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IMU-Based Deep Neural Networks: Prediction of
Locomotor and Transition Intentions of an
Osseointegrated Transfemoral Amputee

Julian Bruinsma™ and Raffaella Carloni

Abstract—This paper focuses on the design and
comparison of different deep neural networks for the
real-time prediction of locomotor and transition intentions
of one osseointegrated transfemoral amputee using only
data from inertial measurement units. The deep neural net-
works are based on convolutional neural networks, recur-
rent neural networks, and convolutional recurrent neural
networks. The architectures’ input are features in both the
time domain and the time-frequency domain, which are
derived from either one inertial measurement unit (placed
above the prosthetic knee) or two inertial measurement
units (placed above and below the prosthetic knee). The
prediction of eight different locomotion modes (i.e., sitting,
standing, level ground walking, stair ascent and descent,
ramp ascent and descent, walking on uneven terrain) and
the twenty-four transitions among them is investigated. The
study shows that a recurrent neural network, realized with
four layers of gated recurrent unit networks, achieves (with
a 5-fold cross-validation) a mean F1 score of 84.78% and
86.50% using one inertial measurement unit, and 93.06%
and 89.99% using two inertial measurement units, with or
without sitting, respectively.
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Terms—Deep networks,

|I. INTRODUCTION
OR individuals with lower-limb amputation, the need to
conveniently perform activities of daily living is criti-
cal [1]. A fundamental step in developing active lower-limb
prostheses is to achieve an intuitive control, where the inten-
tions of the user should be accurately predicted. To avoid
discomfort in using the prosthetic leg and to reduce the
cognitive load, the intentions of the user should be predicted
and converted to a proper control input to the prosthesis
within 300 ms [2].
In the current literature, a variety of data analysis and
machine learning techniques has been proposed to translate
data from inertial measurement units (IMUs) into locomotion
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information in real-time. These pattern recognition techniques
can be broadly divided into two categories, namely, methods
based on feature engineering [3] and methods based on feature
learning [4], either with handcrafted or raw input IMU data.

Feature engineering methods on IMU data have been studied
for the recognition and prediction of both locomotor and
transition intentions. In [5], handcrafted features in the time
domain are extracted from IMUs data to compare different
supervised machine learning algorithms (i.e., support vector
machine, multi-layer perceptron, random forest, k-nearest-
neighbour, discriminant analysis) for the disjoint prediction
of locomotion modes and transitions of healthy subjects.
In [6], linear discriminant analysis (LDA) is used to predict
locomotion modes of transtibial amputees from handcrafted
features in the time domain of one IMU. LDAs are also used
to predict both the locomotion modes and transitions of healthy
subjects from handcrafted features in the time domain of IMUs
combined with pressure sensors in [7], and to predict the
locomotion modes of transfemoral amputees from handcrafted
features in the time domain of IMUs combined with mechani-
cal sensors in [8]. In [9], a triplet Markov model uses features
in the time domain of one IMU for the recognition of both
locomotion mode and gait phases of healthy subjects. A binary
tree is used on raw data from one IMU to predict locomotion
modes and transitions of healthy subjects in [10], while a
gradient tree boosting method on several time-domain IMU
data in combination with encoders and load cells is proposed
in [11] for the locomotion prediction of transfemoral amputees.
In [12], different methods are compared for the recognition of
locomotion modes and transitions of healthy subjects by using
IMUs is combination with several sensors.

Feature learning methods on IMU data, by means of deep
neural networks, have also been used for the recognition of
locomotion modes and for the prediction of both locomotor
and transition intentions, with the main advantage of
obtaining higher-level features from IMUs without relying on
domain-specific knowledge [4]. Deep belief networks (DBN5s)
are used on features in the time-frequency domain of a triaxial
accelerometer to recognize (loco)motion modes of both
healthy and impaired subjects in [13], while a convolutional
neural network (CNN) is used on time domain features of
a triaxial accelerometer to recognize locomotion modes of
healthy subjects in [14]. CNNs are used on raw-data from
one IMU placed on the foot to recognize locomotion modes
of healthy subjects in [15], on raw-data from multiple IMUs
on the lower limbs to predict locomotion modes of healthy
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TABLE |
STATE OF THE ART OF MACHINE LEARNING TECHNIQUES (FEATURE ENGINEERING AND FEATURE LEARNING) FOR THE RECOGNITION AND/OR
PREDICTION OF (LOCO-)MOTION MODE AND TRANSITION INTENTIONS BY MEANS OF IMU DATA OF HEALTHY AND/OR IMPAIRED SUBJECTS

