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Abstract— At present, most brain functional studies are
based on traditional frequency bands to explore the abnor-
mal functional connections and topological organization of
patients with depression. However, they ignore the charac-
teristic relationship of electroencephalogram (EEG) signals
in the time domain. Therefore, this paper proposes a net-
work decomposition model based on Improved Empirical
Mode Decomposition (EMD), it is suitable for time-frequency
analysis of brain functional network. On the one hand,
it solves the problem of mode mixing on original EMD
method, especially on high-density EEG data. On the other
hand, by building brain function networks on different intrin-
sic mode function (IMF), we can perform time-frequency
analysis of brain function connections. It provides a new
insight for brain function connectivity analysis of major
depressive disorder (MDD). Experimental results found that
the IMFs waveform decomposed by Improved EMD was
more stable and the difference between IMFs was obvious,
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it indicated that the mode mixing can be effectively solved.
Besides, the analysis of the brain network, we found that
the changes in MDD functional connectivity on different
IMFs, it may be related to the pathological changes for MDD.
More statistical results on three network metrics proved that
there were significant differences between MDD and normal
controls (NC) group. In addition, the aberrant brain network
structure of MDDs was also confirmed in the hubs charac-
teristic. These findings may provide potential biomarkers for
the clinical diagnosis of MDD patients.

Index Terms— Functional connectivity, major depressive
disorder, high-density, improved empirical mode decompo-
sition, resting state EEG.

I. INTRODUCTION

DEPRESSION is a common illness worldwide with more
than 264 million people affected, and is a leading cause

of global disability and disease burden [1]. Major depressive
disorder (MDD) is characterized by impairments of mood and
cognitive function and is currently the second leading cause of
death. Although some patients affected by major depression
may recover within six months, up to 27% of patients do
not recover and continue to develop chronic and refractory
depression [2]. Therefore, understanding the underlying neuro-
physiology of MDDs is urgent in order to effectively diagnose
and treat the disease [3].

With the development of imaging technology, many imaging
technologies including electroencephalography (EEG), mag-
netoencephalography (MEG), functional magnetic resonance
imaging (fMRI), and positron emission tomography (PET) etc.
have been widely used to explore the mechanism of abnormal
brain activity in depression and other mental illnesses. EEG
is a technology that can record the electrical activity of the
cerebral cortex, it can measure the electrical signals produced
by many vertebral cells in the cerebral cortex, so as to
objectively reflect the changes in the nerves in the brain.
Compared with fMRI and PET, EEG has the characteristics
of higher time resolution and low cost, which are favored by
a large number of researchers. In recent years, analysis of
functional brain connections based on EEG have been widely
used in MDD, which explore regular activity patterns between
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regions [4]. Kalpana et al. used 16-channel EEG data to
study the abnormal functional brain network of EEG in MDDs
resting state. Research based on graph theory found smaller
weighted clustering coefficient (CC) and weighted characteris-
tic path length (CPL) in the Alpha band [5]. In summary, most
of the researches on brain function network based on EEG
analyzed the changes of functional connectivity on different
frequency bands [6], [7]. However, these studies ignored the
characteristic relationship of EEG signals in the time domain.
Therefore, it is meaningful to understand the changes in brain
functional connectivity under different time domain.

Empirical mode decomposition (EMD) is a method that
identify the vibration modes contained in the signal by the
characteristic time scale [8]. Theoretically, it can be applied
to the decomposition of any type of signal, so it has obvious
advantages in processing non-stationary and non-linear data.
Compared to other time-frequency methods (such as, wavelet
decomposition and singular value decomposition), the advan-
tages of EMD are as follows: 1) Adaptability. Compared
with the wavelet transform that requires pre-selecting the
wavelet basis function, the basis function of EMD can be
automatically generated, so it is more suitable for analyzing
complex EEG signals. 2) Maturity. The original signal can be
obtained by adding all the decomposed components. It makes
the process of signal decomposition reversible. This makes
the performance of the EMD algorithm better than other
traditional methods [9], [10]. In previous studies, the EMD
method was applied to the time-frequency feature analysis
of EEG signals, and the experimental results were excellent.
Hassan and Bhuiyan [11] applied EMD method to extract
the feature of EEG data, and used machine learning methods
for classification, it is superior as compared to the state-
of-the-art methods in terms of accuracy. Shen and Hu [12]
used a feature extraction method based on EMD on four
EEG databases, and the average classification results reached
83.27%, 85.19%, 81.98% and 88.07%. However, few studies
have used time-frequency analysis methods in brain functional
connectivity analysis (FCA). In our study, EMD was applied
to the analysis of EEG to investigate the changes of abnormal
brain functional connectivity in MDDs. It is worth mentioning
that EMD is susceptible to the problem of mode mixing. Its
local properties may produce oscillations of different scales
in a single mode. Especially, when decomposing high-density
EEG data, the problem of mode mixing becomes more serious.
In order to solve this problem, this paper proposes a network
decomposition model based on Improved EMD, which sta-
bilizes the number of IMF obtained by decomposition and
reduces information loss.

