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Quantification of Motor Function Post-Stroke
Using Novel Combination of Wearable Inertial

and Mechanomyographic Sensors
Lewis Formstone, Weiguang Huo , Samuel Wilson, Alison McGregor ,

Paul Bentley , and Ravi Vaidyanathan

Abstract— Subjective clinical rating scales represent the
gold-standard for diagnosis of motor function following
stroke. In practice however, they suffer from well-recognized
limitations including assessor variance, low inter-rater reli-
ability and low resolution. Automated systems have been
proposed for empirical quantification but have not sig-
nificantly impacted clinical practice. We address transla-
tional challenges in this arena through: (1) implementation
of a novel sensor suite combining inertial measurement
and mechanomyography (MMG) to quantify hand and wrist
motor function; and (2) introduction of a new range of
signal features extracted from the suite to supplement
predicted clinical scores. The wearable sensors, signal fea-
tures, and machine learning algorithms have been com-
bined to produce classified ratings from the Fugl-Meyer
clinical assessment rating scale. Furthermore, we have
designed the system to augment clinical rating with several
sensor-derived supplementary features encompassing crit-
ical aspects of motor dysfunction (e.g. joint angle, muscle
activity, etc.). Performance is validated through a large-scale
study on a post-stroke cohort of 64 patients. Fugl-Meyer
Assessment tasks were classified with 75% accuracy for
gross motor tasks and 62% for hand/wrist motor tasks.
Of greater import, supplementary features demonstrated

Manuscript received November 23, 2020; revised May 6, 2021;
accepted June 6, 2021. Date of publication June 15, 2021; date of current
version June 24, 2021. This work was supported in part by the U.K.
Research Institute Engineering and Physical Sciences Research Council
(UKRI EPSRC) Centre for Doctoral Training in Neurotechnology for Life
and Health, in part by the Dementia Research Institute Care Research
Technology Centre (DRI-CRT) under Grant UKDRI-7003, in part by the
U.K. EPSRC under Grant EP/K503733/1, in part by the U.K. National
Institute of Health Research Imperial Biomedical Research Centre (NIHR
BRC), and in part by Serg Technologies, U.K. (Corresponding author:
Weiguang Huo.)

This work involved human subjects or animals in its research. Approval
of all ethical and experimental procedures and protocols was granted by
the Health Research Authority of the National Health Service (NHS),
U.K., under Approval No. 11/LO/0941.

Lewis Formstone and Weiguang Huo are with the Department
of Mechanical Engineering and DRI-CRT, Imperial College Lon-
don, London SW7 2AZ, U.K. (e-mail: l.formstone15@imperial.ac.uk;
w.huo@imperial.ac.uk).

Samuel Wilson and Ravi Vaidyanathan are with the Department of
Mechanical Engineering and DRI-CRT, Imperial College London, London
SW7 2AZ, U.K., and also with Serg Technologies, London E16 2DQ, U.K.
(e-mail: s.wilson14@imperial.ac.uk; r.vaidyanathan@imperial.ac.uk).

Alison McGregor is with the Department of Surgery and Can-
cer, Imperial College London, London W12 0BZ, U.K. (e-mail:
a.mcgregor@imperial.ac.uk).

Paul Bentley is with the Department of Brain Sciences, Imperial
College London, Charing Cross Hospital, London W6 8RF, U.K. (e-mail:
p.bentley@imperial.ac.uk).

Digital Object Identifier 10.1109/TNSRE.2021.3089613

concurrent validity with Fugl-Meyer ratings, evidencing
their utility as new measures of motor function suited to
automated assessment. Finally, the supplementary features
also provide continuous measures of sub-components of
motor function, offering the potential to complement low
accuracy but well-validated clinical rating scales when high-
quality motor outcome measures are required. We believe
this work provides a basis for widespread clinical adoption
of inertial-MMG sensor use for post-stroke clinical motor
assessment.

Index Terms— Stroke, Fugl-Meyer assessment, auto-
mated upper-limb assessment, wearables, machine
learning, mechanomyography.

I. INTRODUCTION

STROKE is the second largest cause of death globally and
the second biggest cause of years lost prematurely or liv-

ing with disability [1]. The standard clinical rating scales
of motor function for stroke are widely used for monitoring
subject improvement and defining rehabilitation requirements.
These rating scales also form the gold standard method of
quantifying motor function in research applications. Common
applications include the assessment of new rehabilitation pro-
grammes [2], medications [3], and lesion-symptom mapping
studies [4].

One of the most commonly used and widely validated [5]
standard clinical rating scales is the Fugl-Meyer Assessment
(FMA) [6]. A subsection of this scale is dedicated to the
assessment of the upper extremity only (FMA-UE). This
section examines each component of the upper extremity
in isolation as well as combined through synergistic and
non-synergistic movements. Each motor component/task is
assigned a qualitative rating depending on how well it was
performed with a range from 0 to 2. This range covers no
movement/function (0), partial movement/function (1), and
full movement/function (2).

