
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021 1233

Brain-Computer-Spinal Interface Restores
Upper Limb Function After Spinal Cord Injury
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Abstract— Brain-computer interfaces (BCIs) are an
emerging strategy for spinal cord injury (SCI) interven-
tion that may be used to reanimate paralyzed limbs. This
approach requires decoding movement intention from the
brain to control movement-evoking stimulation. Common
decoding methods use spike-sorting and require frequent
calibration and high computational complexity. Further-
more, most applications of closed-loop stimulation act on
peripheral nerves or muscles, resulting in rapid muscle
fatigue. Here we show that a local field potential-based
BCI can control spinal stimulation and improve forelimb
function in rats with cervical SCI. We decoded forelimb
movement via multi-channel local field potentials in the
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sensorimotor cortex using a canonical correlation analysis
algorithm. We then used this decoded signal to trigger
epidural spinal stimulation and restore forelimb movement.
Finally, we implemented this closed-loop algorithm in
a miniaturized onboard computing platform. This Brain-
Computer-Spinal Interface (BCSI) utilized recording and
stimulation approaches already used in separate human
applications. Our goal was to demonstrate a potential neu-
roprosthetic intervention to improve function after upper
extremity paralysis.

Index Terms— Brain–computer interface, cervical spinal
cord injury, local field potentials, epidural stimulation, upper
limb function.

I. INTRODUCTION

SPINAL cord injury (SCI) results in lifelong disability
due to disrupted neural connections between the brain

and spinal cord. The majority of people with cervical SCI
have tetraplegia that limits upper extremity function [1].
The restoration of hand and arm functions is the highest
priority for people with cervical SCI [2], [3]. Although there
are several on-going clinical studies, there are currently no
effective therapeutic interventions for paralyzed hands and
arms following SCI.

To restore function to paralyzed upper limbs, researchers
have begun creating artificial connections between the brain
and paralyzed limbs. These connections can be made by stim-
ulating the muscles, their associated peripheral nerves, or the
spinal cord below the injury [4]–[9]. Muscle and nerve stimu-
lation can restore some function after SCI but requires individ-
ual controllers for separate target muscles or nerves. Muscle
and nerve stimulation also leads to rapid muscle fatigue
during stimulation, limiting their clinical adoption [10]–[12].
Alternatively, intraspinal micro-stimulation (ISMS) provides
naturalistic recruitment of muscle fibers with functionally
synergistic movement [13]–[16]. The clinical testing of ISMS,
however, has proceeded slowly due to its invasiveness.

Epidural stimulation, an emerging alternative to ISMS, can
produce evoked movements that are similar to ISMS [17],
and is already approved for pain control in humans. Open-
loop neuromodulation via epidural stimulation can lead to
immediate functional gains in voluntary movements of the par-
alyzed upper limbs [18]. Brain controlled-epidural stimulation
in animal models has also resulted in successful reanimation
of arm and leg movements [19], [20]. Epidural stimulation
triggered from limb movements has also shown promise in
human trials [21].

Decoded movement intention from neural activity can be
used to provide closed-loop control over stimulation of the
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Fig. 1. Offline pre-injury cortical decoding: Raw neural signals were common average reference (CAR) -filtered to increase the signal-to-noise
ratio of the recording. CAR filtered signals were bandpass filtered through different frequency bands. The power of each band was extracted using
envelope computation. A canonical correlation analysis (CCA) filter was applied to each multi-channel envelope to capture the highest task-related
activity from each frequency band. After combining CCA features, temporal lags from 0-300 ms were added to the feature space. Finally, a partial
least square regression algorithm was applied on the spectro-temporal features to decode forelimb movement. The correlation coefficient between
decoded movement and real lever movement was used as a metric for decoding accuracy. The single best frequency band and temporal lag was used
to decrease the complexity of the final cortical decoder for online implementation (Optimization). Decoder stability was tested offline by evaluating
the decoder performance in same-day and cross-day model conditions (Decoder Stability Analysis).

spinal cord or muscles. While several studies have demon-
strated artificial connections between the brain and spinal
cord [4], [7], [19], [20], decoding performance is often not
stable over time. Computing methods of brain decoding must
balance electrode invasiveness, limited hardware longevity,
signal non-stationarities, and spatial resolution [22]–[24]. Sin-
gle neuron action potentials, or spikes, have historically been
used for neural decoding as they accurately predict intended
movements [25]. Spike decoding additionally benefits from
high spatiotemporal resolution [8], [9], [26]. Nevertheless,
spike decoding has limited signal stability over days to
weeks and requires frequent recalibration by researchers [27].
To overcome the limitations associated with spike-based
decoding, we used intracortical local field potentials (LFPs).
LFPs exhibit significantly increased signal stability over
single-unit spikes while maintaining sufficient information to
decode movement intention [28]. Furthermore, LFP decoders
have lower bandwidth requirements than spikes, which trans-
lates to lower computational complexity of the decoder [29].