Article Method Features Z/Iean Limb(s) | Motion(s) Transit. Subject(s)
ccuracy
| Feature Engineering Methods |
Several methods, . . Upper, . Yes
[5] 2020 L IMU time domain 97.65% Locomotion (5 modes) 10 Healthy
prediction lower (9 trans.)
L . . . Transtibial
[6] 2018 LDA, prediction IMU time domain 96.22% Lower Locomotion (5 modes) No 6 amputees
[7] 2014 LDA, prediction IMU time dlomam 99.71% Lower Locomotion (6 modes) Yes 7 Healthy
& pressure insoles (12 trans.)
[8] 2013 LDA, prediction IMU time .domf'im' | 93.9% Lower Locomotion (5 modes) No 6 Transfe@.
& mechanical sensors amputees
[9] 2019 | Markov model, IMU time domain 99.2% Lower | Locomotion (4 modes) |\ 10 Healthy
recognition and gait phases
[10] 2021 Binary tree, prediction IMU raw data 98.7% Lower Locomotion (3 modes) Yes 10 Healthy
[11] 2020 Grad_lem tree, IMUs tlmg domain 98.23% Lower Locomotion (5 modes) No 8 Transfem.
prediction & mechanical sensors amputees
[12] 2021 | Several methods, IMUs time domain 99% Lower | Locomotion (4 modes) Yes 15  Healthy
recognition & several sensors
| Feature Learning Methods |
[13] 2016 | DBN (S hidden layers), | Accelerometer 98.23% | Lower | 6 activities No 29 Healthy
recognition time-freq. domain
[13] 2016 DBN (§_h1dden layers), A_ccelerometer ‘ 91.5% Lower Loc_omotlon ‘ No 10 Impaired
recognition time-freq. domain (gait freeze classif.)
[13] 2016 | DBN (5 hidden layers), | Accelerometer 89.38% | Upper | 10 activities No | Healthy
recognition time-freq. domain
(14] 2018 | CNN (4 hidden layers), | Accelerometer 91.97% | Lower | 6 activities No 36 Healthy
recognition time domain
[15] 2020 CNN (.1.2 hidden layers), IMU raw data 87.74% Lower Locomot}on No 30  Healthy
recognition (6 modes)
(16] 2020 | NN (3 hidden layers), | prs e domain 9558% | Lower | Locomotion No 10 Healthy
prediction (6 modes)
(17) 2019 | CNN (6 hidden layers), 1 pyriy o data 94.15% | Lower | Locomotion Yes 10 Healthy
recognition (5 modes) (8 trans.)
[17] 2019 CNN (.6'h1dden layers), IMU raw data 89.23% Lower Locomotion Yes 1 Transtibial
recognition (5 modes) (8 trans.) amputee
(18] 2019 | NN (7 hidden layers), | s o data n/a Lower | 16 motions No 19 Healthy
recognition
[19] 2017 CNN (41_0 hidden layers), | IMU _tlme—freq. 97.06% Upper, Loc;omotl‘on No 10 Healthy
recognition domain lower (gait phase classif.)
[20] 2016 CNN (.3'h1dden layers), MU Flme—freq. 97.01% Lower Locomotion No 12 Healthy
recognition domain (6 modes)
(21 2016 | CNN (2 hidden layers), | IMU time-freq. 95.1% Upper, 1 5 ctivities No 10 Healthy
recognition domain lower
1211 2016 | CNN (2 hidden layers), | Accelerometer 98.2% Lower | 6 activities No 29 Healthy
recognition time-freq. domain
(21] 2016 | CNN (2 hidden layers), | Accelerometer 91.7% Lower | 2 activities No 7 Healthy
recognition time-freq. domain
(217 2016 | CNN (2 hidden layers), | Accelerometer n/a Upper | 10 activities No | Healthy
recognition time-freq. domain
(22] 2018 | RNN (I hidden layen), 1 pyris e domain 96.63% | UPPL | 5 civities No 11 Healthy
recognition lower
(23] 2017 | RNN @ hidden layers), [ pyriy e domain 77% Upper | 3 hand motions No 1 Healthy
recognition
[24] 2019 NN Ah_ldden layer), IMU raw data 98.6% Upper 10 hand motions No 5 Healthy
recognition
(251 2018 | RNN (2 hidden layers), | prs oy daga 96.3% Lower | Locomotion No 35 Healthy
prediction (walking surface)
[25] 2018 RNN (.2 hidden layers), IMU raw data 94.7% Lower Locomotion (age) No 35  Healthy
prediction
[26] 2019 NN .(1 .hldden layer), IMU time domain n/a Upper, Locomotion b No 5 Healthy
prediction lower (segmental contributions)