Despite the global reliance on the standard clinical rating
scales for rehabilitation and research, these methods suffer
from several limitations such as the subjectivity of assessment,
time required, and low resolution. To address one or more
of these limitations, sensor-based “automated” systems have
been proposed as an alternative method of quantifying motor
function post-stroke. The majority of proposed sensors in prior
automated systems have measured the kinematics of move-
ments as measured either via camera-based [7]–[9] or wearable
inertial-based [10]–[12] systems.
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A major limitation of prior post-stroke automated systems
is that they fail to effectively quantify the movements of the
hand or wrist, a major component of stroke dysfunction. The
camera-based systems utilised in earlier trials have shown poor
performance when tracking these regions [13]. Inertial-based
sensors may perform better but require many sensors and
careful placement to capture each finger joint. One solution
to quantifying the hand-region has been proposed in the form
of instrumented gloves [14], [15] but these have limitations
including poor fit and hygiene concerns.

An emerging modality of interest for measuring hand and
wrist motor function is myographic data. This modality has
shown good potential for distinguishing stroke impairment
in the literature [16], [17]. In addition, myographic sensing
may be used to capture the activity of muscles in the lower
arm which have a functional role in the hand and wrist.
The application of electromyography (EMG) has already been
shown to perform well when classifying hand and wrist
function as part of an automated sensor system [18], [19].
However, the application the EMG in such sensor systems
is limited in practice by factors including requirements for
careful skin preparation and electrode placement, and a signal
which is dependent on humidity and skin impedance.

The system developed in the present study proposes the
novel inclusion of mechanomyography (MMG) as an alter-
native to EMG. MMG is less widely validated than EMG
for clinical applications but has several advantages that lend
itself for use in a wearable system. These include re-usability,
higher signal-to-noise ratio, possessing a robust signal which
is more independent to changes of skin impedance, and ease
of application [20]. Our past work has implemented MMG
to diagnosis motor dysfunction in Parkinson’s disease [21],
quantify hand function [22], fabricate clothing for stroke
telemedicine [23] and track of arm movement and muscle
activity in parallel [24]. MMG will be positioned in the present
study to record hand and wrist function by calculating features
of the signal which have shown to be statistically different
based on stroke severity [25].

There are three main methods of calculating motor func-
tion that have been used in existing automated systems.
The first method is by standard classification or regression
models which are trained using labels provided by clinician-
assessed clinical rating scales [8], [11]. Secondly, custom
logic-based classification models have been developed using
domain knowledge to design the model [7], [13]. Finally,
algorithmic methods have been devised for outputting novel
metrics of motor function [26], [27].

Classification or regression models of motor clinical rating
scales have the advantage of classifying to a clinically relevant
and well-validated score. Disadvantages include the label noise
introduced by limited rater reliability, the low resolution of
labels, and the requirement for a large volume of clinical
data. The application of logic-based classification mitigates
the requirements for a large volume of clinical data but shares
the same low-resolution of the clinical rating scale predicted.

Algorithmic methods of evaluating motor function derive
novel scores without requiring an external rating score. These
methods have been proposed as a means of calculating a score

with a resolution which far exceeds that of the standard clinical
rating scales. The primary limitation of prior devised algo-
rithmic methods is that they compute a score by comparison
of the “affected” and “unaffected” upper limbs post-stroke.
This method is dependent on the subject suffering from motor
dysfunction to only one-side (hemiplegia) which is not always
present post-stroke. In addition, assessment of both arms of the
subject is required which doubles the testing duration.

The study by Song et al [28] has recently been published
in this journal and proposed a new automated system of
motor function post-stroke. This system utilised a single
mobile phone to provide classified clinical ratings scores
and was proposed as a low-cost home diagnostic device.
In contrast, the goal of present paper is to develop a more
comprehensive system designed for the clinical environment
which can quantify hand/wrist movements and provide a score
which goes beyond the standard clinical rating scores. The
system is composed of wearable inertial sensing and MMG
sensors. The output of the system combines classified FMA-
UE scores with a series of fine-grained supplementary features
which have been formulated as a means of complementing
the low resolution clinical rating scores. These supplementary
features are extracted directly from the sensor data and provide
fine-grained information about the sub-components of motor
function. Features span information about the joint range of
motion and muscle performance.

II. METHODS

A. Subjects and Design

Following ethical approval and informed consent, 64 sub-
jects were recruited from the acute and hyper-acute wards
at Charing Cross Hospital (London, UK). These subjects
presented with the following characteristics:

• Sex: 33 male, 31 female
• Affected side: 43 left, 21 right
• Age: 66.3 ± 13.8 years old (range 33-95 years old)
• FMA-UE score: 42.7 ± 18.1 (range 0-60)
• Days since stroke: 9.3 ± 15.3 (range 2-90 days)

Upper extremity motor function evaluation was performed
in the acute or subacute phases of stroke using the motor
function section of the Fugl Meyer Assessment (FMA-UE) [6].
This scale is well validated as a sensitive measure of the var-
ious subcomponents and overall upper extremity function [5].
Assessments were performed by two experienced examiners
(one to oversee the sensor system and one to rate the clinical
score).