Here we investigated real-time control of epidural stimu-
lation based on LFP decoding to restore functional move-
ments after cervical SCI. We constructed a complete brain
to spinal cord interface capable of decoding LFPs using a
computationally efficient algorithm in order to control epidural
stimulation. We tested whether the entire LFP decoding system
can be implemented in a miniaturized implantable device that
utilizes a field-programmable gate array (FPGA) to perform
on-board processing [30]. Finally, we explored the feasibility
of implementing the decoder to trigger epidural stimulation
using the customized processing pipeline on a miniaturized
device.

II. METHODS

A. Animals

Eleven female Long Evans rats (250-360g) participated
in this study and were trained on a novel lever pressing
tasks (Fig. 1 Top Left). This included seven animals studied
for the cortical decoding analysis with pre- and post-injury

conditions (Fig. 1) and five animals using the brain-computer-
spinal interface (BCSI) following SCI (Fig. 2). One animal
was involved in both cortical decoding and BCSI system tests.
All animal procedures were conducted in accordance with the
National Institutes of Health guidelines for the care and use
of experimental animals and were approved by the University
of Washington Institutional Animal Care and Use Committee.

B. Experimental Overview
After animals underwent the behavior training and achieved

task proficiency, animals were then implanted with intracor-
tical micro-wires followed by a one-week recovery period.
We conducted three offline decoding studies as follows
(Fig. 1). First, we performed offline cortical decoding to assess
decoding accuracy and optimize spectro-temporal features for
forelimb movement decoding (N = 7). Second, we tested the
stability of the decoder in the pre-injury condition (N = 4).
In parallel, three of seven animals received a right lateralized
C4 contusion injury and were tested for the accuracy of the
decoding after injury (N = 3). To evaluate the closed-loop
system in one animal from the previous cohort and four
new animals, we implanted epidural electrodes over the right
C6 spinal segment after the contusion injury (N = 5). Post-
injury cortical decoding was performed to update the cortical
decoder after SCI (Fig. 2). These five animals were then tested
using the closed-loop system where cortically controlled spinal
stimulation was used to complete the lever pressing task after
injury.

C. Lever Task Training
A novel lever-pressing task was created to allow animals

with a severely impaired forelimb to engage in the task while
using the BCSI system. The behavior arena consisted of a
translucent acrylic box with a gap on both sides of a central
platform similar to the Montoya staircase [31]. A lever was
positioned directly below the forelimb which was pressed
backward by extending the elbow and shoulder. The starting
lever position could be adjusted vertically and horizontally.
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Fig. 2. Design of Brain-Computer Spinal Interface system. The
decoder tuned via the offline analysis was used to decode animal
intention to move after the injury. Stimulation artifacts were rejected
using a sample-and-hold method. Multi-channel cortical signals were
common reference average (CAR) filtered and band pass filtered to
extract the high gamma frequency band (200-400 Hz). The power of
each high-gamma LFP channel was obtained by envelope computation.
The canonical correlation analysis (CCA) weights obtained from the
post-injury cortical decoding modeling were used to decode movement.
The decoded movement signal was z-score normalized and mapped
to stimulation current amplitude. Stimulation was delivered via epidural
electrodes implanted below the injury at spinal level C6, to reanimate
forelimb movement after C4 contusion SCI. This restored forelimb and
lever movement triggered the delivery of rewards.

A nose-poke sensor and a fluid reward tube were placed in
front of the animal (Fig. 1 Top Left). The task involved placing
the nose near the nose-poke sensor to keep the animals in a
consistent position relative to the lever. The voluntary nose-
poke additionally served to detect engagement with the task.
To receive a reward, the rat had to reach and press the lever
backward to a predetermined threshold while simultaneously
remaining within the range of the nose-poke sensor. Animals
were given an apple juice reward for successfully pressing the
lever backward. Task training was performed five to twenty
minutes each day, five days per week, for three to four
weeks to achieve task proficiency. Proficiency was defined as
completing at least 60 lever presses to maximum displacement
within ten minutes. To increase motivation, the rats were water
restricted between sessions. After each session, they were
given one-hour unrestricted water access per day and free
water during weekends.

D. Cortical Surgery
All surgeries were performed using sterile technique and

2-3% isoflurane anesthesia in oxygen. Body temperature was
maintained at 37 ◦C using a heating pad during surgeries
and recovery. Baytril (0.05 mg/kg) was administered pre-
operatively. After a craniotomy and removal of the dura
mater, custom-built 16-wire tungsten microelectrode arrays
(8 × 2, 40 μm diameter, 200 μm space between adjacent
wires) were inserted into the rostral and caudal forelimb area
of the sensorimotor cortex. The 8 × 2 arrays were oriented

with the long axis in the rostral-caudal direction. The middle
of the implant was placed 1.5 mm rostral and 2.5 mm lateral
to bregma and advanced 1.5 mm below the brain surface to
record pyramidal neuron activity in layer V. The printed circuit
board (PCB) connected to the cortical arrays was stabilized by
dental cement on the skull. Buprenorphine (0.05 mg/kg) was
administered twice per day for three days postoperatively.

