase with a VEcv
of 18.7%. The two-predictor model, which used the mean
within-repetition repeatability index (mwRI) and the class dis-
criminability metric (CDM), further generated a 109% increase
in VEcv from the single-predictor model. Both metrics had
low individual predictive capacity, as was observed from their
low and insignificant correlations with stopping distance as
well as from their insufficient VEcv scores (mwRI: r =
−0.28, p = 0.38, VEcv = −45.2; CDM: r = −0.30, p =
0.23, VEcv = 3.7%) Similar results were obtained for the
three-predictor model using mwRI, purity (PU), and rescaled
collective entropy (rCE). Although the individual predictability
of these offline metrics was limited, the interaction of the
predictors produced a good VEcv score of 52.6%.

E. Predictor Sensitivity
The best predictor set identified during the selection pro-

cedure for each response variable (as shown in Table IV)
was further investigated to determine the degree to which it
outperformed other offline metric combinations that satisfied
the consensus requirement as described in Section II-F.1.
A representative analysis for the response variable throughput
is shown in Figure 3, where the top predictor combinations are
plotted against their corresponding predictive nMSE values.
A dotted line indicating the nMSE of the CA-predictor model
is superimposed onto the graphs to highlight the relative
improvement in the model’s predictive capacity when appro-
priate offline metrics are chosen for evaluation. It is important
to note that many of the top two-predictor combinations
in Figure 3b contain MSA while many of the top three-
predictor combinations in Figure 3c contain MSA and MAV.
This suggests that, although different combinations of two
and three predictors may yield similar predictive error, certain
metrics appear to be more important than others in predicting
the response variable. Figure 3 also displays a narrowing
tendency of the 95% confidence interval as the number of
predictors increases from one to three and as the predictor
combinations become more indicative of the response variable.
The additional five usability metrics follow similar trends as
those seen in Figure 3.
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Fig. 3. Predictive normalized mean squared error (nMSE) for the
top feature combinations for the throughput response variable. Shaded
regions indicate a 95% confidence interval.

IV. DISCUSSION

This study investigated the ability to use offline classi-
fication accuracy and alternative training metrics to predict
online usability. The relationship between usability and user
satisfaction has been established [47], and so these predica-
tive measures may directly inform user experience in the
real-world. Customized protocols targeting improvements of
informative metrics could be implemented to ensure efficient
and effective training sessions. A “training score” could be
assigned to a training session based on the offline training
metrics, providing an indication of future online performance.

In addition, the findings of this research could be used to
improve the use of offline data in the design of algorithms.
For example, rather than using offline classification accuracy
as an objective function for feature selection, other metrics that
were shown here to be more valuable indicators of usability
could be used instead. This may allow for more representative
EMG features to be selected, a more predictable and usable
myoelectric control system, and a reduction in the gap between
research and clinical results.

A. Offline Accuracy as a Predictor of Online Usability

Under the conditions of this study, offline classification
accuracy fails to accurately predict online usability. For each
response variable, the CA-predictor model produced greater
error than simply predicting the mean of the validation data
for each subject. This is illustrated in Figure 2 by the negative
VEcv values. The same can be said for a highly related
metric, active classification accuracy (ACA), which removes
misclassifications due to no movement.

The poor predictive performance given by these two metrics
could be the result of an observed ceiling effect. This effect is
especially prominent for ACA in Table I. All twelve subjects
produced minimal error with average active accuracies ranging
from 98.3% to 100.0%. Since subjects obtained accuracies
close to 100%, the accuracy values may not offer a complete
domain representation. Although these results are represen-
tative of real-world use, the ceiling effect likely limited the
influence of accuracy on the usability metrics. Because several
studies have shown that both long-term and short-term user
practice results in increased classification performance [4],
[12], [48], ceiling effects may be common when testing experi-
enced users. This supports the need to identify alternative met-
rics that provide the necessary information to predict usability.