This study proposes a different method with the tradi-
tional FCA method, which uses an Improved EMD algorithm
for high-density resting state EEG. The method realizes the
mapping of multi-channel EEG to different intrinsic mode
function (IMF), and further exploits IMF to study differences
in brain network connectivity. Through the calculation of mul-
tiple coupling methods (e.g. correlation (CORR), coherence
(COH), and phase lag index (PLI)) for different IMF sets,
the functional connectivity matrixes are constructed [13]–[15].
Density method is used to construct the binary brain network.

Then, network metrics (e.g. CPL, CC and Small World (SW))
computed from binarization network are used to study the
changes of functional brain network in depression. Moreover,
aberrant brain network structure in hubs characteristic is dis-
cussed in this study. And this study verified the effectiveness
of these network metrics in distinguishing depression through
machine learning methods, the experimental results showed
that the classification accuracy of SW was 73.33% on IMF2.
The result was equal or better than those on some traditional
frequency bands. This paper proposes a time-frequency analy-
sis of brain functional connectivity using the IMF instead of
the traditional frequency band. These may provide a new idea
to brain FCA and offer potential biomarkers in depression.

The rest of this study is organized as follows: Firstly,
EMD and the Improved EMD methods are introduced in
Section II; Then, the process of brain functional networks
construction based on Improved EMD is shown in Section III;
Next, the experimental results are analyzed and compared in
Section IV; Finally, this study is concluded.

II. METHODS

A. EMD

The EMD aims to generate highly local time-frequency
estimates of the signal by decomposing the data into the finite
sum of the IMF. The specific steps of EMD decomposition
are as follows:

(1) Set S1 = x(t). And x(t) represents the original input
signal;

(2) Determine local extreme values (maximum and mini-
mum);

(3) Obtain the envelope of the local maximum (vmax) and
local minimum (vmin) by using cubic spline interpolation;

(4) Calculate the local average curve Lm :

Lm = vmax + vmin

2
(1)

(5) Calculate S2:

S2 = S1 − Lm (2)

(6) Repeat steps (2)-(5) until the SD reaches the predeter-
mined value ε.

SD(k) = �Sk+1 − Sk�2

�Sk�2 < ε (3)

(7) Set c1 = Sk , c1 is the first IMF; The steps (1)-(7) are
called sifting.

(8) The first residue: r1 = x(t) − c1;
(9) Set r as the new input, repeat steps (1)-(7); Get c2 . . . cn ;
Finally, the input signal x(t) can be decomposed into IMFs,

until the remaining components become monotonic functions,
the original signal can be represented as:

x(t) =
�n

j=1
c j + rn (4)

Among them, rn is the remaining component of the n-th
iteration.

EMD is widely used in EEG and other physiological
signal analysis [16], [17]. However, mode mixing is still a
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huge problem for EMD. The local characteristics of EMD
may produce oscillations of different scales in one mode,
or oscillations of similar scales in different modes, which is
called “mode mixing.” Fortunately, the ensemble empirical
mode decomposition (EEMD) that adds auxiliary noise is
proposed [18]. It adds normally distributed white noise to
the original signal, and the signal after adding white noise
was performed EMD decomposition on it. The formula is as
follows:

xi(n) = x(n) + wi (n) (5)

where wi (n) with i = 1,2,…, I represents different realizations
of white noise.

Although EEMD is helpful to solve the problem of mode
mixing, the residual noise generated by EEMD causes new
troubles in modal decomposition [19]. Moreover, EEMD is
also computationally expensive. All of them make EEMD
unsuitable for practical applications.

B. Improved EMD

In order to better solve the problem of mode mixing in
EMD, researchers have proposed many new and improved
methods on this basis [11], [20] [21]. These all provide a
reference for our method. In this study, we improved and
enhanced the decomposition ability of EMD by adding a con-
stant signal-noise ratio (SNR) setting to achieve the control-
lability of adding white Gaussian noise (WGN). Meanwhile,
we used the estimation of the local mean (M(.)) to replace
the estimation of the modal, and used the operator �i to
calculate the mode. All of these effectively solved the mode
mixing problem. The process of Improved EMD method is as
follows:

Firstly, the two operators are defined. One is the operator
�i (.) that generates the i-th mode of EMD. The other is the

operator M(.) =
�I

i=1
I that calculates the local mean of the

applied signal.
Step1: Decompose the original signal X by EMD.