subjects in [16], on raw-data from multiple IMUs on the
lower limbs to recognize both the locomotion modes and the
transitions of healthy subjects and transtibial amputees in [17],
on raw-data from multiple IMUs on the lower-limbs and/or
torso to recognize locomotion modes of healthy subjects
in [18], on IMU features in the time-frequency domain

to recognize (loco)motion modes on healthy subjects in
[19]-[21], and on features in the time-frequency domain of
an accelerometer to recognize locomotion modes on healthy
subjects in [21]. Recurrent neural networks (RNNs) have
also been used to learn IMUs features. In [22], a RNN is
used on time-domain features of two IMUs on the forearms
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to recognize locomotion activities of healthy subjects.
To recognize hand motions in healthy subjects, a RNN is
used with time domain features from one in-hand IMU
in [23], while a neural network (NN) is used with raw data
from one in-hand IMU in [24]. In [25], RNNs are used with
raw IMU data to predict the walking surface and age of
healthy subjects. In [26], a NN is used on time domain IMUs
features to predict the contributions of body parts during
locomotion. Table I summarizes the main contributions to
the state of the art of machine learning techniques (feature
engineering and feature learning methods) for the recognition
and/or prediction of (loco-)motion mode and transition
intentions by means of IMU data. The table also reports
the mean accuracies, whether the techniques were tested on
upper or lower limbs, and on healthy or impaired subjects.

This study focuses on the real-time joint prediction of

locomotor and transition intentions of one osseointegrated
transfemoral amputee by means of deep neural networks
on IMUs data. Nine different artificial neural networks,
based on CNN, RNN and convolutional recurrent neural
networks (CRNNs) have been designed and compared. The
inputs to the architectures are features in both the time-domain
and the time-frequency domain, which have been extracted
from either one IMU (placed above the prosthetic knee),
or two IMUs (placed above and below the prosthetic knee).
Specifically, the chosen features are: (i) the means of the
angular accelerations and angular velocities (i.e., the raw data
obtained from the 3-axis accelerometers and the 3-axis gyro-
scopes of each IMU) computed within a time window; (ii) the
corresponding quaternions in the same time window; (iii) the
time-localized frequency information of each IMU, calculated
using the short-time Fourier transform (STFT) within the same
time window. The deep neural networks are designed to predict
eight locomotor intentions (i.e., sitting, standing, level ground
walking, stair ascent and descent, ramp ascent and descent,
walking on uneven terrain) and the twenty-four transitions
between these different locomotion modes. This study shows
that a RNN, realized with four layers of gated recurrent unit
networks, achieves (with a 5-fold cross-validation) a mean
F1 score of 84.78% (standard deviation of 1.33) and 86.50%
(standard deviation of 0.38) using one IMU, and 93.06%
(standard deviation of 1.21) and 89.99% (standard deviation
of 5.95) using two IMUs, with or without the sitting mode,
respectively. To summarize, the contributions of this paper are:

o To design nine deep neural networks for the real-time
prediction of eight locomotion modes and twenty-four
transitions intentions.

o To use only IMU data (either from one or two IMUs,
placed on the transfemoral prosthesis), from which
features in the time domain and the time-frequency
domain are learned by the deep neural networks.