E. Spinal Surgery

The contusion injury procedure began with a skin inci-
sion between the C2-T2 spinous processes and dissection of
the muscle layers. Following a C4 unilateral laminectomy,
we performed a right lateralized C4 contusion injury using by
applying a 200 kdyn force using the Infinite Horizon Impactor
(Precision Systems and Instrumentation, LLC., Fairfax
Station, VA).

Epidural spinal stimulating electrodes were constructed as
follows [32]. Two bundled electrode wires (0.27 mm diam-
eter, 100 mm length, AS631, Cooner wire) were glued to a
polyimide sheet (5 mm × 1.5 mm × 46 μm) using epoxy.
Then, 1mm of Teflon Insulation was removed from each of
the two wires. After a C7 unilateral laminectomy, the sterilized
epidural implant was placed between the C5-C6 lamina and
the dura mater from the caudal side of C6. Subsequently,
the caudal side of the epidural implant was sutured to the dura
over the dorsal aspect of the right C6 segment (7-0 Plypro,
Surgipro II). A loop was formed near the spinal cord to provide
strain relief. The wires were routed through a catheter to pro-
tect the stimulation wires (60 mm length, EC05500 Epidural
Catheter, Arrow International). The catheter was anchored to
the T2 spinous process with a 5-0 nylon suture for stability.
A common ground wire was placed subcutaneously near the
shoulder on the right forelimb. The stimulation wires and
common ground were soldered to a printed circuit board for
joining the wires to a connector. The printed circuit board was
embedded in the headcap shared with the cortical implant.

F. Cortical and Behavioral Data Recording

Neural data were recorded using the TDT multi-
channel data acquisition system at 24.4 kHz (Tucker-Davis
Technologies, FL). The continuous lever press and nose-poke
TTL signals were also recorded simultaneously via analog-
to-digital ports. We collected at least 50 lever presses for
each recording session. Both cortical and behavioral data were
stored on a PC for further analyses.

G. Offline Pre-Injury Spectro-Temporal Feature Analysis

Offline analyses were performed to optimize forelimb move-
ment decoding prior to online use with the BCSI system.
The offline study was performed in MATLAB using custom
scripts. We used the decoding paradigm presented in [33]
to continuously decode forelimb movements from the multi-
channel LFPs. Several preprocessing steps were implemented
to remove artifacts/noise and improve decoding performance.
We excluded channels with significant noise evident in their
power spectral density as it indicated likely mechanical failure
of the electrodes or connector. A common average reference
(CAR) filter was used to increase the signal-to-noise ratio
(SNR) of the recorded signal [34]. Finally, an outlier removal



1236 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021

algorithm was applied to cap particularly high voltages greater
than three times the standard deviation of each LFP signal.

After artifact removal, all 16 channels were filtered
into seven frequency sub-bands: δ (1-4 Hz), θ (4-8 Hz),
α (8-12 Hz), β (12-30 Hz), γ 1 (30-120 Hz), γ 2 (120-200 Hz)
and γ 3 (200-400 Hz) using a 4th order zero-lag Butterworth
bandpass filter. Next, the envelope of each bandpass filtered
signal was computed via rectification and a 4th order zero-lag,
2.5 Hz low-pass Butterworth filter.

Movement-related features were extracted by applying a
canonical correlation analysis (CCA) filter on the multi-
channel envelopes of each frequency band. Applying CCA
weights on different frequency bands produced seven CCA
features, u(t). To decode movement at time t, CCA fea-
tures were normalized to have zero mean and unit standard
deviation. Temporal lags including u(t-0 ms), u(t-100 ms),
u(t-200 ms), and u(t-300 ms) were calculated to produce a
spectro-temporal feature matrix. Partial least squares regres-
sion (PLSR) was applied on the feature matrix to predict the
forelimb movement vector, y(t). The correlation coefficient
between the predicted and real signal was used to evaluate the
accuracy of the decoder in the pre-injury condition. Decoder
accuracy was evaluated using 5-fold cross-validation.

The best frequency band and temporal lag were chosen
by evaluating decoding performance across all combinations.
Specifically, decoders were constructed using a single fre-
quency band and temporal lag. To compare the decoding
performance of individual frequency bands and temporal lags,
Friedman test followed by Bonferroni correction was applied
on the correlation coefficient values obtained from four ses-
sions from each in seven animals. This analysis revealed that
the high gamma band was the best feature for movement
decoding.

H. Offline Pre-Injury Cortical Decoding
Stability of the decoder and the underlying neural signals

are both important factors for real-life brain-computer interface
applications. Decoder stability was assessed by evaluating
decoder performance across the entire study. Specifically,
the performance was evaluated on decoders constructed from
the best performing frequency band (200-400 Hz) and time
lag (100 ms). Models trained on the first recording day
(the cross-day model) were compared against models trained at
the beginning of every session (the same-day model). In the
same-day model condition, we created a movement decoder
with training and testing data recorded in the same session.
In the cross-day model condition, we trained a decoder with
data from the first recording day and used that model on the
remaining days. To compare the decoding accuracy between
these two conditions, a Wilcoxon-signed ranked test was
applied on correlation coefficient values obtained from the last
session of each animal (4 sessions ∗ 5 folds = 20 correlation
coefficient values).

