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Deep-Learning-Based Emergency Stop
Prediction for Robotic Lower-Limb
Rehabilitation Training Systems
Baekdong Cha , Kyung-Hwan Lee, and Jeha Ryu , Member, IEEE

Abstract— Robotic lower-limb rehabilitation training is
a better alternative for the physical training efforts of a
therapist due to advantages, such as intensive repetitive
motions, economical therapy, and quantitative assessment
of the level of motor recovery through the measurement of
force and movement patterns. However, in actual robotic
rehabilitation training, emergency stops occur frequently
to prevent injury to patients. However, frequent stopping
is a waste of time and resources of both therapists and
patients. Therefore, early detection of emergency stops in
real-time is essential to take appropriate actions. In this
paper, we propose a novel deep-learning-based technique
for detecting emergency stops as early as possible. First,
a bidirectional long short-term memory prediction model
was trained using only the normal joint data collected from
a real robotic training system. Next, a real-time threshold-
based algorithm was developed with cumulative error. The
experimental results revealed a precision of 0.94, recall
of 0.93, and F1 score of 0.93. Additionally, it was observed
that the prediction model was robust for variations in mea-
surement noise.

Index Terms— Deep learning, emergency stop prediction,
robotic lower-limb rehabilitation, time series prediction.

I. INTRODUCTION

THE goal of rehabilitation exercises is to perform specific
movements that induce motor plasticity to improve motor

recovery and minimize functional deficits. Modern concepts of
motor learning favor task-specific trainings such as relearning
walking. However, they require significant physical effort
from the physiotherapists to assist the patients and additional
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training for free walking with guidance by at least two
physiotherapists [1].

Robotic rehabilitation may be a solution for automated
training [2]. This technology can provide accurate proprio-
ceptive, kinematic, and kinetic guidance, as well as variable
error practice, high-intensity, and repetitive task-specific and
interactive exercises for paretic lower-limbs [3], [4]. Based on
these benefits, exoskeleton-type robotic lower-limb rehabilita-
tion systems are used in medical fields [3], [5]–[8] resulting
in substantially improved lower-limb function.

For robotic training, pre-tests are performed on all patients
to identify the ones with conditions that complicate the rehabil-
itation robot training [9]. Setting the correct training parame-
ters (e.g., walking speed and weight support ratio) can enhance
the training efficacy and prevent potential safety problems
that could occur during the training. Despite these precau-
tionary measures, emergency stops tend to occur frequently
in real rehabilitation training with exoskeleton-type robotic
systems (e.g., Walkbot (P&S Mechanics, Korea) and Lokomat
(Hocoma, Switzerland)) to avoid injury to the patients. One
of the major causes of emergency stops is spasticity, which
results in an increased level of joint resistance during passive
movement, because repeated passive lower-limb exercises are
characteristic of lower-limb rehabilitation robots. Other causes
may include incorrect settings by inexperienced physical ther-
apists, improper wearing of the rehabilitation robot, and/or
awkwardness of body movements in patients during the robot
rehabilitation training for the first time. Such emergency stops
are also likely to occur in other wearable robotic walk-assist
devices for healthy individuals. To date there has been no com-
prehensive study of abnormal events such as emergency stops
during the robot rehabilitation training. Our clinical training
experiences and those shared by others indicate that emergency
stops occur frequently in rehabilitation robot systems.

Emergency stops are a waste of time and resources of
both therapists and patients. A therapist typically monitors a
patient’s measured kinematic leg and knee angles and esti-
mated kinetic leg and knee torques [10] reported by the robot’s
sensors during the training to determine whether the patient is
correctly undergoing the training. However, the complexity of
wearable robots including the lower-limb rehabilitation robots,
makes it difficult to identify abnormal events in real-time
based solely on the trends of time series data. Therefore, it is
necessary to develop an intelligent and automated method to
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predict improper operations such as emergency stops, improve
the efficacy of the rehabilitation process, and avoid excessive
emergency stops during the training.

The scenario for resolving emergency stops that may occur
during the operation of a lower-limb rehabilitation robot
consists of three steps: 1) predicting the emergency stops,
2) identifying the causes of emergency stops, and 3) taking
appropriate actions to eliminate the causes of emergency stops
in real-time before the stops occur. In this study, we have
focused only on predicting the emergency stops as early as
possible in real-time. Steps 2 and 3 require significant analysis
and are planned for future research.