The study imposed no subject requirements in terms of
minimum level of required motor function and a total of
9 subjects with a total FMA-UE score of ≤ 15 were included
in the cohort. This is worth highlighting since the proposed
system was able to test all functional impairment levels unlike
many prior developed automated systems. A minimum level
of cognitive ability was required and judged to be sufficient
if the subject scored a full Glasgow Coma Scale Rating. This
ensured the subject was in a position to be able to follow
simple verbal instructions. This study received ethical approval
(No.11/LO/0941) from the Health Research Authority of the
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Fig. 1. Schematic diagram illustrating the instrumentation and major stages of the study. IMUs are located in three locations: torso, upper arm,
wrist. MMGs are located on the underside of the forearm. Major stages of the study highlighted are the classification of FMA-UE task scores and
production of the supplementary features.

National Health Service (NHS), UK. All subjects gave their
full consents for participation prior to testing.

B. Data System

A collection of in-house data logger boards was used
to stream all the sensor data collected from the subject.
The boards were equipped with an inertial measurement
unit (IMU) sensor (STMicroelectronics, Switzerland) which
records tri-axial accelerometer, gyroscope, and magnetometer
data. In addition, the board contained a set of ADC pins, which
enabled recording from peripheral devices, and a Bluetooth
module for online data transmission. These boards have been
previously validated for the computation of orientation [29]
and have been implemented in multiple large clinical stud-
ies [21], [22]. Housing cases for the data logger board were
3D printed in a specific shape to expose the peripheral ADC
pins and to enable the attachment of 3D printed flexible resin
straps for fitting to the subject (see Fig. 1).

A novel inclusion for an automated system of motor func-
tion post-stroke is the addition of MMG sensors to mea-
sure myographic data. These sensors have been developed
in-house using a condenser microphone-based design and
with a chamber which has been selected to maximise the
frequency response [30]. The chamber is in turn sealed with
an air-tight membrane to create a constant pressure and to
prevent interference from external sounds. MMG sensor data
was collected and synchronised with the data logger boards
by sampling directly via the exposed ADC pins. The time
series response of the MMG broadly resembles that of EMG
except that the measurand is the vibration of the muscle
rather than the electrical activity. An illustration of how this
filtered response appears at different motor functional levels
is displayed in Fig. 2. This data was recorded for the mass
flexion task, which involves the subject transitioning from a
state of full finger extension to flexion as quickly as possible.

Data were sent via Bluetooth to a tablet which was running
a bespoke GUI for logging data. This software was designed in
C# using the .NET framework. Functionality was implemented
to enable connection to the data logger boards, online data
visualisation, and data collection. Streamed data was saved
onto the tablet during the testing phase and then later trans-
ferred to a secure computer for further data processing.

Fig. 2. Plots of filtered MMG response recorded during the mass flexion
task of the FMA-UE. Each plot is taken from a different subject who
scored a different rating for this task (0, 1, and 2).

C. Data Collection

Inertial data was collected from the IMU on board each
of the data logger boards. These boards were attached to the
body sections of the torso, upper arm, and lower arm. A lack of
relevant literature meant that MMG placement was informed
based on information produced for EMG instead [31]. MMGs
were placed to capture muscle activity of the extrinsic finger
flexors (flexor digitorum profundus and flexor digitorum super-
ficialis) and wrist flexors (flexor carpi radialis). These muscle
groups were selected as a means of quantifying finger and
wrist flexion. A diagram of the MMG sensors approximately
placed to capture these muscle groups is shown in Fig. 1.

Sensor data were collected during each of the tasks in the
motor function section of the FMA-UE. All of the 21 motor
tasks of this section were performed as part of this study.
The reflex tasks were not included since these could not
be measuring using the sensor system. For this study it
was convenient to categorise tasks of the FMA-UE either as
gross motor tasks (those involving the upper or lower arm
segments) or hand/ wrist tasks (those tasks only involving the
hand and/or wrist). This is because gross motor tasks could be
captured using the inertial sensors whereas hand/wrist motor
tasks could only be captured using the MMG data.

D. Data Processing

Data processing was performed using a custom GUI devel-
oped using the Qt framework in the Python environment.
Data types calculated for this study may be categorised as
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TABLE I
FEATURES EXTRACTED FROM THE THREE DATA TYPES CALCULATED USING THE NOVEL SYSTEM. INERTIAL FEATURES ARE THOSE WHICH ARE

CALCULATED FROM THE ACCEROMETER OR GYOSCOPE DATA. ORIENTATION FEATURES ARE CALCULATED FROM THE ORIENATION DATA

(JOINT ANGLE OR PLANE). FEATURES WHICH WERE SELECTED TO KEEP IN THEIR PRE-EXISTING FORM AS

SUPPLEMENTARY FEATURES ARE HIGHLIGHTED IN RED

inertial, MMG, or orientation-based. Inertial and MMG data
was digitally filtered prior to feature calculation using zero-
phase IIR Butterworth filters.