I. Offline Post-Injury Cortical Decoding
Following the contusion injury, the animals presented with

severe right forelimb paresis (weakness). To study the ability
of the multi-channel LFPs to predict forelimb movement
after injury, we compared the modulation of high-gamma

LFP features during forelimb movement between pre- and
post-injury conditions. To quantify this modulation, we cal-
culated the percent change of high-gamma LFP power from
baseline (rest state) to the active period (movement state).

J. Online Brain-Controlled Spinal Stimulation
Five animals using the BCSI system were tested for online

decoding and reanimation via epidural stimulation. Fig. 2
shows the schematic of the online forelimb movement decoder
based on multi-channel LFPs. In the first step, the stimulation-
induced artifacts after each stimulation pulse were removed.
This artifact typically had a higher voltage amplitude than
brain signals. We used a sample-and-hold algorithm to min-
imize the effect of this artifact on extracted features and
consequently on the decoder. After each stimulation onset,
we paused brain data sampling for 2 ms while holding the
last sample at a fixed value. After removing the stimulation-
induced artifact, we applied a common average reference
(CAR) filter to increase the signal-to-noise ratio (SNR).
Voltage amplitudes were constrained to three standard devi-
ations of a baseline LFP signal recorded before each experi-
ment. Suprathreshold signals were fixed at the respective upper
and lower bounds.

To decrease the complexity of the cortical decoder for
online implementation in future implanted hardware, the opti-
mal frequency band and time lag were selected based
on the prior offline analysis. Multi-channel cortical sig-
nals were filtered through these optimal frequency bands
(200-400 Hz, 4th order Butterworth). Bandpass filtered sig-
nals were rectified and smoothed (low pass filter, 4th order
Butterworth, 2.5 Hz) to obtain multi-channel envelopes. These
envelopes were multiplied by corresponding CCA weights
obtained from the training data to predict forelimb movements
in real-time (Fig.2).

There is an inherent limitation in extracting the ground
truth of movement intention in rats following SCI as they are
unable to move their limbs. Instead, we used a signal based
on an active nose-poke as a proxy for imagined or attempted
movements, which have been successfully used to construct
BCI decoders for human subjects with severe SCI [9], [10],
[38], [39]. Therefore, to obtain CCA weights after injury,
an artificial bell-shaped lever signal was inserted at time points
where the nose-poke sensor was activated and immediately
followed by residual lever press movement.

The decoded movement signal in the post-injury condi-
tion was z-score normalized before triggering the epidural
stimulation. The normalization step was conducted based on
30 seconds of recorded cortical data at the beginning of
each session. The normalized signal was mapped between
the motor threshold and maximum stimulation amplitude to
control epidural stimulation. Epidural stimulation was deliv-
ered whenever the decoded signal crossed a predetermined
threshold while the animal simultaneously activated the nose-
poke sensor (Fig. 3). This assured both a consistent body
position and engagement with the task (Fig. 2).

The movement responses to the stimulus varied among
animals due to the severity of injury and relative location of
the epidural electrodes. Without stimulation, animals produced
minimum lever press movement following C4 contusion injury
(the Irvine, Beatties, and Bresnahan (IBB) scale: 1.6 ± 0.93
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Fig. 3. Brain-controlled stimulation protocol. Based on the
multichannel-LFPs, the lever movement was continuously decoded
(red line). Left: Lever press performance with epidural stimulation Off
in Animal #7 after the C4 contusion injury (Supplementary Video 2). The
injured animal exhibits a limited lever press (blue line). Right: Online
brain-controlled epidural stimulation On condition. The intracortical LFPs
were used to decode movement. When the decoded lever movement
stayed above a predefined threshold and the nose-poke sensor was
activated (green line), stimulation was delivered to the spinal cord
(Right, 2nd row). Stimulation via epidural electrodes at the C6 spinal
segment evoked forelimb movements capable of moving the lever (Right,
bottom row). Initially the decoded lever movement exceeded the thresh-
old (black line), but the animal did not position their body correctly to
activate the nose-poke sensor. The stimulation was triggered when the
nose-poke sensor was activated (arrow). The decoded movement is
presented as z-scores. The lever movement is normalized to maximum
pre-injury lever displacement (%).

(mean ± SEM), N = 5, 40-60 days post-injury) [35]. Based
on stimulation responses in each animal, we determined the
number of pulses and burst frequency at the beginning of the
recording sessions needed to restore a robust lever pressing
movement. We used charge-balanced biphasic square-wave
pulses with 400μs pulse width delivered in 15-40 pulse trains
at 50-100 Hz (Model 2200, A-M systems). We scaled the start-
ing stimulation current amplitude to evoke elbow extension
movement in each experiment (300μA-1mA).