In related studies, Arami et al. [11] analyzed the machine
learning-based prediction of gait freezing in Parkinsonian
patients based on recent studies using a set of possible
markers of the freezing of gate (FOG) [12], including cadence
increase, decrease in step length, appearance of new peaks, and
higher frequency of acceleration during and/or prior to FOG.
A similar approach in [13] hypothesized the degeneration of
gait patterns prior to FOG. This approach could be applied
to the prediction of emergency stops in robotic rehabilitation
systems and in passive training where a patient’s lower-
limbs are fixed to the robot’s legs and the patients are
instructed to be passive while being guided by the robot to
walk. However, this machine learning-based method requires
the following subtasks: 1) a set of movement-based fea-
tures should be defined and identified to accurately distin-
guish the anomalies from the normal rehabilitation training
using handcrafted machine learning (ML) approaches and
2) a subset of these features should be effectively predicted
based on past values using a data-driven predictive model.
The predicted features can then be used to predict the specific
anomalies. These subtasks require large amount of data that
must be collected using an appropriate design with a sufficient
number of diverse patients; this requires significant time and
effort. This type of handcrafted ML approach dealing with
time series data generally requires good domain knowledge;
hence, it is difficult to establish optimal hyperparameters for
optimizing the model. Moreover, in the rehabilitation training
system, there are many parameters (e.g., walking speed, body
weight support, and force guidance) related to the therapy
protocol (e.g., when it is necessary to adjust the walking speed
according to the patient’s condition) thus, complicating the
application of handcrafted ML approaches. However, the deep
learning (DL) approaches are more appropriate because the
DL model can extract the essential features implicitly without
any prior domain knowledge.

Real datasets have already been collected during real patient
clinical trainings using the Walkbot (P&S Mechanics, Korea)
over the past ten years. The dataset contains anonymized log
data for the system maintenance of Walkbot. These datasets
include the history of 69 patient trainings with sudden stop
events due to unknown causes. Although these datasets were
not collected using an appropriate design(we do not know
the reasons for the occurrence of emergency stops), they
can be used to predict emergency stops in advance because
we were able to identify abnormal behaviors prior to the
emergency stops in most cases (approximately 90% of the

Fig. 1. Typical data showing abnormal behaviors before an emergency
stop: (a) top, (b) middle, and (c) bottom.

collected dataset). The three typical data presented in Fig. 1
represent the abnormal behaviors before an emergency stop.

These figures approximately indicate the regular hip torque
patterns for a certain duration after the walking training starts
and then begin to exhibit certain abnormal patterns, such as an
increasing negative magnitude beyond a typical regular value
and one (Figs. 1(a) and 1(b)) or more (Fig. 1(c)) very large
negative amplitude (indicated by red triangles) immediately
before (one stride before in Fig. 1(a)) or long before (11 strides
before in Fig. 1(b) and multiple strides before in Fig. 1(c)),
which is an emergency stop (indicated by yellow arrows). This
typical behavior suggests that a method should be used for
predicting an emergency stop before it occurs. The potential
start (indicated by red triangles) of abnormal behavior was
determined by a group of physical therapists who specialized
in rehabilitation of lower-limb using rehabilitation robots.

For datasets in which it is difficult to analyze the char-
acteristics of emergency stops and the features of datasets,
DL-based anomaly detection methods can be applied [14].
In such methods, a prediction model can be trained using
a sufficient number of normal data that are readily available
from non-emergency stop cases or prior to abnormal behaviors.
Once a prediction model is trained, the future value of the test
data can be predicted and compared to the ground-truth data
that are collected in real-time during the training. If the error
between the predicted and ground-truth values is larger than a
predefined threshold, then it is highly likely that an emergency
stop will occur in the near future.

This paper proposes a DL-based real-time emergency stop
prediction method that can be used in robotic gait rehabilita-
tion training systems without prior anomaly knowledge. The
DL-based model learns and predicts the pattern of normal data;
based on this result, a threshold-based algorithm is developed
to predict an emergency stop when an abnormal behavior
is observed. The proposed method uses real datasets col-
lected during real patient clinical trainings using the Walkbot
(P&S Mechanics, Seoul, Korea). The DL module is trained
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Fig. 2. Modified two-layered bidirectional long short-term memory
(bi-LSTM) recurrent network.

using a bidirectional long short-term memory (bi-LSTM)
[15] that requires the history of normal data without
sudden stops. When predicting emergency stops, a full
dataset containing the histories of sudden stops was used.
A dataset that did not include emergency stops was also
used to verify the performance of the model. The proposed
method predicted the emergency stops before they occurred
(approximately 0.5 s). This early detection is sufficient for
taking preventive measures, such as increasing weight sup-
port, reducing walking speed, and reducing stride before an
emergency stop occurs, considering the 0.1 s control rate of
the lower-limb rehabilitation training system.