« To validate the methods on data collected on one osseoin-
tegrated transfemoral amputee.

o To achieve a best F1 score of 93.06% (standard deviation
of 1.21) with a RNN (realized with four layers of gated
recurrent unit networks) for the real-time prediction.

The remainder of the paper is organized as follows.

In Section II, the data-set used in this study is described
together with the data processing. Section III presents the

different deep neural networks designed for the prediction of
the locomotor and transition intentions. Section IV reports
and discusses the results. Finally, concluding remarks are
drawn in Section V.

Il. MATERIALS

This Section presents the data-set and describes the data
processing to obtain the inputs to the deep neural networks
for the locomotor and transition intentions prediction.

A. Data-Set

The data-set used in this study has been collected at the
Roessingh Research and Development center (Enschede, The
Netherlands) on one osseointegrated transfemoral amputee
subject (male, 75 years old, weight of 84.1 kg, height of
186.6 cm, left-sided amputation since 45 years, osseoin-
tegration since 4 years, functional level K3), wearing a
3R80 Ottobock prosthetic knee (www.ottobockus.com) and a
Variflex Ossur prosthetic ankle (www.ossur.com). The data
were collected from the subject by using wearable electromyo-
graphic sensors and eight IMUs as part of the Xsens MVN
Link motion capture system (Xsens Technologies B.V., The
Netherlands, www.xsens.com).1 From the data-set, this study
only uses data from two IMUs, i.e., one IMU is placed above
the prosthetic knee (i.e., on the thigh of the prosthetic leg,
which is rigidly connected to the subject’s stump thanks to
the osseointegration), and a second IMU is placed below
the prosthetic knee (i.e., on the shank of the prosthetic
leg). The IMU data, collected over a measuring time of
~30 minutes of different activities, were sampled at 1000 Hz,
which corresponds to a total of 1.801.775 data points. The
data were further filtered to remove interruptions between the
trials and/or the activities, which finally correspond to a total
of 785.174 data points for a measuring time of ~13 minutes.

The subject was asked to execute eight locomotion modes
(i.e., S: Sitting, ST: Standing, LW: Level ground Walking, SA:
Stair Ascent, SD: Stair Descent, RA: Ramp Ascent, RD: Ramp
Descent, TW: Walking on uneven Terrain) along a circuit, and
the twenty-four transitions among these modes. The ramps
have a slope of 10° for three meters, and continue on with a
slope of 15°. The step-size of the stairs was not provided.

The data labelling has been done manually by analyzing the
body segments positions and joint angles in the Xsens MVN
motion capture software, and by extracting the gait events
(i.e., heel contact, toe off) by using the peak foot accelera-
tions [27]. The transitions were initially labelled as the future
mode (e.g., the transition from S to ST was labelled as ST).
To include the transitions in the data-set, a window of 500 ms
was chosen between two subsequent modes (i.e., 250 ms in the
previous mode and 250 ms in the next mode) and labelled with
the corresponding transition label (e.g., the transition from
S to ST was labelled as S - ST and lasts 500 ms).

B. Data Processing

1) Features: The features used in this study are extracted
from the raw IMUs data (either one or two IMUs) and are

IThe study, under protocol number NL67247.044.18, was evaluated and
approved by the Medical Ethics Review Commitee of the University of Twente
(The Netherlands) on December 13, 2018.
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TABLE Il
LOoCOMOTION MODES. (LEFT) NUMBER OF DATA POINTS IN THE
IMU raw data
10 ms Features in W, ORIGINAL DATA-SET, SAMPLED AT 1000 Hz AND FILTERED (TIME
10 ms . DoMAIN). (RIGHT) NUMBER OF SAMPLES OF THE LOCOMOTION
10ms Features in Wi MODES IN THE PROCESSED DATA-SET (TIME AND
10 ms Features in W, TIME-FREQUENCY DOMAIN)
10
10 :z Features in W
Features in W, Mode n. data in the original | n. samples in the processed data-set
18 rr:: ‘ data-set (time domain) (time and time-freq. domain)
sample S 187.347 18.133
. . . ST 67.374 5.303
Fig. 1. Sequential samples are the inputs to the deep neural networks. W 154.621 13812
Using time windows W; = 30 ms and time-step of 10 ms, each samples SA 35 '123 = '912
is formed with the features computed in five subsequent time windows. SD 66.875 6.137
cp. . . . . . RA 54.966 5.047
calculated within a time window W in both the time domain RD 101 =13
and the time-frequency domain. Specifically, the features are T™W 86.747 7.974
(i) the means of the angular accelerations and angular veloci- [ Total: | 785.174 [ 72.031