K. Functional Assessment
The range of lever motion was measured to quantify the

performance of the BCSI system for movement restoration.
Catch trials with stimulation off were randomly interleaved
at 20-30% probability. Lever movement was compared
between the stimulation on condition (BCSI On) and the
Catch trial without spinal stimulation in the same session.
As an additional metric to quantify the functional behavior,
we used the reward rate to capture the efficiency of lever
press performance. Reward rate was defined as the number
of successful lever presses and thus rewards per minute
in 2-4 minute blocks of BCSI On and Catch trials.

L. Miniaturized BCSI System
The miniaturized BCSI system was tested offline using a

modular field-programmable gate array (FPGA)-based device,

Fig. 4. Contribution of separate frequency sub-bands and temporal
lags to movement decoding. All data were obtained from the pre-injury
condition. Frequency sub-bands are δ (1-4 Hz), θ (4-8 Hz), α (8-12 Hz),
β (12-30 Hz), γ1 (30-120 Hz), γ2 (120-200 Hz) and γ3 (200-400 Hz).
Positive lags indicate that the neural data occurs before the behavior.
Each color shows the mean correlation coefficients for N = 7 animals.
Considering all frequency and all-time lags leads to highest decoding
performance. When limited to a single frequency band and time lag,
however, the frequency band of γ3 (200-400 Hz) and time lag of 100 ms
produced the best decoding performance.

modified from our Neural Closed-Loop Implantable Platform
(NeuralCLIP) [30]. This miniaturized electronic device could
record cortical signals, process multi-channel LFP data, and
decode movement intention to trigger stimulation.

The structure of the miniaturized BCSI hardware con-
sisted of the Intan Technologies RHS2116 microchip
(Los Angeles, CA) for recording and stimulation. The Intan
chip contains 16 channels and a 16-bit ADC controlled by a
serial peripheral interface (SPI) and was coupled to a low-
power FPGA (AGLN250, Microsemi, Aliso Viejo, CA).

The miniaturized BCSI device used approximate computing
blocks to perform different parallel tasks to decode fore-
limb movement from multi-channel LFPs, including multi-
channel bandpass filtering, CAR filtering, rectification, signal
smoothing, downsampling, and CCA weight multiplication.
To evaluate the utility of the miniaturized BCSI system,
prerecorded brain signals from both pre- and post-SCI animals
were provided as inputs to the miniaturized BCSI. The pre-
determined CCA weights were updated on the FPGA prior to
signal processing. The signals were processed through the data
pipeline located on the FPGA to predict stimulation timing.

M. Statistical Procedures

All data are reported as mean ± SEM. All data were
assessed for normality with the Kolmogorov–Smirnov test.
None of the data collected for statistical analysis were nor-
mally distributed. Friedman test accompanied by Bonferroni
correction was used to test for significant difference between
multi-band frequencies or temporal lags. A non-parametric
Wilcoxon signed-rank test was used for the decoder stability
analysis and lever press efficiency performance assessment
with and without the BCSI On. Moreover, lever press ranges
with and without the BCSI On were evaluated using the
Wilcoxon rank-sum to allow for differences in the total
number of lever presses in each condition from all animals.
All analyses were performed with SPSS software Version
25 (Chicago, IL). Differences were considered significant at
p-value < 0.05.



1238 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021

Fig. 5. Long term stability of forelimb movement decoder. Stability
of forelimb movement decoding with the high gamma LFP feature
was compared between models trained on the same day and models
trained only on the first experimental session. Each data point is the
mean ± SEM correlation coefficient (R-value) of the test set obtained
from 5-fold cross-validation. Same-day calibration of the decoder pro-
duced marginally better decoding accuracy compared to the cross-day
model. Even without same-day calibration, however, the LFP-based
decoder could still produce sufficient decoding performance for up to
30 days. Each panel depicts data from one of four animals.

III. RESULTS

A. Offline Pre-Injury Cortical Decoding

We analyzed the contribution of spectral and temporal
LFP information, as well as the stability of the forelimb
movement decoder, with the goal of developing a stable and
computationally efficient brain-computer-spinal interface.

First, we evaluated the movement decoding accuracy of
different frequency bands and temporal lags. Fig. 4 compares
decoding performance of individual frequency bands and time
lags. Each color shows the mean of the correlation coefficient
obtained from four sessions each in seven animals using
5-fold cross-validation. As we expected, including all fre-
quency bands leads to the highest decoding accuracy. There
was not, however, a significant reduction in decoding accuracy
when using just the 200-400 Hz high gamma band compared to
combining all frequency bands (p = 0.09, Friedman test with
Bonferroni correction). In addition, decoding using only the
200-400 Hz (γ 3) frequencies outperformed all other individual
frequency bands (p < 0.01). The LFP decoder with high
gamma bands consistently produced predictions that were
highly correlated with the real lever trajectory and were
comparable to previous studies [27], [36].