The main contributions of this study are twofold. First, a fast
and accurate emergency stop prediction method is proposed
for robotic lower-limb rehabilitation training systems using
bi-LSTM, which is the first of its kind. Second, the method
was evaluated using real patient datasets obtained from the
rehabilitation training.

II. PREDICTION OF EMERGENCY STOPS

The datasets used in this study consist of time-series data.
Hence, a recursive neural network was adopted to solve the
prediction problem. This network consists of two components:
(i) predicting the value of the next time instance in the time
series data and (ii) detecting anomalies such as incoming
emergency stops by comparing predicted values to real values.

A. Future Prediction

In this study, we adopted the two-layered bi-LSTM recurrent
network [16] as shown in Fig. 2, which was developed for
repetitive cyclic events. This network uses both past (forward)
and future (backward) gait cycle states and dropout techniques
to reduce the network size and avoid overfitting. The goal
of stacking multiple LSTM models in such a multi-layered
hierarchical architecture is to extract features in the lower
layers that will disentangle the factors of variation in the input
data and then combine these features in higher layers.

The authors of [15] used the bi-LSTM architecture to clas-
sify normal and pathological gaits (knee rigidity and limping)

because, the lower-limb joint angles in the current frame are
closely related to both the previous and future frame angles in
a walking sequence; additionally, one joint angle is related to
other joint angles. This architecture can be applied to arbitrary
joint features, namely kinematic (e.g., angle) or kinetic (e.g.,
torque) because kinematic and kinetic data are correlated [17].
It can also be applied in our study to predict the future joint
features (hip torque) using previous feature data.

The two-layered bi-LSTM recurrent neural network shown
in Fig. 2 is a modified version of that presented in [15]. The
inputs are the previous joint features Xt up to the current
time t and the output is the predicted state at the next time
(t + 1). The predicted output is compared with the ground-
truth data to calculate a loss function, and backpropagation
process is used to minimize the loss by changing the network
weights. For the regression task, we selected the root mean
square error (RMSE) [18] loss function to improve the training
and validation accuracy of the model. In the modified network
outputs, batch normalization was applied to increase the train-
ing speed of the model [19]. Each batch of inputs for the model
(and other feed-forward activations) have different statistics
that are not typically representative of the training data as
a whole. Therefore, the layers of the model must constantly
adapt to the changing statistics resulting in inefficient training.
However, from the history of input data only the hip torque
data in the sagittal plane were used in the prediction problem
because the collected dataset revealed that most emergency
stops were associated with kinetic hip torque data. The number
of emergency stops caused by the knee were relatively small,
approximately 5%, compared to the emergency stops caused
by the hip. Therefore, other kinematic hip and knee angles
and kinetic knee torques were not used.

B. Emergency Stop Detection

Once a future data sample (xt+1, hip torque) is predicted by
the bi-LSTM, it is compared with the corresponding ground-
truth data sample (yt+1) to define the prediction error Et+1 as
follows:

Et+1 = |yt+1 − xt+1| . (1)

The prediction errors in the hip torque data histories can
be used directly to detect the upcoming emergency stops.
For example, an emergency stop may occur if the single-
step prediction error defined in (1) (the so-called instanta-
neous error) in one future frame moves outside a prede-
fined confidence interval. This confidence interval can be set
as the range surrounding the ground-truth data sample X
(Xmax and Xmin) of a patient’s hip torque during a particular
time interval (approximately three cycles of hip torque data)
and is defined as:

Con f idence interval = (Xmax − Xmin)× r, (2)

where r is a pre-selected ratio between zero and one. Fig. 3
illustrates the true and predicted values and confidence inter-
vals (shaded area) with two cases of prediction errors. Pre-
diction error 1 is small; hence, it is estimated to be normal,
whereas Prediction 2 is sufficiently large to be estimated as
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Fig. 3. Illustration of confidence intervals and prediction errors.

abnormal (i.e., an emergency stop may occur in the near
future).