�i (.) = X + λ0w
i

(6)

where w
i

represents different realizations of WGN. λ0 repre-
sents a constant SNR value.

Step2: Calculate the first residue r1 by M(.).
Step3: Calculate the first IMF.

˜I M F1 = X − r1 (7)

Step4: Estimate the second residual component based on
the local mean M(.).

r2 =
�

M(r1 + λ0�1(w
i ))

�
(8)

Step5: Calculate the second IMF.

˜I M F2 = r1 − r2 (9)

Step6: Calculate sequentially, and the k-th residual can be
obtained.

rk =
�

M(rk−1 + λ0�k(w
i ))

�
(10)

TABLE I
SYMBOL TABLE

Step7: The k-th IMF can be obtained.

˜I M Fk = rk−1 − rk (11)

Step8: Repeat the above steps until the IMF becomes a
monotonic function.

A new extreme value was calculated for the original sig-
nal with WGN in accordance with the normal distribution.
And it realized signal fitting by calculating the local mean.
In addition, the SNR is defined to control the amount of
noise, so as to effectively reduce the amount of noise in the
mode.

However, this method is mostly suitable for low-channel
EEG data. For different EEG channels of the same person,
or different people, the time-frequency domain of EEG signals
is also different. Therefore, the problem of the number of
different modes is inevitable. In order to solve these prob-
lems, we adopted the method of minimum threshold selection
to drive the selection of IMFs based on high-density EEG
data. The number of IMFs on each channel can be obtained
by sequentially decomposing the EEG data of all channels.
We chose the minimum threshold as the uniform number of
IMFs output by each channel. And finally, the optimal number
of modes can be determined in this study [22], [23].

III. CONSTRUCTION OF BRAIN FUNCTIONAL NETWORKS

BASED ON IMPROVED EMD

A. Subjects

In this study, 30 subjects were used to analyze the results,
including 15 MDD patients and 15 NC subjects. MDD patients
recruited in this study were from the psychiatric depart-
ment of the Lanzhou University Second Hospital, Gansu,
China. The patient was diagnosed and recommended by at
least one clinical psychiatrist. Participants in the NC group
were recruited through posters. Established exclusion criteria
included any type of neurological disorder, severe head injury
and loss of consciousness, acute physical illness, and the
presence of drug or alcohol abuse. To ensure the validity
of the research, the exclusion criteria were strictly enforced
before the experiment starts. This study was approved by
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Fig. 1. The process of brain functional networks construction based on Improved EMD. (a) Data acquisition, it mainly introduces the position of the
105 channels electrode. (b) EEG preprocessing, the process of preprocessing are introduced. (c) Network decomposition model based on Improved
EMD, the process of model is shown. (d) Functional connectivity matrixes, CORR, COH and PLI matrixes are calculated. (e) FCA of brain network,
the functional connection analysis on different metrics is presented. (e) Density binarization and statistical analysis, it mainly introduces density
binarization of the matrixes and statistical analysis of network metrics.

TABLE II
CHARACTERISTICS OF THE PARTICIPANTS IN THIS STUDY

the local research ethics committee, and written informed
consent from all subjects was obtained before the experiment
started.

In this study, the relevant basic information statistics were
made for the subjects. PHQ-9 was used to assess the degree of
depression [24]. The chi-square was performed on the gender
and T-test was used to evaluate the age, education level, and
so on. The results were as follows in Tab.II.

The statistical results showed that there was no statistically
significant difference in gender, age, education level between
the two groups of subjects. There are statistical differences
in the PHQ-9 scale for assessing depression, which meet
the relevant experimental requirements. All the subjects used
for the analysis of the results met all the conditions of this
study, and they were rewarded after finishing the experiment.
And all participants in the experiment should understand the
related matters of the experiment and confirm the informed
consent.

B. EEG Data and Preprocessing

The EEG acquisition equipment system in this experiment
was provided by the American medical equipment manufac-
turer Electrical Geodesics, Inc (EGI). It contains a 128-channel

EEG cap as shown in Fig. 1(a). The default reference electrode
was the Cz electrode position, the sampling frequency was
250 Hz, the parameter of the online high-pass filter was
0.5 Hz, and the electrode impedance threshold was 50 k�. The
EEG signals were continuously recorded for approximately
5 minutes.