ties (i.e., the raw data obtained from the 3-axis accelerometers
and the 3-axis gyroscopes of each IMU) computed within the
time window W; (ii) the quaternions calculated on the mean
IMU data in the same time window W, by using the filter
proposed in [28], with the implementation in [29]; (iii) the
time-localized frequency information of each IMU, calculated
using the STFT within the same time window W. The time
window W has been chosen to be 30 ms with a step length of
10 ms, to leave enough time to process the data, predict the
locomotor or the transition intentions in real-time, and convert
that into a control input [2].

2) Inputs: The inputs to the deep neural networks are
sequential samples. Each sample consists of five sets of
features, which have been computed within five time windows
W; = 30 ms with a step length of 10 ms. Figure 1 shows how
each sample is formed from the raw IMU data. Specifically,
one sample is built with features from five windows W;, with
i =0,---,5. Each windows W; contains 30 ms of IMU raw
data, with an overlap of 20 ms (i.e., W contains data from
0 to 30 ms, W> from 10 to 40 ms, W3 from 20 to 50 ms, Wy
from 30 to 60 ms, and W5 from 30 to 70 ms). This implies
that, at each run, the neural network receives a sample as input
that contains features derived from 70 ms of raw IMU data.

Table IT shows the eight locomotion modes, the number of
data points in the original data-set (i.e., the IMU raw data
in the time domain, sampled at 1000 Hz and filtered) and
the number of samples in the processed data-set in the time
and time-frequency domain. Table III shows the twenty-four
transitions and the number of samples in the processed
data-se time and time-frequency domain. The total samples
(i.e., the sum of the samples of the locomotion modes and the
transitions) form the inputs to the deep neural networks.

3) Scaling: The data have been standardized within each
sample by centering to the mean and by scaling them
component-wise to the unit variance.

4) Data Partitioning: Using 5-fold cross-validation, 80% of
the data was used for training and 20% was used for testing.
Within training, 10% of the data was used for validation.

C. Output

The output of the deep neural networks has a dimension
equal to the sum of the locomotion modes and the tran-
sitions to be predicted. As sitting is a static mode that is

TABLE Il
TRANSITIONS. NUMBER OF SAMPLES OF THE TRANSITIONS IN THE
PROCESSED DATA-SET (TIME AND TIME-FREQUENCY DOMAIN)

Transition | n. samples Transition | n. samples
S-ST 350 S-W 100
ST - S 50 ST -W 350
ST - SA 50 ST - SD 200
ST - RA 200 ST - RD 150
ST - TW 150 W-S 200
W - ST 200 W - SA 550
W - SD 300 W - RA 200
W - RD 100 W-TW 400
SA - ST 50 SA - W 350
SD - ST 50 SD - W 350
RA - RD 300 RD - W 150
TW - ST 150 TW - W 350
[ Total: | 5300 |

also overrepresented, it could add unnecessary complexity
by increasing the number of output dimensions, while the
difficulty could lie in the distinction between the dynamic
locomotion modes and the transitions. Therefore, in this study,
two different experimental scenarios are analyzed, i.e., with
and without sitting. Consequently, the output dimension is
thirty-two when sitting is included (i.e., eight locomotion
modes and twenty-four transitions), and twenty-seven when
sitting is excluded (i.e., seven locomotion modes and twenty
transitions).

I1l. METHODS

In this study, nine deep neural networks were designed
and compared. The architectures are further described in the
following subsections and are based on the CNNs, RNNs, and
CRNNSs, similarly to our previous work [16].