A large confidence interval may not detect true emergency
stops, while a small confidence interval may detect too many
emergency stops (false alarms). Additionally, noise in the
signal can generate incorrect judgments particularly for small
confidence intervals. Smaller the value of r , greater is the
effect of noise. To avoid these issues, another type of error
called cumulative error (CE) ct is used. CE accumulates the
previous prediction errors across multiple frames over a short
period of time (one or more frames depending on the data)
prior to signaling a sustained anomaly. CE can reduce false
positive rates compared to an instantaneous error for one future
frame.

When computing the CE, two factors should be considered:
first, CE should be computed only if the prediction error
is outside the confidence interval defined in (2); otherwise,
it should be set to zero. If the CE accumulates prediction
errors, which are positive values, without resetting to zero,
it can increase without indicating an anomaly. If only predic-
tion errors outside the confidence interval are accumulated,
then the CE can indicate anomalies more clearly.

Fig. 4 presents a typical abnormal behavior in which high
negative peaks are clearly visible just before an emergency
stop (see the magnified view at the bottom). This figure shows
that while the instantaneous error (black solid line) increases
gradually, the CE (yellow solid line) exhibits sharp changes
but resets to zero if the instantaneous error is within the
confidence interval. These sharp changes are easier to detect
than gradual changes. This figure also presents the actual
emergency stop frame (thick red arrow) and frame (thick
yellow arrow) at which the emergency stop is predicted in
advance by the proposed method. The thick green arrow
represents the detection horizon indicating the early detection
of an emergency stop.

The second factor related to CE is to consider the change
in predicted and true values between two consecutive time
frames. Fig. 5 presents seven typical cases of predicted (blue
line) and ground-truth (true) (red line) values from (t − 1)
to (t). Case 1: same signs and converging, Case 2: same
signs and diverging, Case 3: same signs and crossing, Case 4:

Algorithm 1 Computation of CE
1: PROCEDURE: Determine when the prediction error Et

is accumulated.
2: Input: xt , yt , q, T, r; True joint data: xt ; Predicted joint
data: yt ; Number of past data (fixed length): q; Particular
time instance: T (>q + 1); ratio (threshold for confidence
interval): r
3: Output: cumulative error: ct

4: Initialize cT ← 0
5: repeat
6: t ← T, X = (

xT−q , xT−q+1, xT−q+2, . . . , xT−1
) ;

5: Calculate Xmax , Xmin ;
6: if ET > (Xmax − Xmin )× r and (x T−1 − yT−1) ×
(xT − yT ) > 0 then
7: cT ← cT + ET ;
8: Else
9: cT ← 0;
11: return cT ;
12: T ← T + 1;
13: until emergency stop is detected;

Fig. 4. Typical error behaviors before emergency stops: the bottom
figure presents a magnified view before an emergency stop.

same signs and parallel, Case 5: different signs and diverging,
Case 6: different signs and converging, and Case 7: different
signs and crossing.

Fig. 5 demonstrates that the predicted values may cross over
the true values (see Cases 3 and 7) between two consecu-
tive time frames, which can be checked using the following
inequality condition:

Cross over happens i f (xT−1−yT−1) (xT−1 − yT−1) < 0.

(3)

When computing the CE, accumulation of all the predicted
errors may not reveal sharp CE changes. Hence, to capture
sharp changes, we suggest that crossover cases should be
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Fig. 5. Predicted and ground-truth (true) values between two consecu-
tive time frames.

excluded when computing the CE. Accordingly, we tested two
cases (with and without the inclusion of crossover cases) and
determined that excluding the crossover cases resulted in a
better performance as discussed in Section IV.

The following summarizes the proposed CE computation
method.

Fig. 4 presents a typical CE behavior (sharp change just
before an emergency stop) based on Algorithm 1 for the data
of one patient. This result demonstrates that the proposed
CE method can easily and accurately detect emergency stops
in advance.

Once the emergency stops are predicted by training the
bi-LSTM network on large amount of normal data (i.e., hip
torque data without emergency stops), the proposed method is
implemented using the following steps:

(i) Collect joint data (hip torque in this study) from a
patient using the robot rehabilitation system in real-
time.

(ii) Input the previously collected data q into the neural
network. In this study, we used q = 108, which is
sufficiently large (approximately three cycles of hip
torque data), to compute the maximum and minimum
values of the time-sequence data for confidence interval
estimation. This implies that the proposed method can
only be applied after the collection of hip torque data.