A recent study by Lv et al.investigating the correlation
between offline classification accuracy and online usability
found that offline accuracy had a strong and significant cor-
relation with completion rate [9]. This same study failed to
find a significant correlation between classification accuracy
and completion time and between classification accuracy and
path efficiency [9]. We avoided the usability metric completion
rate in our study because almost all users were able to acquire
every target; therefore, minimal information about online use
could be extracted from this metric. Additionally, completion
rate is highly dependent on the nature of the task and on the
adopted completion rules (such as the chosen timeout), making
completion time and path efficiency arguably more informative
usability metrics. Completion time was not directly used in our
study; however we implemented the throughput metric which
is a function of both completion time and the difficulty rating
of the task. Our results support the findings of Lv et al.by
demonstrating no significant correlations between offline clas-
sification accuracy and the usability metrics throughput and
path efficiency.

B. Alternative Metrics as Predictors of Online Usability

The correlation analysis outlined in Table III differs
slightly compared to other evaluations presented in the
literature [11], [12]. For example, the separability index and
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modified separability index have yielded significant or near
significant correlations in previous works [11], [12]; however,
the results of this study do not support these observations. Sim-
ilar to the study conducted by Kristofferson et al., we found no
significant correlations between interpretations of the separa-
bility index and usability [13]. In addition, online performance
in other studies has been evaluated by counting correctly
classified movements while ignoring the effects of incorrect
decisions [11]–[13]. In the present study, however, online
testing was evaluated in a Fitts’ Law environment where users
were actively involved and required to correct for misclassi-
fications made by the control system. Similar environments
also have been shown to correlate with functional prosthesis
use [18]. Consequently, the user behavior is reflected in the
online usability metrics and may be a cause for the observed
differences in some correlation results.

The offline metrics showing significant correlations with
online usability in Table III are characterized as either separa-
bility, neighborhood, or complexity measures. These categories
of offline metrics provide similar information by examining the
relationship between clusters in feature space. The separability
measures in this work present a global analysis of feature space
while the complexity measures present a local analysis through
the use of feature space partitioning algorithms. Neighborhood
measures differ slightly by considering samples located along
the class boundaries.

Bhattacharyya distance (BD) and Hellinger distance (HD)
both demonstrated significant correlations with the online
metric path efficiency. BD and HD were also significantly
correlated with each other (r = 0.70, p< 0.001). Similarly,
Fisher’s discriminant ratio (FDR) and rescaled purity (rPU),
both of which were significantly correlated with average speed
and stopping distance, demonstrated a significant correlation
with each other (r = 0.67, p = 0.02). The two final offline
metrics in Table III, feature efficiency (FE) and intra-inter
fraction (IIF), both of which were significantly correlated with
throughput, also rendered significant correlations with each
other (r = −0.7, p<0.001). These results indicate that the
pairs of offline metrics described above are not independent.

Although only six offline metrics were significantly corre-
lated with online usability, other metrics exhibited moderate
correlations, including the mean semi-principal axes (MSA),
collective entropy (CE) and its rescaled version (rCE), neigh-
borhood separability (NS) and its rescaled version (rNS), and
inter-class fraction (ICF). Sample size plays a key role in
determining whether a result is significant [49]. As sample size
increases, both random error and variability decrease, resulting
in more precise measurements [49]. Therefore, studies with
larger sample sizes are more likely than those with smaller
sample sizes to find a significant relationship given one
exists [49]. Because of the limited sample size in the current
experiment (n = 12), additional significant results may have
gone undetected.

C. Combinations of Metrics as Predictors of Online
Usability

In this study, the individual offline metrics did not pos-
sess enough information to effectively represent the online

use case. A more robust outlook on usability was estab-
lished when combinations of offline metrics were used as
predictors. Importantly, the metrics chosen as part of these
predictor sets did not necessarily show significant individ-
ual relationships with the response variable. Measures with
poor individual correlations were often combined in ways
to provide meaningful predictive information, suggesting a
more complex relationship between offline performance and
online usability. Additionally, the predictor chosen in a single-
predictor model was not necessarily favored in corresponding
two- or three-predictor models. Likewise, the predictors in the
two-predictor models may not have been selected for the three-
predictor models. This indicates that the interaction between
the predictors may be just as important as the predictors
themselves. One way to determine the relative importance of
the predictors is to examine the coefficient weightings assigned
to each offline metric. The coefficients for the two-predictor
models in Table IV convey relatively equal weightings, imply-
ing that both predictors have comparable importance in the
linear model. The coefficients for the three-predictor models
display a more varied weighting profile; however, any one
predictor contributes at least 10%. It should also be noted
that the variance inflation factor (VIF) is greater than 5 for
many of the predictors in Table IV, indicating correlation
between predictors. Models with correlated predictors should
be interpreted by looking at how well the combination of
predictors predicts the outcome variable, not by looking at any
individual predictor and its contribution to the model [38].