A. Convolutional Neural Networks

Three different CNN architectures (i.e. CNN1D, CNN2D,
and WaveNet) have been designed.

1) CNN1D and CNN2D: Figure 2a shows both the CNN1D
and the CNN2D, which consist of six hidden layers, i.e., four
convolution layers and two dense layers. In this study, the con-
volutional kernel size is set to (1 x 2) and (2 x 2) for the
CNNI1D and CNN2D, respectively. The first four convolutional
layers have a filter size of 32, 64, 128, and 256, respectively.
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Conv2D Conv2D

Conv1D/ Conv1D/
Conv2D Conv2D

(‘onle/ ﬂ‘Conle/ ——> Dropout = Softmax —> Output

(a) CNNs.
LSTM/ LSTM/ LSTM/ LSTM/
Input 2
i GRU GRU GRU GRU Dropout —> Softmax —» Output
(b) RNNGs.
il LS LSTM/ —> LAY — Dropout > Softmax »Output|

GRU GRU GRU

v

Fig. 2.  Three deep neural network architectures. (a) CNNs with four
convolutional layers (one- or two-dimensional) and two dense layers.
(b) RNNs with four recurrent layers (LSTM or GRU) and two dense layers.
(c) CRNNs with three convolutional layers (one- or two-dimensional),
three recurrent layers (LSTM or GRU), and two dense layers.

Causal ConvlD
S R

Dilated Conv1D #N

‘ ‘ Sigmoid

\/

X

%
I + > Dropou
ES -~ —

+

Conv1D/| —»ConvlD/| —5ConvlD/|
Conv2D Conv2D Conv2D

(c) CRNNG.

Softmax

v

Output

Dilated ConvlD
#N+1

Fig. 3. WaveNet with four convolutional layers, from which three are
dilated and one is causal, and two dense layers.

A rectified linear unit is used as activation function in each
filter. Finally, two dense layers follow: first a dense layer
with 200 units and a dropout of 0.25 and, then, an output
layer that has the units equal to the dimension of the output
(32 or 27) and a softmax activation function. The most
significant difference between the CNN1D and CNN2D is the
direction of the convolution kernels, i.e., CNNI1D slides only
sample-wise (from top to down) while CNN2D slides both
sample-wise and column-wise.

2) WaveNet: Figure 3 shows another CNN architecture,

e., the WaveNet [30], which consists of four convolutional
layers. The input is first processed by a causal convolutional
layer, consisting of 256 filters with a filter size of 2. Next,
the output goes into two ways. In one direction, it is served
as an input into a dilated convolutional layer (256 filters
with a filter size of 2), which consists of two convolutions

with either a tanh or sigmoid activation function that are
combined by using a dot multiplication to the output layer.
In the other direction, it skips the dilated convolution and is
directly summed up with the output of the dilated convolution,
which then serves as an input for the second layer. The output
layer consists of a dense layer (200 units, 0.25 dropout) and
a dense layer with a softmax activation function, where the
number of units is equal to the dimensions of the output.

B. Recurrent Neural Networks

Two different RNN architectures have been designed in this
study, as shown in Figure 2b. Both RNNs consist of six hidden
layers, i.e., four recurrent layers and two dense layers. The
recurrent layers are either long short-term memory (LSTM)
networks [31] or gated recurrent units (GRU) networks [32].
The first four layers consist of 128 LSTM or GRU units. Then
two dense layers follow, one that has 200 units and a dropout
of 0.25, and one that serves as an output layer with units
equal to the dimension of the output (32 or 27) and a softmax
activation function.

C. Convolutional Recurrent Neural Networks

Four different CRNN architectures have been designed in
this study, as shown in Figure 2c. They consist of eight hidden
layers, i.e., three convolutional layers (either one- or two-
dimensional), three recurrent layers (either LSTM or GRU),
and two dense layers. The first three convolutional layers
are similar to that of the CNNs in Figure 2a with the only
difference that they have filters of size 64, 128, and 256,
respectively. The last three RNN layers are equivalent to the
layers in the RNNs in Figure 2b, as they also have 128 units.
The final two layers are both dense layers. One of them has
200 units and 0.25 dropout, and the other has a number of
units equal to the dimensions of the output (32 or 27) and a
softmax activation function. The only difference between the
one- and two-dimensional version of the CRNN is that the
output of the CNN2D layers needs to be wrapped together
with the time-step to serve as a compatible input to the RNN
layers.