(iii) Predict the future joint data at the next time step
(t + 1). The proposed algorithm does not require any
prior knowledge of abnormal behaviors and utilizes
normal datasets for training.

(iv) Compute the prediction error using (1).
(v) Identify anomalous behaviors using the CE computed

by Algorithm 1. If the CE is greater than a predefined
threshold, then an abnormal behavior is identified.

III. EXPERIMENTS

A. Data

The gait training data used in this study were collected
from 69 patients trained by Walkbot (P&S Mechanics, Seoul,
Korea). Most of the patients were diagnosed with walking
disorders, such as stroke, cerebral palsy, and Parkinson’s dis-
ease. Because the dataset contains anonymized log data, there

Fig. 6. Typical normal joint data.

is no particular dataset population. However, the population
consisted of mostly stroke patients (approximately 80%).

Several sessions of gait training data were gathered from
each patient. The collected data were classified by the gait
training physiotherapists as normal or abnormal patterns
(149 normal sessions from 31 patients and 67 abnormal
sessions from 38 patients). Each session dataset constituted the
angle and torque trajectories of the two joints (hip and knee).
Each session of normal termination lasted for approximately
30 min. In the event of an emergency stop, the session length
depended on the time of occurrence of abnormal behaviors.

Note that abnormal behaviors were not observed before
emergency stops while collecting the dataset. Additionally,
physical therapists did not notice any abnormality in the
patients or the machine Walkbot. Emergency stops occur when
the safety protection of the hip joint exceeds the threshold.
Hence, the Walkbot is programmed to induce an emergency
stop if the hip joint torque exceeds the preset threshold for
preventing injury to patients.

Fig. 6 presents the representative histories for normal train-
ing sessions; they are relatively consistent and exhibit no
significant changes in joint data values throughout the training
duration. A typical emergency stop during the training is
presented in Fig. 7, where an abnormal pattern appears in the
torque data prior to the emergency stop. However, the joint
angle data did not reveal any abnormal behaviors because the
training data were collected during passive modes of lower-
limb rehabilitation training where the patient’s lower-limbs
were fixed to the robot’s legs. This means that the trajectories
of the joints only follow the specified gait patterns designed
by physiotherapists for proper rehabilitation training for each
patient. Therefore, abnormal behavior detection should be
performed based on the history of torque data of the joints.

B. Data Preprocessing

The raw data from robotic rehabilitation systems are noisy;
hence, a fourth-order Butterworth filter with a cut-off fre-
quency of 5 Hz was used to filter out random noise and retain
meaningful signals representing abnormal behaviors [20].
Additionally, data normalization was performed to ensure that
the values of input data were between zero and one.
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Fig. 7. Typical abnormal joint data.

To train the bi-LSTM network for future joint data predic-
tion, 82 normal datasets for 17 patients were used and data
selection was randomly sampled. The 82 training datasets were
split into 8:2 (training : validation). The evaluation of model
performance in detecting abnormal behaviors used a total
of 134 testing datasets (67 normal datasets from 14 patients
that were not used for training and 67 abnormal datasets from
38 patients). Therefore, the individuals in the training set were
not present in the testing set. For reliable metrics, such as
precision and recall a similar number of normal and abnormal
datasets must be used.

C. Ablation Study

The proposed model was implemented in KERAS Frame-
work 4 with TensorFlow as the backend. The proposed
model and algorithm were executed on a machine with
an AMD Ryzen 7 2700X CPU with eight cores and an
NVIDIA GeForce GTX 1080ti GPU. The Adam optimizer [21]
was used with optimal parameters (learning rate = 0.0012,
beta1 = 0.9, beta2 = 0.999, epsilon = 1.0e−08, no decay).

We performed an ablation study to determine the best para-
meters of the bi-LSTM model by verifying the performance
for: (1) the number of layers in the four ranges of [1, 2, 3, 4],
(2) number of hidden units in the seven ranges of [5, 10, 30,
50, 100, 200, 300], and (3) number of inputs of the previously
collected datasets (q) in the six ranges of [18, 36, 72, 108, 144,
216] in one cycle (36 frames) of walking. This ablation study
required a total of 168 (4 × 7 × 6) cases, and training for
each case lasted for approximately 20 min to 2 h depending
on the size of the architecture and input data.