The relationship between the offline training metrics and
the response variable for a given model differed depending
on the total number of predictors. In the single-predictor
models, the subjects that demonstrated the highest and lowest
online performance generally produced the best and worst
scores, respectively, for the corresponding offline predictor;
for example, subject 7 achieved the highest throughput and
effective throughput while also yielding the highest feature
efficiency (FE). Subject 12 exhibited the lowest throughput
and effective throughput while generating the lowest FE. These
results support the direct relationship between the offline
metric in the single-predictor model and the online usability
metric.

The relationship between the predictor variables and the
response variable became more involved when multiple offline
metrics were used to predict usability; for example, subject 7,
who yielded the best throughput and effective throughput,
produced high MAV values but average MSA compared to
the other subjects. Subject 12, who demonstrated the lowest
throughput and effective throughput, produced high MAV and
high MSA. These findings potentially indicate an interaction
between the two predictor variables. Given the evidence of
multicollinearity between the MSA and MAV predictors, it is
difficult to interpret the individual effects of the predictors
on the response variable. However, even though the individ-
ual effects cannot necessarily be determined, the fact that
similar models were generated for throughput and effective
throughput (which are highly related online metrics) support
the idea that the chosen predictors are representative of online
performance.
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To the best of our knowledge, no other studies have assessed
the relationship between offline training metrics and online
performance using multiple linear regression. Based on the
results of this experiment, grouping offline metrics together
may be a more instructive approach than trying to discover a
singular metric that encompasses all of the variability of online
use. This could be due, in part, to the required coordination of
pattern generation, proportional control, and target acquisition
during online use. The best performing single predictors
outlined in Table IV generated models that were classified as
having poor predictive accuracy as measured by VEcv [44].
It is important to note, however, that although the predictive
behavior was classified as poor, the selected single predictors
generally produced better predictions than simply predicting
using the mean of the data. Furthermore, our selected predictor
resulted in a substantial increase in performance compared to
the current offline standard, classification accuracy. The two-
predictor models generally displayed average predictive per-
formance while the selected three-predictor models exhibited
good predictive behavior [44]. This improving trend was also
present for the measures of goodness of fit, indicating that both
the model parameters and the predictive capacity improve as
the number of predictors increased from one to three.

The models generated for the response variable overshoot
were the only models that deviated from this improving trend.
It may be that overshoot is more difficult to predict compared
to the other online metrics and requires information about the
separability between motion classes (from BD), knowledge
of the class boundaries (from NS), and details about the
uncertainty and disorder of the dataset (from rCE) for accurate
predictions. Furthermore, overshoot reflects aspects of the
user’s task planning and reaction time, which may not be
sufficiently reflected within the SGT training approach.

The results of this study did not identify a common set
of predictors across all usability metrics. This suggests that
the online metrics are providing unique information regarding
the usability of the system. As we have presented our results,
users would likely have to prioritize one aspect of usability
and target the offline metrics associated with the corresponding
model.

Although models outlined in Table IV produced the lowest
error, they were not the only acceptable predictor combinations
Figures 3b and 3c show a gradual increase in nMSE as
additional predictors were evaluated. The gradual increase
is evidence that other sets of offline metrics can produce
predictions comparable to those rendered by the top selected
combination. Furthermore, the results in Figures 3b and 3c,
suggest that the top performing predictor set was not assem-
bled by chance. Many of the predictor combinations along
the x-axis contain similar metrics (i.e, MSA for the two-
predictor sets and MSA and MAV for the three-predictor sets).
It is also important to note that the predictor combinations
plotted in Figures 3b and 3c are the best performing sets out
of 496 combinations for two predictors and 4960 combinations
for three predictors. Not all predictor combinations led to
acceptable performance. The worst combination of two metrics
for predicting throughput was Hellinger distance (HD) and
volume of overlap region (VOR), leading to a nMSE of 5757.