Including all temporal lags from 0-300 ms produced the
highest decoding accuracy, which was significantly greater
compared to individual time lags (p < 0.001, Friedman
test with Bonferroni correction). When using a single time
lag, 100 ms lags resulted in significantly better decod-
ing performances compared to 200 ms and 300 ms lags
(p < 0.05). It should be noted that the use of a low pass filter
for envelope extraction may result in some of the extracted
features appearing in more than one-time bin.

To evaluate the stability of the decoding model with high
gamma frequency band (200-400 Hz) and time lag (100ms),

Fig. 6. Sustained LFP power in pre- and post-injury conditions.
A: Average multi-channel 200-400 Hz LFP features were aligned with
lever presses across many days after intracortical array implantation.
In both pre- and post-injury conditions the high gamma LFP power in
multiple channels increased before the lever press and during holding of
the lever, followed by a decrease to baseline when the animal released
the lever. B: Each bar shows the high gamma LFP power change during
movement from the baseline activity during rest periods averaged over
all trials in each session (mean ± SEM). This demonstrates that lever
movement could be decoded for 71-101 days in each animal despite a
spinal cord injury occurring at the midpoint of the experiment.

we assessed the decoder performance across the entire study
using two conditions. In the first condition, the decoder was
trained and tested using data from the same day (same-day
model) across all sessions. In the second condition, the cortical
decoder was trained on the first session and then tested on
the following days (cross-day model). Decoding accuracy
was assessed by the correlation coefficient between real and
predicted movement with 5-fold cross-validation. Fig. 5 shows
the decoding accuracy of the movement for the same-day
and cross-day models. Using the same-day model leads to
significantly better decoding performance in comparison to
the cross-day model (N = 4, p = 0.03, one-tailed Wilcoxon
signed-rank test). Nevertheless, the average correlation coef-
ficient of the cross-day model remained above 0.35 in four
animals for more than one month. This level of decoding
performance was sufficient to identify different states of
movement, such as lever press and lever release even without
recalibration.

We found little correlation between nose-poke activation
and multi-channel cortical information (correlation
coefficient = 0.06 ± 0.1, mean ± std, N = 7). By contrast,
the correlation between lever movement and multi-channel
cortical signals was significantly higher (correlation
coefficient = 0.47 ± 0.1, N = 7 p < 0.0001; one-tailed
Wilcoxon signed-rank test). This indicates that we were decod-
ing the intention to produce upper limb movement rather than
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Fig. 7. Operation of the BCSI system. Left: Stimulation On trials.
Animal #3 performed the lever task with LFP-controlled epidural stimula-
tion. Each band on the top row represents a channel of high gamma LFP
power. During the intended movement, the power of the high gamma
band increased in the majority of channels. Right: Catch trials. During
the stimulation Off period, the animal still demonstrated periodic high
gamma power increases correlated with nose-poke behavior (green
raster) indicating intention to press the lever. Lever movement is shown
as a percentage of the pre-injury function.

the body position or movements used to activate the nose-poke
sensor.

B. Offline Post-Injury Cortical Decoding

The stability of the decoder is also critical after injury.
Therefore, we tested the performance of the decoder created
in the pre-injury offline analysis for use in animals following
injury. Fig. 6 A shows an example of the modulations in high-
gamma LFP power during movement and rest in pre- and
post-injury conditions. Even after the injury, high-gamma LFP
power was modulated during the lever presses. Fig. 6 B shows
that this modulation continues across more than 70 days in
multiple animals. This indicates that the high-gamma LFP
feature is a suitable feature for decoding movement intention
even after injury. Next, we implemented this high-gamma
LFP decoder in the BCSI system to control cervical epidural
stimulation.

C. Brain-Controlled Spinal Stimulation for Reanimation

To demonstrate an application of the high-gamma LFP
decoder, we tested whether the closed-loop BCSI could
improve paralyzed forelimb function following severe cer-
vical SCI in freely moving rats. Intracortical LFPs were
used to decode the animals’ intention to move. The decoder
triggered epidural stimulation, which was delivered to the
lateral C6 vertebral spinal cord to produce forelimb extension
movement (Fig. 7 Left; Supplementary Video 1 & 2). In Catch
trials, the stimulation was briefly turned off to assess lever
press performance in the absence of stimulation. When the
stimulator was off, the animals struggled to press the lever and
failed to reach the reward threshold (Fig. 7 Right). Despite
failing to perform the task, movement intention was still
visible as increased activity in the decoded movement aligned
with nose-poke sensor activation. Nose-poke sensor activation
was a trained behavioral response that was required during
performance of the lever press to keep the animal’s body in
position.

Fig. 8. BCSI system improved forelimb function. Left: Average
reanimated forelimb movement by the brain-computer spinal interface
(BCSI) was significantly greater compared to the stimulation off catch
trials (N = 5 animals, Catch Trial total 168 presses, BCSI On total
159 presses; ∗∗ p-value < 0.001, Wilcoxon rank-sum test). Right: The
mean number of rewards per minutes also significantly improved when
using the BCSI compared to the catch trials (Catch Trial total 17 blocks
and BCSI On total 17 blocks in five animals; ∗ p-value = 0.0023, Wilcoxon
signed-rank test). Data points show average lever press performance in
each animal.