For accurate evaluation and optimization of the model
hyperparameter, we used 5-fold cross validation. The model
stopped training early when the validation loss (RMSE) did
not improve for more than 10 epochs to prevent overfitting.

Table I summarizes the RMSE values of the test set. Note
that the results in Table I present only the best RMSE for the
best number of hidden nodes and input dataset (q) for each
number of layers (1, 2, 3, and 4) among a total of 168 cases.
Considering the number of weights for inference time (in the
order of 0.08 s) and minimum RMSE, we selected the best

TABLE I
ABLATION STUDY OF BI-LSTM NETWORK

architecture with two layers, 150 hidden units, and 108 input
datasets.

D. Performance Evaluations

The proposed algorithm applies two main enhancements:
(i) the use of CE instead of instantaneous error and (ii) the
consideration of crossing cases in the CE in Algorithm 1 to
investigate the effect of these enhancements in the following
four cases:

1) AYEY (Accumulator Yes, Exclusion Yes): Use cumula-
tive error, exclude crossing cases.

2) AYEN (Accumulator Yes, Exclusion No): Use cumulative
error, include crossing cases.

3) ANEY (Accumulator No, Exclusion Yes): Use instanta-
neous error, exclude crossing cases.

4) ANEN (Accumulator No, Exclusion No): Use instanta-
neous error, exclude crossing cases.

The AY (Accumulator Yes) method accumulates ET if
ET > (Xmax − Xmin) × r and detects abnormal behavior
when CE exceeds the emergency stop prediction threshold.
The AN (Accumulator No) method detects abnormal behav-
ior when the instantaneous error ET exceeds the thresh-
old if ET > (Xmax − Xmin) × r without accumulating
ET . The EY (Exclusion Yes) method computes ET only if
(xT−1 − yT−1) (xT−1 − yT−1) > 0. The EN (Exclusion No)
method does not compute ET .

To evaluate the performances of the four cases described
above, various cumulative ratios (r) and emergency stop pre-
diction thresholds (T hreshold) were tested. The cumulative
ratios were set to 1, 2, 3, 4, 5, 8, 11, 14, and 20% of the
hip torque peak-to-peak amplitude (i.e., r = [0.01, 0.02, 0.03,
0.04, 0.05, 0.08, 0.11, 0.14, 0.17, 0.2]). A range of meaningful
cumulative ratios was identified with grid search and the values
within that range were set as targets.

The emergency stop prediction thresholds were set to
T hreshold = [0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36,
39, 42, 45, 48, 60, 70, 80, 100, 120, 140, 160, 180, 200].
These thresholds were used for both CE (that requires a
high detection threshold because it is the sum of ET ) and
instantaneous error (that requires a low detection threshold
because it detects abnormal behavior based on a single ET

value).

IV. EXPERIMENTAL RESULTS

To evaluate the proposed emergency stop prediction algo-
rithm, we used metrics of precision, true positive rate (TPR),
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specificity, false positive rate (FPR), and F1 score as discussed
in [22].

Precision = Tp

Tp + Fp
, (4)

T P R = Recall = Sensi tivi ty = Tp

Tp + Fn
, (5)

Speci f ici ty = Tn

Tn + Fp
, (6)

F P R = 1− Speci f ici ty = Fp

Tn + Fp
, (7)

F1 = 2× Precision × Recall

Precision + Recall
, (8)

where Tp represents the number of correctly detected anom-
alies (true positive), Fp represents the number of false pos-
itives, Tn represents the number of true negatives, and Fn

represents the number of false negatives in the confusion
matrix. Precision is defined as the ratio of true positives to
the total number of positive outputs predicted by the model.
Recall is the fraction of positive examples correctly predicted
by a model. F1 score is the harmonic mean of the precision
and recall.

To illustrate the diagnostic capabilities of a binary classifier
system as its discrimination threshold varies, a receiver oper-
ating characteristic (ROC) curve can be plotted [23]. The area
under the ROC curve (AUC) provides an aggregate measure
of the performance across all possible classification thresholds.
Figs. 8 and 9 presents the ROC curves based on instantaneous
error, and ROC curves based on CE, respectively.