The data preprocessing steps included EEG data channel
selection, bad conduction detection, filtering, ocular artifact
removal, ICA-based component removal, and artifact subspace
reconstruction (ASR) artifact correction in time-domain. FIR
bandpass filter was used to filter the EEG recording between
0.5-30hz [25], and REST was used to for re-reference [26].
The preprocessing was shown in Fig. 1(b). Through the above
steps, the data preprocessing was completed. In this experi-
ment, the 11-channel electrodes near the eyes were classified
as ocular signals. In addition, due to signal noise of some
electrodes, the 13-channel peripheral signals electrodes were
removed manually. The final retained signal was 105 channels
(129 − (11 + 13) = 105). Details can be found in the
supplementary materials.

In this study, due to the complexity of high-density data,
we finally intercepted 12s sample data (105*250*12) from the
stationary data 30s after each record for experimentation. The
experimental tool was MATLAB R2016a.

C. Network Decomposition Model Based on Improved
EMD

This paper decomposed a high-density resting state EEG
data based on the Improved EMD method. In order to solve the
problem of mode mixing, a hierarchical computing idea was
used to simulate the mechanism of hierarchical information
processing in the human brain. In essence, we regarded EEG
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TABLE III
THE MATHEMATICAL FORMULATION OF THREE COUPLING METHODS IN THIS STUDY

signals as a combination of different signals. The bands
of different IMF characteristics can be separated/classified
based on EMD decomposition. Therefore, this paper pro-
posed a network decomposition model which was suitable
for high-density EEG data. It realized the normalization and
division of EEG data of different channels into several fixed
IMFs. Aiming at the problem of the number of different modes
caused by multi-channel EEG data, we selected the minimum
threshold screening method through statistical calculation of
the number of decomposition components of each channel,
so as to achieve the stability of the model output results.
The process of network decomposition model was shown in
Fig. 1(c). The details of our model are as follows:

(1) Input: we pack the MDD group and the NC group
separately to form two 15*105*3000 input matrices, in which
the amount of data for each person (105*3000), 105 is the
electrodes number, 3000 is the data sampling points.

(2) Decomposing: we import two sets of data separately.
For the data of each sample, we perform EMD decomposition
in the order of channels. In this process, we add WGN with
a constant SNR value in turn. In this way, we convert one
person’s data into multiple IMFs and form the class labels.

(3) Cyclic calculation: the step (2) is repeated, and the IMFs
of different labels are classified into different IMF categories
in order of sequence to form a new set.

(4) Sifting: Statistical calculations on the number of com-
ponents decomposed by each channel of each sample are
performed, the minimum threshold method is selected, and
the set containing complete information is filtered out.

(5) Output: the output will contain the complete information
of the owner. The output result is the final combination of
9 IMFs. And it is also the input signal for constructing the
brain network.

After the processing of the above model, the high-density
EEG data were decomposed into different IMFs on
time-frequency domains, and the brain functional network
was further constructed. Finally, the time-frequency domain
analysis of these IMFs was realized.

D. Functional Networks Construction and Analysis

The brain functional networks are mainly composed of
edges and nodes. First of all, we defined the electrode position
of EEG as the nodes of the brain network. The number
of nodes is 105. Moreover, the definition of the edge is
based on the calculated connectivity between the electrodes.
In this study, we selected three coupling methods CORR,

COH and PLI to calculate functional connectivity matrixes
as shown in Fig. 1(d). The formula was shown in Tab. III.
The connectivity matrix was represented by an N x N square
matrix, where the rows and columns represented the nodes in
the connectivity network. The value in the connectivity matrix
represents the strength of connectivity between nodes [27],
[28]. The representation of the matrix is as follows:

Cij =

⎡
⎢⎢⎢⎣

C11 C12 · · · C1n

C21 C22 · · · C2n
...

...
. . .

...
Cn1 Cn2 · · · Cnn

⎤
⎥⎥⎥⎦ (12)

In this study, the three functional connectivity matrixes
were calculated for 9 IMFs to construct the brain network.
And then, we averaged the functional connectivity matrixes
between subjects to obtain the matrixes of each group and
each IMF, so we can analyze the difference in the grouped
functional connectivity matrixes as shown in Fig.1(e). Fur-
thermore, the matrixes were converted into a binary matrix
by selecting an appropriate threshold of density from 0.1 to
0.9(Increased by 0.1 each time). The relationship between the
edges of the nodes was obtained as shown in Fig.1(f). Finally,
we calculated the network metrics (CPL, CC and SW) for each
binary brain network.

This study uses modular features and overall features to
study the differences in brain network structure, such as: node
degree, hubs, shortest path, triangle number and CPL, CC and
SW network. Degree represents the number of edges directly
connected to a node. The greater the degree of the node is,
the more connections it has. And the position of the node is
more important in the network. Its formula can be written as
ki = �

j=N ai j , ai j represents the number of edges connected
to the node. The formula of the shortest path length of the
node degree is as follows:

di j =
�

auv∈gi→ j

auv (13)

Among them, gi→ j represents the shortest path between
nodes, if there is no connection between i and j, then di j = ∞.