D. Limitations and Future Work

As with any experiment with a limited sample size, overfit-
ting poses a major concern. Training of the different regression
model folds was performed with eleven subjects and only
one subject was included in the test set. Although studies
have demonstrated that accurate regression models can be
formed with as little as two [50] and five [51] samples per
predictor, it is more accepted to have at least ten samples per
predictor [52]. The basis for limiting the number of predictors
in the linear models stemmed from concerns about overfitting.
When evaluating models with four predictors during pilot
testing, we observed a general drop in the AICc generalization
performance as compared to the two- and three-predictor
models. Consequently, because these models were more likely
to be overfit, we limited the input space to three.

Our results demonstrated that the two- and three-predictor
models generated average and good prediction accuracy,
respectively. However, cross-validation was based on the
prediction of only one subject. Therefore, the reported
absolute predictive performance may be an inflated view
of the true model behavior. For the best generalizability,
an additional study with more subjects should be conducted
with a proper training, validation, and test set. Additionally,
because our main focus was on predicting usability, we did
not attempt to solve multicollinearity among the predictors
in the regression models. Multicollinearity makes it difficult
to accurately investigate associations among the predictor
variables, but it does not impact the fit of the model or the
model’s predictions [38]. For these reasons, we refrain from
making model specific recommendations, but rather suggest
that researchers move toward predicting usability using a
variety of offline training metrics.

This study also did not take into account additional variables
that could potentially have an influence on predicting usability,
such as the user’s experience level, age, and gender. Further
expansion of the types of feedback and number of offline
metrics may also be beneficial to the research community
to provide a more comprehensive evaluation of predictive
performance. Other areas of work could focus on extending
the subject population group to those with neurological disor-
ders or physical disabilities.

V. CONCLUSION

This work provides a foundation for using offline training
metrics as predictors of online usability. Currently, classifica-
tion accuracy is the most reported offline metric for describing
myoelectric control performance [3], [5], [53]. The results
of this work support many previous studies by showing
that offline classification accuracy is a poor indicator of
usability [6]–[8]. Unfortunately, there is little consensus in
the literature about the use of alternative offline metrics to
indicate online performance. This work identified metrics that,
under the conditions of this study, were shown to be more
powerful predictors than what has previously been used in
the literature. To the best of our knowledge, no work has
investigated a combination of offline metrics that embody
the ability to predict usability. Our findings suggest that
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a combination of two and three offline metrics may provide a
more robust framework for predicting online performance.

APPENDIX A

VARIABILITY METRICS

Repeatability Index (RI): A measure of the reproducibility
of EMG patterns between repetitions [12].

RI = 1

N

N∑
j=1

1

R
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where µT R j is the centroid of the class j training ellipsoid,
µr, j is the centroid of a testing ellipsoid of the same class j
from repetition r, ST R j is the covariance matrix of the class j
training ellipsoid, R is the total number of repetitions, and N
is the total number of active motion classes.

Mean Within-Repetition Repeatability Index (mwRI): An
interpretation of Bunderson and Kuiken’s repeatability
index [12]
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where µT Rr, j is the centroid of class j from a given repetition r,
xT Rp,r, j is a data point in r, ST R j is the covariance matrix of the
class j training ellipsoid, R is the total number of receptions,
P is the total number of data points in R, and N is the total
number of active motion classes.

Standard Deviation Within-Repetition Repeatability Index
(swRI): A measure of the variation of the within-repetition
repeatability across repetitions. swRI , as shown at the bottom
of the next page, where µT Rr, j is the centroid of class j from a
given repetition r, xT Rp,r, j is a data point within that repetition,
ST R j is the covariance matrix of the class j training ellipsoid,
mwRI is the offline metric described above, R is the total
number of receptions, P is the total number of data points in
R, and N is the total number of active motion classes.