Inertial data processing involved low pass filtering of gyro-
scope data at 10 Hz and band-pass filtering of accelerometer
data at 1-10 Hz. MMG data was bandpass filtered at 5-100 Hz.
This bandwidth has previously been shown to capture most of
the relevant signal while removing the high frequency noise
and low frequency motion artefacts present [32].

Orientation data, as represented by quaternions, was cal-
culated from the inertial data collected at each instrumented
body segment. Quaternions were calculated by passing the
raw inertial data through the Madgwick gradient descent
algorithm [33]. This algorithm has been proposed as an
equally accurate and significantly less computationally inten-
sive method than the Kalman Filter [33], which is more
commonly used for this application. The orientation metrics of
joint angles and plane of motion for the shoulder and elbow
joints were subsequently calculated using these quaternions
and the swing-twist decomposition method [34]. An avatar
was produced to visualise these metrics prior to implementing
them in the study.

E. Feature Extraction
Time and frequency inertial features were selected from

those which have been shown to be effective in previous
automated wearable systems of motor function [10], [19].
MMG features were largely selected from the list proposed
by Phinyomark et al [35] for EMG signal classification.
A collection of all the time and frequency series features
calculated for each of the three data types extracted from the
sensor system is displayed in Table I. The equations for the
less commonly used features are displayed in full for clarity.

A subset of the time-series features, calculated for each data
point (i ) of the time-series vector (x) over a total length N ,
for the present study is as follows:

Skew: A measure of the skewness of a distribution of
sensor data. Used as an inertial feature in the present
study.
Normalised Median Crossing: The number of times
the signal crosses the median line. Used as an inertial
feature in the present study.
Trapezoidal Rule: A measure of approximating the
definite integral. Used as an inertial and MMG feature
in the present study.
Log Detector: Provides an estimate of the muscle
contraction force. Used as an MMG feature, defined as:

L OG = e
1
N

∑N
i=1 log(|xi |) (1)

Myopulse Percentage Rate: A calculation of the overall
amount of time the myopulse output exceeds a minimum
threshold. Threshold value set by the Root Mean Square
(RMS) of the total measured signal for the present study.
Used as an MMG feature, defined as:

MY O P = 1

N

N∑
i=1

[ f (xi )] (2)

with f (x) =
{

1, if x ≥ RM S
0, otherwise

}

Slope Sign Change Percentage: Provides frequency
information by measuring the signal sign changes.
A threshold value is set to remove false positives due to
signal noise. Used as an MMG feature, defined as:

SSC P = 1

N − 2

N−1∑
i=2

[ f [(xi − xi−1)(xi − xi+1)]]

(3)

with f (x) =
{

1, if x ≥ 0.1RM S
0, otherwise

}
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The Fourier Transform was used to transform signals to the
frequency-domain, with frequency vector ( f ) and correspond-
ing amplitude vector (A). Frequency is defined at each bin ( j )
over a total length M . A subset of the frequency-series features
for the present study is as follows:

Mean Frequency: An assessment of the centre of the
distribution of power across frequencies. Used as an
inertial and MMG feature in the present study.
Mean Power: The mean power of the frequency trans-
formed signal. Used as an inertial and MMG feature in
the present study.
Power Ratio: The ratio of the power below (PB) and
power above (PA) the mean frequency value. Used as an
inertial and MMG feature, defined as:

P R =
∑M

j=1 P B(A( j), f ( j))∑M
j=1 P A(A( j), f ( j))

(4)

where P A(A, f ) =
{

A2, if f > M N F
0, if f ≤ M N F

}
,

P B(A, f ) =
{

0, if f ≥ M N F
A2, if f < M N F

}

Power Spectrum Ratio: Calculates the ratio of the
power in a frequency window (WP) around the dominant
frequency, and the power of the rest of the signal. The
lower boundary (LB) and upper boundary (UB) define
the boundaries of the window. Used an inertial and
MMG feature, defined as:

P S R = W P∑M
j=1 f ( j)

(5)

where W P =
U B∑

j=L B

A( j)2

Variance of Central Frequency: Variance of the central
frequency is an important characteristic of the fre-
quency signal and may be defined using the spectral
moments (Z ). Used as an MMG feature, defined as:

V C F = SM[2]
SM[0] −

(
SM[1]
SM[0]

)2

(6)

where SM[Z ] =
M∑

j=1

A j f Z
j

F. FMA-UE Tasks of Interest
The FMA-UE contains a total of 21 motor tasks (not

including reflex tasks) of which 9 require gross motor function
and 12 belong to the hand and wrist categories. Three of
the gross motor tasks (“flexor synergy”, “extensor synergy”,
and “coordination/speed”) involve multiple sub-components
to score. To ensure consistency of labelling with the other
tasks in subsequent classification of score, the overall scores
of these tasks were downsampled to match the standard ratings
assigned to the other tasks (0, 1, or 2).