D. Evaluation: Performance Metric

Due to the uneven distribution of the data, the deep neural
networks are compared based on the F1 scores, a metric that
compares both precision and recall and is calculated as:

precision - recall
Fl1=2.

precision + recall

where precision = tp/(tp + fp) and recall = tp/(tp +
fn), with 7p being the number of true positive predictions,
fp the number of false positives and fr the number of false
negatives. The comparisons of the networks are based on this
metric.

K-fold cross-validation is used to compare the general
effectiveness of the neural networks. In this study, k is set
to 5, which means that the data is divided into five subsets.
Next, the data is validated on one subset and trained on the
remaining four. The validation is done on every subset and,
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hence, happens five times in total. Finally, the mean F1 score
of all validations is taken to compare the performances. This
way, the data gets fully utilized, underfitting is prevented, and
the reliability of the evaluation increases as the training and
testing data are set differently each time.

E. Hyperparameters

This Section describes the hyperparameters that were used
for training. Specifically, the hyperparameter search started
from the results obtained in our previous study on the
IMU-based locomotor intention prediction of ten healthy sub-
jects [16], the hyperparameter optimization is done empiri-
cally, and the hyperparameter final choice is based on the
F1 scores achieved by the different neural networks and such
that the hyperparameters are the same across the different
networks. The training was done on one computer with an
NVIDIA GeForce GTX 1060, a quad-core Intel i7 — 6700
processor, and 8 GB RAM.

1) Learning Rate: The learning rate is set at 0.001. This
value is set as such because using a high learning rate causes
the network to never converge, while a lower learning rate
would increase the risk of falling into a local minimum.

2) Optimizer: The optimizer is chosen to speed up the
convergence of the neural networks, by optimizing the gradient
descent. The Adaptive Moment Estimation (Adam) has been
used in this study [33]. Adam computes individual adaptive
learning rates for different parameters.

3) Batch Size: The batch size represents how many input
data are show simultaneously to the network before updating
its weights. The batch size is chosen to be 512, which is
relatively high, but in combination with the number of filters,
it has been observed to obtain the highest F1 score. The high
batch size does not result in processing more previous data
before predicting a locomotion mode or a transition, as the
data is shuffled, but may increase the accuracy of the error
estimate in training.

4) Loss Function: As a loss function, the categorical
cross-entropy has been used.

5) Class Weighting: The loss function assumes there is an
equal distribution among the different classes (i.e., locomotion
modes and transitions). However, in this study, the transitions
are underrepresented and, to account for this unbalance a
weight is added to each class, by exploiting the sklearn.utils
module of the scikit-learn Python library [34]. This weight
makes the transitions more important for the network and
penalizes mistakes made for the transitions more opposed
to the locomotion modes, without influencing the number of
samples in the data-set.

6) Shuffling: The training of the networks is done by feeding
the network with the input batch by batch. If the network is
fed the data in chronological order, the network would overfit
between multiple classes. To avoid this, the sequential samples
are shuffled, i.e., the order within each sample remains fixed,
but the order of the samples does not.

7) Epochs: The data is presented 150 times to the networks
during training to optimize data use and avoid under-fitting.

8) Early Stopping: The number of epochs is set to a high
number to ensure that the data is used enough and is not
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Fig. 4. F1 score (mean and SD), with a 5-fold cross validation, for all
the deep neural networks (including the sitting mode). Only features from
the IMU above the prosthetic knee are used.

under-fitting. If the number of epochs is too high, the network
will start to overfit on the data. Therefore, an early stopping
approach is used. If the accuracy on the validation set has not
increased for 15 epochs, the network will stop training and will
be the final model. This number is empirically set to avoid an
increase in validation loss, which is a sign of overfitting.