Standard Deviation Within-Trial Separability Index (swSI):
A measure of the variability of the distinguishability of EMG
patterns across trials. swSI , as shown at the bottom of the
next page, where µT R j,t is the centroid of class j from trial t,
µT Ri,t is the centroid of the nearest training ellipsoid of a
different class i from trial t, ST R j ,t is the covariance matrix of
the class j training ellipsoid from trial t, mwSI is the offline
metric defined in Appendix B, T is the total number of trials,
and N is the total number of active motion classes.

Mean Semi-Principal Axes (MSA): A measure that quanti-
fies the size of a training ellipsoid. [12].

M S A = 1

N

N∑
j=1

⎛
⎝(

D∏
k=1

a j,k

)1/D
⎞
⎠

where ak is the geometric mean of each semi-principal axis
(calculated using Principal Component Analysis (PCA)) in
dimension k [54], D is the total dimensionality of the feature
space, and N is the total number of active motion classes.

Centroid Drift (CD): A measure that quantifies the variation
in centroid location of a training ellipsoid across subsequent
repetitions.
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where µr, j is the centroid of a training ellipsoid of class j in
repetition r, (µr+1, j ) is the centroid from the next repetition
of class j, R is the total number of repetitions, and N is the
total number of active motion classes.

Mean Absolute Value (MAV): A measure that specifies the
average amplitude of the EMG signal.
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where x is the raw EMG signal in the ith data frame, n is the
total number of data frames, E is the total number of electrode
channels, and N is the total number of active motion classes.

APPENDIX B

SEPARABILITY METRICS

Separability Index (SI): A measure of interclass
distance [12].

SI = 1
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where µT R j is the centroid of the class j training ellipsoid
(includes all repetitions), µT Ri is the centroid of the nearest
training ellipsoid of a different class i, ST R j is the covariance
matrix of the class j training ellipsoid, and N is the total
number of active motion classes.

Modified Separability Index (SI): A measure similar to the
separability index, except that it accounts for the covariance
matrix of both distributions being compared [11].

mSI = 1
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where µT R j is the centroid of the class j training ellipsoid
(includes all repetitions), µT Ri is the centroid of the nearest
training ellipsoid of a different class i, S is the average
covariance matrix of the class j covariance ST R j and the class i
covariance ST Ri , and N is the total number of active motion
classes.

Mean Within-Trial Separability Index (mwSI): A measure
of the distinguishability of EMG patterns within a trial.
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where µT R j,t is the centroid of the class j training ellipsoid
from trial t, µT Ri,t is the centroid of the nearest training
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ellipsoid of a different class i from trial t, ST R j ,t is the
covariance matrix of the class j training ellipsoid from trial t,
T is the total number of trials, and N is the total number of
active motion classes.

Bhattacharyya Distance (BD): A measure of the statistical
similarity between two distributions [55].
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where µT R j is the centroid of the class j training ellipsoid,
µT Ri is the centroid of the nearest training ellipsoid of a
different class i, S is the average covariance matrix of the
class j covariance ST R j and the class i covariance ST Ri , and
N is the total number of active classes.

Kullback-Leibler Divergence (KLD): A measure of how
well a distribution can be approximated by a reference
distribution [11].
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where µT R j is the centroid of the class j training ellipsoid,
µT Ri is the centroid of the nearest training ellipsoid of a
different class i, ST R j is the covariance matrix of class j, ST Ri

is the covariance matrix of class i, D is the dimensionality of
feature space, and N is the total number of active classes.

Hellinger Distance (HD): A measure that quantifies the
similarity between two probability distributions. The square of
the Hellinger distance avoids the presence of complex numbers
when the assumption of normality fails.
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where µT R j is the centroid of the class j training ellipsoid,
µT Ri is the centroid of the nearest training ellipsoid of a
different class i, S is the average covariance matrix of the

class j covariance ST R j and the class i covariance ST Ri , and
N is the total number of active classes.

Volume of Overlap Region (VOR): A measure of the degree
of overlap between the tails of two class conditional dis-
tributions [56]. V O R, as shown at the bottom of the next
page, where max( fk |c j ) is the maximum value of feature f in
dimension k for class label j, max( fk |ci ) is the maximum value
of feature f in dimension k for class label i, min( fk |c j ) is the
minimum value of feature f in dimension k for class label j,
min( fk |ci ) is the minimum value of feature f in dimension k
for class label i, and N is the total number of active motion
classes.
Feature Efficiency (FE): A measure of the fraction of points
separable by a particular feature [56].