The characteristic path of the network measures the ability
of the network to process information in parallel or the overall
efficiency. The increase of the CPL shows that the efficiency of
information transmission and interaction between brain regions
is reduced. The calculation method is as follows:

C P L = 1

n

�
i∈N

Li = 1

n

�
i∈N

�
i∈N, j �=i di j

n − 1
(14)
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Fig. 2. The single-channel EEG signal is decomposed by Improved
EMD.

The CC measures the degree of clustering of the network.
The calculation method is as follows:

CC = 1

n

�
i∈N

Ci = 1

n

�
i∈N

2ti
ki (ki − 1)

(15)

Among them, ti is the triangle number, which is the basis
for calculating the degree of dispersion of the network.

The topological structure of the SW supports the differen-
tiation and integration of brain information processing. The
calculation method is as follows:

SW = C/Crand

L/Lrand
(16)

Among them, C and Crand represent the global CC of the
test network and the corresponding random network respec-
tively, and L and Lrand are the CPL respectively.

In this study, three network metrics (CPL, CC, and SW)
were finally selected to study the difference between NC and
MDD group, and the statistical tests were performed by T-test
to analyze the degree of difference in the brain network struc-
ture. Especially, we adjusted the significance level of p values
for multiple comparisons across networks metrics using a
Bonferroni correction (family-wise error 0.05, n: the number
of bands(IMFs or frequency bands), significance threshold
p < 0.05/n) [29].

IV. RESULTS AND ANALYSIS

A. The Problem of Mode Mixing

The problem of mode mixing is inevitable, when decom-
posing signal by EMD. Many researchers solved this problem
by adding white noise. And, the methods were proved to be
effective [9], [30]. In this study, we improved and enhanced
the decomposition ability of EMD by adding a SNR setting to
achieve the controllability of adding WGN. In order to show
the effect of the experiment, we selected a single-channel EEG
data from the sample data. We decomposed the single-channel
EEG by using the original EMD and Improved EMD respec-
tively. The single-channel EEG signal was decomposed by
Improved EMD as shown in Fig. 2. And it was decomposed
to 12 IMFs. It shows that each IMF waveform is relatively
stable, and the difference between IMFs is obvious. However,
the single-channel EEG signal was decomposed to 9 IMFs by

Fig. 3. The single-channel EEG signal is decomposed by original EMD.

Fig. 4. Statistical analysis of the number on IMFs generated by the
two methods in the model decomposition process. (a) The box plot of
IMFs dispersion. (b) Distribution of the number of IMFs produced by all
channels of EEG data.

original EMD as shown in Fig. 3. We can find the waveform
is not fully decomposed by original EMD. And, the mode
mixing is still existing between adjacent IMFs. In order to
increase the interpretability of Improved EMD, we calculated
the corresponding power spectrum by using the FFT algo-
rithm for the data in Fig.2 and Fig.3 [31]. Details can be
found in the supplementary materials. Experimental results
showed that the power spectrum between adjacent IMFs on
Improved EMD can be effectively distinguished, which is
compared with the original EMD. Therefore, this also proves
that the Improved EMD is effective to solve mode mixing
problems.

In addition, this paper proposed a network decomposi-
tion model based on Improved EMD, it solved the problem
of high complexity of high-density resting state EEG data.
We used EMD and Improved EMD respectively in the model
decomposition process. We tested the decomposition ability
of model, through counting the number of IMFs generated in
each channel. Distribution of the number of IMFs produced by
all channels of EEG data was shown in Fig. 4(b). We can find
that the Improved EMD can decompose more IMF compared
to the original EMD. Moreover, the number of IMFs generated
by EMD decomposition was excessively discrete as shown in
Fig. 4(a). We can find that the number of IMFs decomposed
by improved EMD is more concentrated and stable. On the
one hand, it shows that the network decomposition model
based on Improved EMD have stronger decomposition ability
and robust. On the other hand, it also avoids the problem
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Fig. 5. Functional connection matrixes were calculated by three coupling
methods on the full frequency band.

of excessive loss of information, when sifting under the
minimum threshold. Therefore, these prove the advantages of
our method.