A total of 7 out of the 21 tasks were excluded from the
present study upon further analysis. The “mass extension”
and “thumb adduction” tasks were excluded since the MMG

sensors used in this study only captured hand/wrist flexion
and not finger extension or thumb adduction. Secondly, despite
best efforts to recruit a cohort of subjects with a wide range of
deficits, some tasks were found to be assigned the maximum
score (2) for over 70% of the tested subjects. These tasks
were removed to avoid biasing the overall classification results.
Tasks removed were “mass flexion”, “hook grasp”, “pincer
grasp”, “cylinder grasp”, and “spherical grasp”.

G. Classification Pipeline
A classification pipeline was developed to predict 14 of the

motor tasks contained in the FMA-UE. The features for the
classifiers were calculated using the equations presented in
Section II-E and labels were provided by the ratings assigned
during clinical testing. Only the MMG features were used
to classify the hand/wrist tasks of the FMA-UE since these
could not quantified by the inertial sensing in this study. The
inertial-based features were used to classify all other tasks of
the FMA-UE (gross motor tasks).

Dimensionality reduction was performed using principal
component analysis since this method had a short compu-
tational time and was found to provide a good level of
performance in the current study. The size of the feature subset
was included as a hyper-parameter in the classification pipeline
to ensure that the optimal number of features was preserved
for each task score predicted. The optimal feature number was
selected from the following set: [3, 5, 10, 15].

The classification model chosen for this study was the
Light Gradient Boosting Model (LightGBM) (Microsoft
Corporation). This is a boosting type of classification model
which uses a novel method of growing the trees for a series
of decision tree classifiers. This classifier has shown great
potential for speed and high performance on small datasets
but has not yet been applied in an automated system of
motor function. Several of the parameters of the LightGBM
model were included as hyper-parameters in the classification
pipeline.

The developed classification pipeline encompassed all the
aforementioned classification stages including normalisation,
resampling, feature reduction, and classification. Classification
performance was assessed by 10 iterations of stratified 10-fold
cross validation. Folds were split with respect to each subject
to ensure that single subject data was not present in both the
train and test set. Within each internal training fold, hyper-
parameter optimisation was performed by exhaustive grid
search using 5-fold cross-validation. This procedure ensured
that there was no possible data leak between the training and
test set at any point during classification.

H. Supplementary Features
Supplementary features were designed to provide a more

fine-grained and sensitive measure of motor function than pos-
sible with the predicted clinical rating score. Supplementary
features were selected from the total set of extracted features
(see Section II-E) based upon the criteria of innate usefulness
and transparency as clinical measures of motor function.

An objective measure of the usefulness of the feature set
assessed by finding the Pearson’s correlation between each
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TABLE II
SUPPLEMENTARY FEATURES SELECTED FROM THE TOTAL SET OF FEATURES EXTRACTED BY THE NOVEL SYSTEM. FEATURES ARE SORTED BY

THE METRIC TYPE (LOCATION AND MEASURAND), FEATURE TYPE, AND FMA-UE TASK FROM WHICH THEY WERE EXTRACTED. PEARSON

CORRELATION COEFFICIENTS CALCULATED BETWEEN THE SUPPLEMENTARY FEATURES AND THE LOCAL (FMA-UE TASK THE

FEATURE WAS EXTRACTED FROM) AND THE GLOBAL (SUM OF ALL FMA-UE MOTOR TASKS) SCORES

TABLE III
CLASSIFICATION PERFORMANCE RESULTS FOR THE GROSS MOTOR TASKS OF THE FMA-UE AS CLASSIFIED USING THE 3-CLASS

MODEL. F1-SCORES ARE DISPLAYED FOR EACH LABEL (0, 1, 2) OF THE 3-CLASS CLASSIFICATION MODEL

feature and a gold-standard measure of clinical motor function.
For this study, the overall FMA-UE (sum of all 21 motor tasks)
was chosen as the gold-standard measure since we already
recorded this measure as part of the classification pipeline.
Only features which ranked amongst the top 20 correlation val-
ues were considered for selection as supplementary features.

The measure of feature transparency is more subjective but
also important to consider. The supplementary features are
intended to provide additional information to the clinician and
as such the features must be easily understandable and not
represent “black box” measures. From the top 20 most useful
features, 7 features were selected which were considered to
be transparent measures of motor function.

A total of 7 supplementary features remained after filtering
using the aforementioned selection criteria. These features
encompass aspects of joint orientation and muscle activity.
These features are displayed alongside the Pearson’s correla-
tion values they achieved with the FMA-UE in Table II.