F E = 1

N

N∑
j=1

max
i=1,..., j−1, j+1,...N

×
(

max
k=1,...,D

n(Ci ) + n(C j ) − n(Sk)

n(Ci ) + n(C j )

)
Sk = p|p ∈ Ci ∪ C j , min

(
max( fk |c j ), max( fk |ci )

) ≥ p

≥ max
(
min( fk |c j ), min( fk |ci )

)
where Sk is the set of points not separable along feature dimen-
sion k, p is a D dimensional data point in class i or class j,
max( fk |c j ) is the maximum value of feature f in dimension k
for class label j, max( fk |ci ) is the maximum value of feature f
in dimension k for class label i, min( fk |c j ) is the minimum
value of feature f in dimension k for class label j, min( fk |ci )
is the minimum value of feature f in dimension k for class
label i,n(Sk) is the cardinality of the overlap set Sk , n(Ci ) is
the cardinality of the set of points in class i, Ci , and n(C j ) is
the cardinality of the set of points in class j, C j , and N is the
total number of active classes.

Trace of the Within-Class and Between-Class Scatter Matri-
ces (TSM): A measure of class discriminability [57].

T SM = Tr
(

S−1
w Sb

)

Sw = 1

N

N∑
j=1

(
n∑

i=1

(xi − µ j )(xi − µ j )
�
)

Sb = 1

C

C∑
j=1

(
n j (µ j − µ)(µ j − µ)�

)
where (Sw) is the within-class scatter matrix, (Sb) is the
between class scatter matrix, N is the total number of motion

swRI =

√√√√√ 1

R − 1

R∑
r=1

⎛
⎝

⎛
⎝ 1

N

N∑
j=1

1

P

P∑
p=1

1

2
×

√
(µT Rr, j − xT Rp,r, j )

�S−1
T R j

(µT Rr, j − xT Rp,r, j )

⎞
⎠ − mwRI

⎞
⎠

2

swSI =

√√√√√ 1

T − 1

T∑
t=1

⎛
⎝ 1

N

N∑
j=1

min
i=1,.., j−1, j+1,..,N

1

2
×

√
(µT R j,t − µT Ri,t )

�S−1
T R j,t

(µT R j,t − µT Ri,t )

⎞
⎠ − mwSI )2
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classes, n is the total number of data frames, x is a data point
in class j, (µ j ) is the centroid of the class j training ellipsoid,
(µ) is the mean of the entire data set, and n j is the number
of data frames in class j.

Desirability Score (DS): A function of the separability
index, the mean semi-principal axes, and the repeatability
index [54].

DS = (SI )

(RI )(M S A)

where SI is the separability index defined above, RI is the
repeatability index defined in Appendix A, and MSA is the
mean semi-principal axes defined in Appendix A.

APPENDIX C

COMPLEXITY METRICS

Class Discriminability Measure (CDM): A measure derived
from the adaptive partitioning algorithm in [57] that provides
information about the relationship between clusters in feature
space.

C DM = 1

n

M∑
i=1

h(i) − max
j

h( j |i)

where M is the total number of nonhomogeneous and not
linearly separable cells, h(i) is the number of samples in the
ith analysis cell, h( j |i) is the number of samples from class j
in the ith analysis cell, and n is the total number of samples
in feature space.

Purity (PU): A measure derived from the PRISM frame-
work in [58] that assess the homogeneity of the training
data. Detailed formulations and implementation procedures are
found in [58].

Neighborhood Separability (NS): A measure derived from
the PRISM framework in [58] that focuses on the class
decision boundaries by quantifying the relationship between
nearest neighbors. Detailed formulations and implementation
procedures are found in [58].

Collective Entropy (CE): A measure derived from the
PRISM framework in [58] that represents the accumulated
uncertainty in the data across different resolutions. Detailed
formulations and implementation procedures are found in [58].