The ROC curves reveal the differences in performance
based on the parameters of the ratio (r) and emergency stop
prediction threshold (T hreshold) in the proposed algorithm.
Hence, we can select optimal values for these two parameters
based on the curves and areas. A comparison of the AUCs
in Figs. 8 and 9 reveals that CE provides better performance
than instantaneous error. The best ratio is r = 0.11 in the
AYEY condition in Fig. 10, which yields the maximum AUC.
The optimal emergency stop prediction threshold (T hreshold)
can be selected from Table II, where the numerical values
of various performance measures (threshold, TPR (Recall),
FPR, precision, and F1 score) are computed for the best ratio
of 0.11 in the AYEY condition. Here, T hreshold = 15 yields
the maximum F1 score.

V. DISCUSSION

Based on the results in the previous section 4, the condition
of excluding the crossing case (EY) exhibits a similar or better
performance in all cases compared to EN. This condition can
reduce the FPR while maintaining the TPR of emergency stop
detection because EN in the normal training data causes an
increase in the FPR.

For instantaneous error, lower the confidence interval higher
is the emergency stop prediction performance. This result
mainly stems from multiple trial-and-error efforts to reduce
the noise of the joint torque to improve the performance
of the prediction model. However, the performance is still
vulnerable to noise in signals because, lower the confidence

Fig. 8. ROC curves using instantaneous error.

Fig. 9. ROC curves using CE.

Fig. 10. AUC versus cumulative ratio (r) in the proposed algorithm under
AYEY and AYEN conditions.

interval more sensitive it is to relatively small value changes.
Therefore, instantaneous error is not recommended for the
robust prediction of emergency stops. As demonstrated in
the experimental results, the AYEY condition yielded good
performance with strong robustness against noise in the joint
torque data.
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TABLE II
TPR (RECALL), FPR, PRECISION AND F1-SCORE VERSUS

THRESHOLD VALUES IN OPTIMAL ALGORITHM

WITH OPTIMAL THRESHOLD

Fig. 11. RMSE in training and validation vs epoch.

Although the proposed emergency stop detection relies on
two thresholds (the cumulative ratios (r) and the emergency
stop prediction threshold) owing to their sensitivity to the
thresholds, they are not excessively sensitive in a certain range
(for example, when the cumulative ratios (r) are within 5%
to 17% and when the emergency stop prediction threshold
is within 10 – 25). Therefore, the proposed method can be
generalized to similar problems by choosing optimal threshold
values and trade-off between true and false positives.

The dataset was obtained while training patients on a
rehabilitation robot system in passive mode that only repeats
a prescribed walking trajectory (in the sagittal plane for each
leg) depending on the patient training protocol. Although gait
disorders can be different among diverse populations (and thus
high variability), the torque data variability among patients is
not large because the patient is trained by repetitive passive
motion while tightly coupled with the rehabilitation robot
system. Therefore, we believe that the proposed method can
be generalized to other rehabilitation robotic systems using
passive mode training.

The proposed method predicted the emergency stop using
only the hip torque data as a univariate time series. Because the
human lower-limb is organically connected, a more accurate
prediction may be possible if multivariate time series that
include joint data are used.

The emergency stop prediction performance was affected
by the network prediction performance. If the value predicted
by the network is not sufficiently accurate, the threshold-
based emergency stop prediction is also directly affected
because both the instantaneous and cumulative errors are not
sufficiently accurate.

In the ablation study, both training and validation RMSE
losses decreased with increasing epochs, which is typical for
all 168 cases. Fig. 11 depicts the loss behavior for the best
architecture in Table I.

VI. CONCLUSION AND FUTURE WORKS

In this study, we developed a novel DL-based method for
predicting emergency stops in a robotic rehabilitation training
system based on a bi-LSTM model. The effectiveness of the
proposed method was validated using real patient gait training
data collected over several years. The proposed CE method,
which excludes crossing cases, is suitable for detecting abnor-
mal emergency stops in robotic gait rehabilitation systems and
is relatively robust when compared to instantaneous error.

We hypothesize that similar problems can occur in any
wearable robotic system in which humans wear electro-
mechanical devices on their body parts. Therefore, the pro-
posed emergency prediction method can also be applied to
other fields that use wearable robots.

In future work, we will investigate how to avoid emer-
gency stops in real-time after they are anticipated using the
proposed method for lower-limb rehabilitation training. Emer-
gency stops can be mitigated by reducing the weight bearing,
walking speed, and stride length. However, the effectiveness
of these mitigation methods for rehabilitation training has not
been validated because of the uncertain causes of emergency
stops. Therefore, the true causes of emergency stops should
be identified (or classified) in the future. Once a cause is
identified, the optimal settings for the training parameters can
be derived.
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