D. Functional Improvement With BCSI

All five animals were able to use the BCSI system after
the injury to improve their forelimb function. To quan-
tify the improvement in forelimb function, we compared
the post-injury peak lever range using the BCSI system
(BCSI On Trials) and without stimulation (Catch Trials).
Average reanimated forelimb movement by the BCSI was
significantly greater (38 ± 1%) than the stimulation off post-
injury trials (21 ± 2%, p < 0.001, Wilcoxon rank-sum
test; Fig. 8 Left). Second, we quantified the efficiency of
lever press performance in the testing sessions. The average
number of rewards per minute with the BCSI On condition
was significantly greater (11.5 ± 3.5 rewards/min) than the
performance in the catch trials (6.8 ± 5.2 rewards/min,
p = 0.0023, Wilcoxon signed-rank test; Fig. 8 Right).

E. Autonomous BCSI Miniaturized Device

Finally, we evaluated the performance of the autonomous
decoding system on the NeuralCLIP. The NeuralCLIP was
configured with signal processing blocks to implement our
CCA decoder on an FPGA architecture [30]. The complete
system was implemented on a PCB small enough to be
implanted under the skin of a rodent. To test the NeuralCLIP’s
ability to perform the necessary signal processing blocks,
prerecorded neural data from both before and after injury
were used as inputs to the onboard FPGA. To improve
detection of movement intention from the previous work [30],
a rectifying block was placed between the bandpass filter
and CCA. A downsampler followed by a smoothing filter was
placed after the CCA output to improve threshold detection
for decoded movement (Fig. 9a). The refined NeuralCLIP
could detect the lever press movement intention from the
LFPs and predicted the timing of the real lever movement
in the uninjured condition (Fig. 9b) as well as the nose-poke
signals as a proxy for lever movement in the injured condition
(Fig. 9c). These results suggest that a computationally efficient
decoder can run on an implantable device and provide the
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Fig. 9. Autonomous miniaturized platform decoded movement intention to trigger stimulation pre- and post-injury a) Hardware and Pipeline
Blocks of the Neural Closed-Loop Implantable Platform (NeuralCLIP: Left), which processed pre-recorded LFP signals from the motor cortex and
identified events to trigger stimulation. The block diagram demonstrates the processing pipeline (Right). Modifications from the original NeuralCLIP
pipeline include a rectifier, downsampler and smoothing filter to improve the decoding performance while maintaining low power consumption.
b) & c) Offline Decoding of Lever Movement in Pre- and Post-injury Condition. The CCA-decoded lever movement was calculated from 4 cortical
channels. The first row shows one channel of raw brain signal input. The second row shows the rectified single channel signal after processing by a
common average reference (CAR) filter and a 200-400Hz band-pass filter. The third row illustrates the multichannel CCA filtered signal. After down
sampling and smoothing, the decoded lever movement (red box) could trigger stimulation by crossing a pre-determined threshold (dashed line).
The decoded movement is aligned with the actual lever movement and nosepoke signals (bottom). The NeuralCLIP successfully decoded forelimb
movement intention with the pre-recorded brain signals recorded in both pre- and post-injury conditions in this example animal.

necessary processing to control spinal stimulation and promote
simple functional restoration after spinal cord injury.

IV. DISCUSSION

Here we demonstrate a brain-computer-spinal interface
(BCSI) for restoring functional upper limb movement
following cervical spinal cord injury. Our main findings are:
1) intracortical high gamma local field potentials provide
a stable marker of forelimb movement intention without
recalibration over many days before and after spinal cord
injury, 2) brain-controlled epidural stimulation improves fore-
limb function, and 3) the computationally efficient closed-
loop algorithm can be implemented on a miniaturized device
with onboard computing. Both the recording and stimulation
techniques used here have already been used separately in
human clinical trials. By combining these techniques in the
present study, our results inform a pathway to the clinical
translation of BCSI technology to humans.

A. Local Field Potential Decoding

We found that the high gamma LFP decoder provided
accurate and stable predictions of forelimb movement tra-
jectory over time. LFPs reflect the summation of multiple
neural sources near the recording area [37]. Previous studies
confirmed that both multiunit spike activity and LFPs allow
accurate prediction of movement related information [28].
A prior study reported similar decoding performance using
LFP activity compared to multiunit spikes due to greater
signal stability of LFPs in non-human primates [38]. LFP

decoders have also shown sufficient stability for motor inten-
tion decoding without recalibration over several months in
human subjects [39]. In prior work, the CCA decoder used
here maintained high performance with a lower computational
complexity compared to principal component analysis or cor-
relation coefficient-based methods [33].