B. Functional Connectivity Analysis

1) Functional Connectivity Matrixes: We calculated the
CORR, COH and PLI connectivity matrix of the MDD and
NC groups respectively on the full frequency band. The result
was shown in Fig.5. Among them, the yellow area indicates
a more active node (the larger value), which shows that it
has a higher relevance or synchronization level, and the blue
area indicates a lower degree of relevance between nodes.
There is no obvious difference in the functional connection
matrixes of the two groups. However, it can be found that
the connectivity matrix constructed by CORR has a higher
overall level of relevance or synchronization, and its yellow
area is larger than the others from Fig.5. At the same time,
the three matrixes (CORR, COH, PLI) all present some
localized features. That is, there is a local aggregation effect
between the high relevance area (yellow area) and the low
relevance area (blue area) of nodes in different areas. For
example: the high relevance area of nodes always appears near
both sides of the main diagonal.

2) Distribution of Functional Connectivity: We also explored
the differences in functional connectivity between groups
under different coupling methods [32], [33]. We compared
the values of the corresponding positions on the two sets of
functional connection matrices one by one. The difference
matrix between the two groups were filtered out by T-test
(P < 0.01). The mean was used to represent their overall
levels. Finally, we can get the difference of functional con-
nectivity between the two groups (MNC − MM D D). It showed
the difference in functional connection between the MDD
group and the NC group in the three coupling methods on
9 IMFs.

The connectivity of the NC group was used as a standard to
judge the connectivity changes of MDD. The red line indicates
the decrease in connectivity, and the blue line indicates the
increase in connectivity as shown in Fig.6. The functional con-
nectivity of the MDD in whole brain was found to be declined
in CORR, especially on IMF1, IMF2 and IMF3. However,
it was found that the connectivity of the NC group was not

Fig. 6. The functional connection analysis of IMFs in CORR.

Fig. 7. The number of significantly different brain connections on different
bands.

always higher than that of the MDD group. In particular,
the study found that the functional connectivity of MDD was
increased on IMF4-IMF9. Similar results were also confirmed
on COH and PLI (See supplementary materials for details).
This reflected the changes in MDD functional connectivity on
different frequency bands [7]. And, it may be related to the
pathological changes for MDD, which have the similar find-
ings in literature [34]. Moreover, the functional connectivity
analysis and location distribution results of IMF1 and IMF2 in
PLI showed that the functional connectivity of the normal
group was significantly higher than that of MDD, especially
in the frontal and temporal regions. These all reflected the
abnormal cognitive processing of MDD.

It is worth mentioning that we have done the same process-
ing on the full frequency band and 4 individual frequency
bands. The 4 individual frequency bands are Delta band
(δ, 0.5 Hz-4 Hz), Theta band (θ , 4 Hz-8 Hz), Alpha band
(α, 8 Hz-13 Hz) and Beta band (β, 13 Hz-30 Hz). In order to
better compare the experimental effects of the two methods,
we recorded the number of connections with significant differ-
ences in these bands. The result was shown in Fig.7. We found
that the number of significantly different brain connections
in IMFs was much larger than that in traditional frequency
bands, especially IMF1, IMF2, IMF7 and IMF8. It showed
that our method was superior to the traditional method in the
analysis of functional connection. In addition, we also found
that Theta band and Beta band also had better performance in
the traditional frequency bands. These all provided a reference
for us to identify the MDD.
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Fig. 8. The violin plots of CC on IMF2 and IMF8 in (a)CORR; (b)COH;
(c)PLI. ∗ indicates family-wise error < 0.05 (Bonferroni corrected
for multiple comparisons across network metrics, adjusted threshold
p < 0.006).

C. The Difference on Network Metrics

1) Statistical Evaluate of Network Metrics: After analyzing
the differences in the functional connectivity, we further
calculated three network metrics based on the binarization
matrixes. This research mainly analyzed the difference of
network metrics from the two levels of network dispersion
effect and aggregation effect. The network metrics include
CPL, CC, SW. We used the T-test method to evaluate whether
the MDD group and the NC group had statistically significant
difference on network metrics, and adjusted the significance
level of p values for multiple comparisons across network
metrics using a Bonferroni correction (family-wise error 0.05,
n = 9(IMFs); significance threshold p < 0.05/9, i.e. 0.006).
The statistical results of CC were displayed on IMFs as
shown in Fig.8. We only found that there were some sig-
nificant differences in CC on IMF2. For CORR of IMF2
(density = 0.6), the degree in CC (0.74±0.03) of NC was
remarkably higher than that of MDD (0.71±0.02, p = 0.0041).