III. RESULTS

A. Classification Performance

A persistent limitation in many prior automated system
studies is that the performance of the classification model was

only presented as the accuracy of the predictions. This metric
provides limited information as to how well each of the classes
are predicted and as a consequence is not a good measure
of classification performance in isolation. This problem is
mitigated in the present study by displaying both the accuracy
and the F1-score [36] (for each class) of the classification
model.

Classification results are separated into categories for tasks
involving either gross or hand/wrist motor function. All 15 of
the tasks identified in Section II-E were classified using the
classification pipeline discussed in Section II-G. The results
for the gross motor tasks and the hand/wrist motor tasks are
shown in Table III and Table IV respectively.

B. Feature Contributions

As previously discussed in Section II-G, a reduced feature
set was found for each task prior to classification using PCA,
and this process was repeated for each cross-validation fold.
One limitation of this method is that it makes it difficult
to identify the relative contributions of different features
to classification. An alternative method of identifying these
contributions is implemented in this study by examining the
correlations between the features and clinical rating scores.
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TABLE IV
CLASSIFICATION PERFORMANCE RESULTS FOR THE HAND/WRIST MOTOR TASKS OF THE FMA-UE AS CLASSIFIED USING THE 3-CLASS

MODEL. F1-SCORES ARE DISPLAYED FOR EACH LABEL (0, 1, 2) OF THE 3-CLASS CLASSIFICATION MODEL

TABLE V
FEATURE CONTRIBUTIONS AS ASSESSED ACROSS THE GROUPS OF GROSS AND HAND/WRIST MOTOR TASKS. FEATURE COMPONENTS

(MODALITY, LOCATION, AND FEATURE TYPE) ARE RANKED BASED ON THE FREQUENCY WITH WHICH THEY OCCURRED IN THE SUBSET

OF TOP 5 MOST IMPORTANT FEATURES ACROSS ALL MOTOR TASKS WITHIN THE GROUP. THE HIGHEST CONTRIBUTING MODALITY

AND LOCATION IS NOT SHOWN FOR THE HAND/WRIST GROUP SINCE THESE TASKS ARE ONLY CAPTURED

BY ONE MODALITY (MMG) IN ONE LOCATION (LOWER ARM)

For each task, the Spearman’s rank correlation coefficient
was found between the feature value and clinical rating score
across all subjects tested. Next, the features were ranked
based on this coefficient to identify the five features which
showed strongest correlation with the clinical rating score.
Since it would not be possible to display these results for
every single task classified, the features which ranked most
in the top five most commonly across the different groups of
tasks (gross or hand/wrist) are presented in Table V.

C. Supplementary Features Concurrent Validity
The features selected to supplement the classification score

had to demonstrate their usefulness as measures of motor
function. The most feasible method of achieving this is by cal-
culating the concurrent validity with a pre-existing well estab-
lished measure. The current gold-standard measures of motor
function post-stroke are the standard clinical rating scales and
of these the FMA is one of the most widely used and validated.
Pearson correlation coefficients were calculated between each
of the supplementary features and the task (local) and overall
(global) FMA-UE scores as shown in Table II.

IV. DISCUSSION

The present study sought to build on prior automated
systems of upper extremity motor function post-stroke in two
principal ways: (1) the integration of MMG sensing to enable
classification of hand/wrist motor tasks and (2) develop a
model which combines a predicted output of standard clinical
rating score with a series of fine-grained features. These
supplementary features are calculated from sensor-derived
metrics of the subcomponents of motor function and provide
a continuous measure of motor function as opposed to the

broad discrete values offered by the clinical rating scores.
This section will be discussed in terms of meeting these two
objectives and how the classification performance compares to
prior automated studies.

A. Classification of the FMA-UE

Gross motor tasks of the FMA-UE were classified with
a mean accuracy of 75%. There is also a relatively low
range of accuracy with a minimum value of 71% and
maximum of 81% showing high classifier precision. Tasks
which were less well classified were those which involved
more complex or several stages of movements including the
“Coordination-speed” (71%), “Flexor synergy” (75%), and
“Hand to lumbar spine” (72%) tasks. All clinical assessments
were performed at the bedside (in many cases only a few
days post-stroke) and this likely had a negatively effect on
the classification accuracy of all the tasks. The decision to
test at the bedside was made so that the results would a
better representation of how the system would perform in
clinical practice. This approach (compared to having the
subject seated at a table for instance) meant that the subjects
had no consistent body position and as such performed the
tasks in less predictable ways. The lack of consistency within
each task in turn makes it more difficult for a classification
model to predict motor impairment level.