In the present study, we demonstrated that the frequency
band between 200-400 Hz provided the highest accuracy for
decoding forelimb lever press movement compared to other
isolated frequency bands. Using the CCA decoder on multi-
channel LFPs in the 200-400 Hz band, we demonstrated
accurate and stable decoding over many days, similar to a pre-
vious study in non-human primates [38]. This is a substantial
advantage over spike-based decoders that often require daily
spike sorting procedures and frequent refitting [8], [9].

An additional benefit of using a CCA with a single LFP
frequency band is reduced computational complexity. Despite
the limited spatial resolution of LFPs, the increased computa-
tional efficiency of the proposed decoding strategy allowed us
to implement the complete closed-loop system on a miniature
device small enough to be implantable. Similar strategies
may accelerate clinical translation of closed-loop BCI systems
by eliminating the need for percutaneous cabling or high
bandwidth wireless data transfer [40]. To accomplish this,
we selected a clinically viable stimulation strategy to be
controlled by the output of the CCA decoder for upper limb
reanimation.

B. Epidural Stimulation for Upper Limb Reanimation
Upper limb movements are less rhythmic with more

supraspinal control compared to lower extremity tasks such as
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walking [41]. Current BCI applications controlling functional
muscle stimulation require a large number of stimulation
electrodes [42]. Direct muscle or peripheral nerve stimula-
tion can provide functional gains [8], [9] but evoke non-
physiological recruitment of muscle fibers leading to rapid
muscle fatigue [43]. One solution to fatigue is stimulation of
the spinal cord, such as intraspinal microstimulation (ISMS),
which provides a more natural recruitment order [13], [14],
[44]. Here we extend these findings to epidural stimulation and
demonstrate a functional forelimb extension movement. Even
our simple LFP decoder-controlled epidural stimulation system
could improve the outcomes of the multi-joint lever pressing
task. Further experiments are required to investigate effective
stimulation protocols to evoke graded forelimb movement
via epidural stimulation, with a task that requires continuous
modulation proportional to the cortical activity.

C. Hardware Application

Current BCIs require external desktops or tablet computers
for decoding and control of stimulation or actuators [20], [45].
Even though some BCI systems are wireless, an external
device is still necessary [46]. This limits the use of the BCI
systems outside of research laboratories and presents chal-
lenges to translation, home use, or community applications.
Onboard computing on implantable systems is one solution.
However, the computational power on the implant is limited
due to heat dissipation with current technology. Onboard
computing also reduces the latency of communication to and
from an external computer.

We previously presented the NeuralCLIP, a modular
FPGA-based device (Fig. 9a) that can provide scalable,
autonomous processing and stimulation in a size appropriate
for untethered animal use or implantation [30]. In the present
study, we added extra processing steps to our previous work to
enable LFP decoding and stimulation control. This was needed
because the modulation of LFP power was less robust in the
animal with SCI than in the pre-injury condition (Fig. 9c).
The CCA-based algorithm for LFP decoding was successfully
implemented on the autonomous FPGA and triggered stimu-
lation based on neural data recorded both before and after the
injury.

Furthermore, the power consumption was on the order
of 10 mW [30] which can be provided by wireless power
transmission [47]. Wireless power transmission eliminates the
need for large batteries and moves the BCSI system closer
to an implantable form-factor. We have not yet performed an
in-vivo study with this implantable system, as further research
is needed to confirm if heat dissipation from the wireless
power receiver is safe for surrounding tissue.

D. Limitations

In the offline study, we used zero-lag filtering techniques
to analyze the decoder. For online implementation, however,
we used a 4th order Butterworth that produced a 4 ms temporal
delay given a 1 kHz sampling rate. This brief delay, however,
is acceptable for closed-loop control of neural interfaces [48].

Restoration of daily activity using the paralyzed arms and
hands requires movement with multiple degrees of freedom
(DOF). This study required animals to perform only a one

DOF movement. It is likely that LFPs contain the information
for at least three-dimensional movement of the arm and
hand [49]. Future work is needed to adapt decoding strategies
that can extract multi-dimensional movement with low power
consumption.

Although we demonstrated accurate LFP decoding using
prerecorded signals to trigger stimulation on the miniaturized
system, actual stimulation was not produced by the Neural-
CLIP. One goal of this study was to test our ability to replace
the external computers that were otherwise used for closing
the loop. In future experiments, the device can be configured
through SPI to stimulate in response to decoder output in real-
time applications.

Using epidural stimulation to increase the variety of fore-
limb movements may require a wider implant with a larger
number of channels to cover multiple spinal segments and
dorsal root entry zones [50]. This requires advancements
in electrode technology that are already underway [51] and
also an increased physiological understanding of spinal cord
stimulation [52], [53].

V. CONCLUSION

We found that brain-controlled epidural stimulation restored
volitional control of a paretic forelimb in rats with severe
cervical SCI. The computationally efficient algorithm con-
nects clinically applicable recording and stimulation meth-
ods enabling implementation on a miniaturized autonomous
closed-loop system. Thus, the BCSI strategy demonstrated
here may overcome several barriers to translating BCIs into
clinical approaches for upper limb restoration following SCI.
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