In this study, we also carried out the differences analysis
of density on CPL and SW, the results were shown signif-
icant differences of SW in IMFs. Among them, we found
that CORR of IMF2(density = 0.2) had a significant dif-
ference between groups (P = 0.0059); In addition, there
were significant difference between groups in COH of IMF8
(density = 0.6, P = 0.0057; density = 0.7, P = 0.0019).
We can all find significant differences of network metrics
on CC and SW in IMFs. This increases the possibility and
credibility of using IMFs to explore network differences.
Furthermore, we conducted the same experiment on the orig-
inal EMD. We can only get 7 IMFs. Similarly, we perform
statistical analysis on its network metrics (T-test, significance
threshold p < 0.05/7, i.e. 0.007). We only found that signifi-
cant differences of CPL on COH in IMF7(density = 0.5, p =
0.0070). Experimental results showed that the statistical results
of IMFs on Improved EMD are significantly better than that
on original EMD.

2) Correlation Between IMFs and Frequency Bands: In
order to further verify our conclusions, we also con-
ducted the same experiments on the traditional frequency
bands(δ, θ , α and β bands). We only found some differ-
ences between groups on Beta band. For CORR of Beta
(density = 0.6), the degree in CC (0.74±0.02) of NC
was remarkably higher than that of MDD (0.71±0.02,
p = 0.0081); For CORR of Beta(density = 0.2), the degree

in SW(0.70±0.28) of NC was remarkably higher than that
of MDD (0.69±0.26, p = 0.0003). It is consistent with the
results of our method in IMF2. Compared with the traditional
frequency division method, our method found significant dif-
ferences in COH on IMF8. More refined difference results can
be found on IMFs. This further proves that the EMD method is
feasible. Of course, our method also has certain shortcomings,
such as the inability to quantify the specific frequency domain
range.

The frequency characteristics of EEG reflect a large amount
of brain electrical activity information, but the local character-
istics of the EEG signal cannot be obtained through frequency
domain analysis. In fact, it cannot be extracted from the time
domain or the frequency domain alone for some special fea-
tures. Therefore, the time-frequency analysis method can better
solve this problem. Temporal and spatial properties is provided
by the IMF-based connectivity analysis compared to the study
based on traditional frequency bands. These can be found
from the decomposition process of Fig.2 and Fig.3. On the
one hand, different IMFs can better represent the frequency
domain characteristics of EEG signals without deviating from
the specific time domain. On the other hand, different IMF
have different time-scale characteristics, which makes each
IMF include different time-frequency information. It is helpful
to study the changes of the brain function network in different
temporal and spatial properties. Moreover, the effective combi-
nation of EEG time domain and frequency domain information
can improve the classification performance of EEG [35].

Besides, we conducted the same experiment on the full fre-
quency band, and the results only found significant differences
on CC of CORR(density = 0.2, P = 0.0003; density = 0.3,
P = 0.0041; density = 0.4, P = 0.0099). From the perspective
of the coupling method, the significant differences can always
be found on CORR. Therefore, the performance of CORR was
optimal compared to other coupling methods.

D. Analysis of Aberrant Brain Network Structure in Hubs
Characteristic

According to some previous studies [6], we studied the
distribution of hubs in the brain network in each brain area,
and explored their differences between groups. Due to the
analysis of the statistical results, we finally chose CORR to
calculate the initial connectivity matrix, and the binarization
method with a density of 0.2 to construct the brain network.
The 105 electrode points were divided into 4 brain regions
(No distinction between left and right). According to the best
performance in the previous chapter, we further analyzed on
the Theta band, Beta band, IMF2 and IMF8. The distribution
of hubs in the MDD group and NC group was shown in Fig.9.
The specific distribution of the electrodes on the brain regions
can be found in the supplementary materials.

There were obvious differences in the activity of the hub
nodes between the groups from Fig.9. The active hubs in NC
group always had more than that in MDD group, which was
consistent with the results of the previous studies [7], [36]
[37]. This also further proved that MDD had aberrant cognitive
processing [6]. The hub nodes distributed on the Beta band
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Fig. 9. The distribution of hubs nodes between MDD and NC group on
(a) IMF2; (b) IMF8; (c) Beta band; (d) Theta band. Among them, the size
of the node represents the degree of association of the corresponding
brain regions. Red nodes represent frontal lobe, yellow nodes represent
parietal lobe, green nodes represent temporal lobe, blue nodes represent
occipital lobe.