The hand/wrist motor tasks, which were classified using the
MMG-derived features alone, scored a lower overall classifi-
cation accuracy of 62% as compared to the gross motor tasks.
This drop in performance may be due to the small movements
involved in these tasks which are more difficult to quantify
than gross motor tasks. Another reason may be that the MMG-
derived features are less sensitive than inertial for the rating
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TABLE VI
SUMMARY OF THE PROTOCOL AND RESULTS OF THE PRESENT AND RELEVANT PAST STUDIES OF AUTOMATED SYSTEMS OF MOTOR FUNCTION

POST-STROKE. CLASSIFICATION RESULTS ARE FOR TASKS OF THE FMA-UE WHICH ARE CATEGORISED EITHER AS GROSS OR

H/W (HAND/WRIST) MOTOR TASKS IN THE PRESENT STUDY. ONE STUDY USED TASKS FROM THE MALLET SYSTEM AND

THESE TASKS HAVE ALL BEEN CATEGORISED AS GROSS MOTOR TASKS IN THIS TABLE. NA (NOT AVAILABLE)
VALUES ARE MARKED WHERE THESE VALUES WERE NOT PROVIDED BY THE AUTHORS

of motor function. The application of MMG sensors for this
application is still in its infancy and as such it is likely that
more powerful features for classifying MMG data will be
proposed in the future. Overall, these early results suggest the
promise of a modality which may be applied more easily than
inertial sensing and does not suffer from the skin impedance
and robustness concerns that are associated with EMG.

Evaluation of the F1-scores for the three-class classification
model developed for the present study is apparent that the
model has difficulty predicting the mid-rating score (label 1).
This is evidenced by a mean F1-score of 0.44 and 0.34 for
the gross motor and hand/wrist motor tasks respectively. One
reason for this may be due to noise inherent in the labelling.
The ratings assigned to the FMA-UE are inherently broad and
can incur a deal of ambiguity as to what constitutes partial
movement as compared to full or no movement. Another
contributing factor to a low F1-score for this label may be
the high inter-variability in how subjects perform tasks at this
functional level. A subject with only partial motor function
may require a variety of different compensatory movements
to achieve a given task, which may make classification more
difficult. This is in contrast to a subject with no or full motor
function, who would be expected to perform the task in a more
predictable manner. A final reason for the low F1-score is an
imbalanced dataset due to this label not being well represented
in the data. The best solution for the final two limitations is to
collect additional training data so that the classifier is better
equipped to classify these labels.

There are a limited number of comparable high quality
automated studies of upper-extremity motor function post-
stroke with which to compare the results of the present system.
A number of prior systems were applied in pilot studies
and therefore the classification results achieved have limited
validity. Many other automated studies were proof-of-concept
and only sought to find correlations between features or cus-
tom scores with clinical rating scales. Several studies used
a bilateral measure whereby a comparison between a paretic
and non-paretic arm was calculated, and therefore results may
not be compared to the present study. Finally, several of
the remaining studies lacked a rigorous enough classification

procedure or utilised too small a sample size. Three prior
studies were identified as being suitable for comparison with
the present studies and these are displayed in Table VI. The
main differences between the past and the present study is the
instrumentation used and the required testing conditions.

Kim et al [37] developed and trialled the application of an
automated system (single Kinect depth-sensing camera) of the
FMA-UE in a large (41 hemiplegic stroke subjects) clinical
study. A classification model was developed to classify 6 of the
tasks from the FMA-UE. The remaining tasks of the FMA-UE
were not incorporated, presumably due to difficulty detect-
ing these movements with the Kinect sensor, such as those
involving twist rotation around the bone axis or hand/wrist
motor movements. The study by Kim et al achieved prediction
accuracies for each task ranging from 65% to 87%. These
results are comparable to the present study which ranged
between 71% and 81% for the gross motor tasks, which cover
a similar task set.

The study by Lee et al [7] extended the sensor system
proposed by Kim et al with the inclusion of force sensing
resistor in addition to the Kinect sensor. This enabled the
hand grasp tasks to also be quantified. The study by Lee et al
tested subjects in an instrumented room complete with Kinect
sensor and instrumented tools. Clinical scores were predicted
using a rule-based classifier with features extracted based
on the guidelines of the FMA-UE. This meant that the
performance of the classification model was not limited by
the relatively small sample size (9 subjects) recruited for the
study. Overall, the study achieved a very high classification
accuracy of approximately 92% over all tasks tested. One
caveat to the work performed by Lee et al is that testing
was performed in a very controlled environment which means
that similar results may not be achieved in a normal clinical
environment. The system produced in the present study was
not able to achieve comparably high classification accuracy
but does offer several advantages. For instance the instruments
applied in the present study may be used to test subjects
at all levels of motor function and may be tested at the
subjects bedside, which increases their ease of use in a clinical
setting. The results of the present study were also achieved
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over a much larger cohort size which increases their clinical
significance.