Compactness (C): A measure derived from the PRISM
framework in [58] that provides an estimate of the spread of
the data. Detailed formulations and implementation procedures
are found in [58].

Weighted/rescaled versions of PU, NS, CE, and C were
calculated by dividing by the maximum possible area under the
weighted metric vs. normalized resolution curve, as described
in [58].

APPENDIX D

CLASSIFICATION METRICS

Classification Accuracy (CA): A measure describing
the fraction of predictions the classifier labelled cor-
rectly calculated using a leave-one-trial-out cross validation
technique [59].

C A = 1

T

T∑
t=1

(
1

n

n∑
i=1

ŷi,t == yi,t

)

Active Classification Accuracy (ACA): A measure describ-
ing the fraction of predictions the classifier labelled correctly
excluding misclassifications due to no motion [59].

AC A = 1

T

T∑
t=1

(
1

n

n∑
i=1

(
(ŷi,t == yi,t ) OR (ŷi,t == yN M )

))

where “==” generates a Boolean value (0 or 1), n is the total
number of data frames, T is the total number of trials, ŷi,t

is the predicted class label for data point i, yN M is the no
movement class label, and yi,t is the true class label for data
point i. where “==” generates a Boolean value (0 or 1), n
is the total number of data frames, T is the total number of
trials, ŷi,t is the predicted class label for data point i, and yi,t

is the true class label for data point i.
Usable Data (UD): A measure describing the percentage

of correctly classified decisions over the entire user training
period using the adaptive classifier procedure outlined in
Figure 1.

U D = 1

n

n∑
i=1

(
ŷi,t == yi,t

)
where “==” generates a Boolean value (0 or 1), n is the total
number of data frames, ŷi,t is the predicted class label for data
point i, and yi,t is the true class label for data point i.

APPENDIX E

NEIGHBORHOOD METRICS

Inter-Class Fraction (ICF): A measure describing the ratio
of the number of inter-class nearest neighbors to the total
number of samples in the data set [56].

IC F = 1

n

n∑
t=1

(yt �= ye)

where “ �=” generates a Boolean value (0 or 1), xe is the nearest
neighbor calculated using the Euclidean distance to data point
xt , ye is the class label associated with data point xe, yt is
the class label associated with data point xt , and n is the total
number of data samples.

V O R = 1

N

N∑
j=1

max
i=1,..., j−1, j+1,...N

∏
k

min
(
max( fk |c j ), max( fk |ci )

) − max
(
min( fk |c j ), min( fk |ci )

)
max

(
max( fk |c j ), max( fk |ci )

) − min
(
min( fk |c j ), min( fk |ci )

)
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Intra-Inter Fraction (ICF): A measure describing the ratio
of the average euclidean distance of intra-class nearest neigh-
bors to the average euclidean distance of inter-class nearest
neighbors [56].

I I F =
∑n

t=1

(
d(xt ,xe) × (yt == ye)

)
∑n

t=1

(
d(xt ,xe) × (yt �= ye)

)
where “==” and “ �=” both generate Boolean values (0 or 1),
d(xt ,xe) is the euclidean distance between a data point xt with
class label yt and its nearest neighbor xe with class label ye.
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mial populations,” Sankhyā Indian J. Statist., vol. 7, no. 4, pp. 401–406,
1946.

[56] T. K. Ho and M. Basu, “Complexity measures of supervised classifica-
tion problems,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 3,
pp. 289–300, Mar. 2002.

[57] A. Kohn, L. G. M. Nakano, and M. O. E. Silva, “A class discriminality
measure based on feature space partitioning,” Pattern Recognit., vol. 29,
no. 5, pp. 873–887, May 1996.

[58] S. Singh, “PRISM—A novel framework for pattern recognition,” Pattern
Anal. Appl., vol. 6, no. 2, pp. 134–149, Jun. 2003.

[59] E. Campbell, A. Phinyomark, and E. Scheme, “Current trends and
confounding factors in myoelectric control: Limb position and contrac-
tion intensity,” Sensors, vol. 20, no. 6, p. 1613, Mar. 2020. [Online].
Available: https://www.mdpi.com/1424-8220/20/6/1613/htm



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