and Theta band had no obvious difference between groups,
and they were almost the same in left and right symmetry.
However, we found that the activity of hubs in the central
region of the NC group was significantly higher than that
of the MDD group in the Beta band and Theta band. The
central region of electrodes corresponds to the parietal lobe
in the cerebral cortex, the parietal lobe is located at the
posterior top of the cerebral hemisphere, and its main function
is to regulate attention or allocate space for attention [38].
Therefore, this corresponds to the clinical manifestations of
MDD, as inattention and memory loss. And we found that the
NC group had a distribution of active hubs in the left frontal
region and left temporal lobe region on IMF2, while the MDD
group almost did not. In addition, the study found that obvious
left-right asymmetry of MDD group on IMF2, which was
similar to the literature [39]. It also supported the credibility of
our method. Some current studies have revealed the differences
in the left-right symmetry of the brain network between the
two groups [40], [41], but the differences in brain regions
related to emotion and cognitive functions should be better
explained. The frontal lobe is located in the front part of the
cerebral hemisphere and is mainly responsible for movement,
emotion, and executive functions [42]. The function of the
temporal lobe is to process auditory information and is also
related to memory and emotion. Therefore, some changes in
the frontal and temporal lobes may be an important cause
of emotional instability in MDD. Especially, it was found
on IMF8 that the NC group had the distribution of hubs in
the frontal region, while the MDD group did not. This was
contrary to the findings of the literature [43], it constructed
a brain function network based on the COH of resting EEG
data and showed that depressed people had higher connectivity
in the prefrontal area, which can describe the enhanced role
of hub nodes in the prefrontal area. This may be caused by
different coupling methods, and the difference of experimental
results will be relatively large. In addition, the activity of the

TABLE IV
CLASSIFICATION EVALUATION OF NETWORK METRICS IN THIS STUDY

hubs of the MDD group in the parieto-occipital region was
higher than the NC group on the Beta band and IMF8. This
may reflect that the occipital area of MDD is involved in
emotional regulation and cognitive activities, but it needs to
be further studied.

E. Classification Evaluation on Network Metrics

We further explored whether these network metrics can
effectively distinguish depression through classification analy-
sis. The network metrics was used as the features to dis-
tinguish the MDD group from the NC group. In this study,
we calculated the network metrics (CC and SW) from the
Beta band, Theta band, IMF2, IMF8 as the features for
classification experiments. The Logistic model trees (LMT)
algorithm was selected as the classifier, and Leave-One-Out
(LOO) cross validation was used for classification. Accuracy,
Precision, Recall, and F-Measure were used as a quantitative
evaluation for classification performance of the above network
metrics. The classification results were shown in the Tab.IV.
The experimental tool was WEKA-3.8.4.

This research mainly used the CC and SW network metrics
on CORR (density = 0.2) as the extracted features to perform
classification experiments, and took the best result as the final
classification result of the band. From Tab.IV, we found that
the best classification effect was achieved on the Beta band,
with a score of 80.00%. Moreover, we had also achieved good
classification results on IMF2. The results were equal or better
than the previous studies [12], [43], [44]. As for the difference
in classification accuracy obtained on each spectrum, this may
be related to the amount of information contained in each
band. Besides, the performance of the features (SW) on the
frequency bands was better than that on IMFs. Their significant
difference (P value) on Beta band is better than that on IMF2.
This may be the reason that cause the better classification
result on Beta band. We can further study the different
frequency bands or IMFs that contain information related to
depression, as the objective indicators to distinguish depres-
sion patients from normal people. The classification results
effectively supported the differences between the groups and
the differences in hubs node activity discussed earlier, and
provided reference value for studying brain network structure.
At the same time, this also proved that it was possible to
extract the network metrics as a method to distinguish MDD
from NC by constructing a brain network. The result also
showed that we used IMFs to alternate traditional spectrum
analysis, which was also an effective method for analyzing and
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constructing brain networks. The specific content may need
further verification.

V. CONCLUSION

In order to solve the problem of high complexity of
high-density resting state EEG data, this paper proposes a
network decomposition model based on Improved EMD, it is
suitable for time-frequency analysis of brain functional net-
work. On the one hand, it solved the problem of mode mixing
on original EMD method. On the other hand, it provided a new
idea for the study of depression based on EEG. By building
brain function networks on different IMFs, we can perform
time-frequency analysis of brain function connections. Impor-
tantly, the time-frequency analysis method of high-density
EEG data can be applied to future research. It can not only
analyze the connectivity mode of the resting state network, but
also detect the reconstruction mode of the dynamic functional
network. At present, most EEG researches construct and
analyze the functional connectivity of brain networks based on
traditional spectrum analysis. However, it is also interesting
to study the functional connectivity of brain networks in
different time-frequency domains. Experimental results found
more significant differences on network metrics compared to
traditional frequency domain analysis. In addition, the aberrant
brain network structure of MDD is also confirmed in the hubs
characteristic. These all provide potential biomarkers for the
clinical diagnosis of MDD.

Of course, this study also has some shortcomings, the EEG
signal is a kind of neuronal oscillation, and the electrode points
on the electrode cap as the node of the brain network will
make the activation position of the brain region not accurate
enough. In the future work, we should explore the distribution
in the source space based on source location technology and
fMRI, etc., so as to make the functional connectivity analysis
of brain networks can be more refined and accurate.
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