A final clinical study has been performed to evaluated
the automated system developed by Seo et al [13]. The
proposed system (similar to the prior two studies) implemented
the Kinect sensor for motion tracking. Unlike the study by
Lee et al which implemented a secondary instrument to
compensate for movements which the Kinect sensor cannot
detect, the study by Seo et al instead chose to classify the
tasks of the Mallet clinical rating scale, which does not require
these movement types. A rule-based classification model was
developed for predictions to avoid the requirement for a
significant amount training data (only 7 subjects tested). The
accuracy scores achieved for these tasks ranged from 43%
to 100% and averaged 77%. The mean result is comparable
to those achieved in the present study (the range is much
larger). The Mallet clinical scale, although well suited for
measurement using the Kinect sensor, is not traditionally used
in stroke evaluation and as such may have limited clinical
validity.

B. Supplementary Features
All supplementary features selected (see Table II) exhibited

a positive Pearson correlation coefficient with the overall
(range 0.56 - 0.78) and task-specific (range 0.47 - 0.85)
FMA-UE scores, which were used as the gold-standard
measures.

The study by Fu et al [38] investigated the concurrent valid-
ity of a shortened FMA with other clinical rating scales using
the Pearson correlation coefficient. This study considered a
correlation coefficient of >0.75 to be excellent, 0.5-0.75 to be
good, and 0.25-0.5 to be fair. The shortened FMA was found
to have a correlation of 0.57 (good) with the Stroke Impact
Scale hand function subscale. On this basis, the correlation
coefficients measured between the supplementary features and
the overall clinical score in the present study all range in
the good to excellent range (0.56 - 0.78). This suggests high
concurrent validity of the extracted features with the FMA-UE
and supports their usefulness as supplementary metrics of
motor function post-stroke.

The study by Julianjatsono et al [15] developed a sensor
system consisting of the Kinect sensor and a wearable glove.
This system was utilised in the development of a regression
model to predict the outcome of six tasks of the FMA-UE.
A unique feature was calculated to define each of the six tasks,
and the Pearson correlation coefficient calculated with the clin-
ical score assigned for that task. Correlation coefficients were
achieved which ranged from 0.17 to 0.475. This is compared
to the present study which found correlations of 0.47 to 0.85
using the novel features developed over a similar task set (only
one of the tasks selected differs between the studies). These
results give a promising indication of the usefulness of the
features extracted in the present study as measures of motor
function as compared to the wider literature.

C. Clinical Implications

Existing automated systems of motor function post-stroke
have variously been proposed as home-based rehabilitative

aids, or as replacements for clinical testing in monitoring
subject improvement or research applications. The system
developed in the present study was designed to ensure the
testing process was as seamless as possible for both clinician
and subject alike. Unlike many prior automated systems,
assessment could be performed at the bed-side and was
possible even for bed-bound subjects. In addition, there was
no requirements for remote cameras to be set up or for
the subjects to be in a sitting position. Despite this design,
the administration of the system still presented an increased
time, cognitive, and physical burden on clinician and subject
alike due to the attachment of wearable sensors, and extra
consideration to make sure each task was recorded correctly.
These drawbacks mean that automated systems are unlikely to
be widely adopted in the near future as means of monitoring
subject improvement as part of normal post-stroke care.

In the opinion of the authors, the better application for
automated systems is in a field whereby more time may be
afforded, and the high resolution provided by the fine-grained
supplementary feature set may lead to useful insights. The
developed automated system could be used to enrich studies
of medicinal or rehabilitative interventions by improving the
set of motor outcomes. The study presented in this paper
illustrates the potential of an automated system which derives
sensor-based metrics providing insights beyond simply pre-
dicting standard clinical rating scales.

V. CONCLUSION

The first novel contribution of this paper is the development
of a system of motor function post-stroke which combines
a classified clinical rating score with several sensor-derived
supplementary features. This combination of metrics incorpo-
rates the validation of a well-known clinical score with the
high resolution provided by the motor features. Classification
performance was found to be broadly comparable to the wider
literature which testing a much less controlled environment.
The supplementary features were shown to provide useful
measures of motor impairment. These features could be used
to provide information beyond the standard clinical rating
scales.

The second major contribution of this paper is the introduc-
tion of MMG sensing in wearable motor system post-stroke.
MMG sensing was proposed as a method to determine the
motor function of the wrist and hand, a region which has either
been ignored or classified using less practical sensor systems
in prior systems. MMG was successfully implemented in the
present study to classify the hand/wrist tasks of the FMA-UE
and to derive supplementary features of muscle activity. It is
expected that performance could be further improved in the
future by instrumenting more regions and developing more
sophisticated motor features. In particular, the MMG system
should be expanded to also capture the muscle groups active
in finger/wrist extension and thumb adduction since these
movements form a major role in several tasks of the FMA-UE

Finally, a persistent limitation of prior automated systems
of motor function post-stroke is that validation studies are
conducted with low number of subjects and in very controlled
circumstances. This means that any results of the systems
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are unlikely to be replicated in real clinical environments.
This was rectified in the present study by testing the system
over a large subject cohort, and assessing the subject directly
at the bedside. The sensing system has been successfully
patented [39] with translational activity underway for wide-
spread in-clinic and home-based use.
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