IV. RESULTS AND DISCUSSION

In this Section, the proposed deep neural networks are
compared using the F1 score performance metric. The results
are reported separately based upon the features extracted
from either one IMU or two IMUs. Additionally, within each
subsection, the results for including or excluding the sitting
mode from the prediction are reported separately. Finally,
the results are discussed and compared to the literature.

A. One IMU (Above the Prosthetic Knee)

Figure 4 shows the F1 scores (mean and standard deviation
SD), with a 5-fold cross-validation, of all the deep neural
networks when only features from the IMU above the pros-
thetic knee are used for the prediction of the locomotion
modes and transitions, including the sitting mode. It can be
observed that the GRU outperforms the other networks with
a mean F1 score of 84.78% (SD = 1.33). To verify whether
the experiments results are significant, a repeated measures
analysis of variance (ANOVA) test has been performed on the
three best performing models, together with a Tukey’s honestly
significant difference (HSD) test. The ANOVA test shows a
F(2, 8) = 93.57%, p = 0.000. Post-hoc comparisons using
the Tukey’s HSD test indicates that the WaveNet (mean =
77.56%, SD = 0.64) is significantly different from both
the GRU (mean = 84.78%, SD = 1.33) and the LSTM
(mean = 83.21%, SD = 1.86), but the LSTM does not differ
significantly from the GRU.

Figure 5 shows the F1 scores (mean and SD), with a 5-fold
cross-validation, of all the deep neural network when only
features from the IMU above the prosthetic knee are used,
but the sitting mode and the corresponding transitions are
excluded. It can be observed that the GRU outperforms the
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Fig. 5. F1 score (mean and SD), with a 5-fold cross validation, for
all the deep neural networks. Only features from the IMU above the
prosthetic knee are used. The sitting mode and corresponding transitions
are excluded from the experiment.

other networks with a mean of 86.50% (SD = 0.38). The
repeated measures ANOVA test shows a F(2, 8) = 21.12,p =
0.0006. Post-hoc comparisons using the Tukey’s test indicates
that there is a significant difference between the GRU (mean =
86.50%, SD = 0.38) and the WaveNet (mean = 77.70%,
SD = 1.53) and between the GRU and the LSTM (mean =
79.68%, SD = 3.48), but the LSTM and WaveNet do not differ
significantly.

B. Two IMUs (Above and Below the Prosthetic Knee)

Figure 6 shows the F1 scores, with a 5-fold cross-validation,
of all the deep neural networks when features from the IMUs
above and below the prosthetic knee are used for the prediction
of the locomotion modes and transitions, including the sitting
mode. It can be observed that the GRU outperforms the other
networks with a mean of 93.06% (SD = 1.21). The repeated
measures ANOVA test shows a F(2, 8) = 4.86, p = 0.042.
Post-hoc comparisons using the Tukey’s HSD test indicates
that the GRU (mean = 93.06%, SD = 1.21) is significantly
different from the WaveNet (mean = 89.30%, SD = 0.95), but
the LSTM (mean = 90.11%, SD = 3.08) does not significantly
differ from the GRU and WaveNet.

Figure 7 shows the F1 scores, with a 5-fold cross-validation,
of all the deep neural networks when features from the IMUs
above and below the prosthetic knee are used, but the sitting
mode and the corresponding transitions are excluded. It can be
observed that the WaveNet, GRU and LSTM have seemingly
similar performances. The repeated measures ANOVA test
shows a F(2, 8) = 1.47, p = 0.30. In this case, no Tukey’s HSD
test is needed as none of these three results are significantly
different.

C. Running Time

Table IV shows the running time (in ms) (averaged on
70.000 random data points, i.e., 1000 sequential samples that
contain features extracted from 70 ms of raw data) for the
prediction of the three outperforming deep neural networks
(i.e., WaveNet, GRU, and LSTM). It can be noted that the
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Fig. 6. F1 score (mean and SD), with a 5-fold cross validation, for all
the deep neural networks (including the sitting mode). Features from the
IMUs above and below the prosthetic knee are used.
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Fig. 7. F1 score (mean and SD), with a 5-fold cross validation, for all
the deep neural network architectures. Features from the IMUs above
and below the prosthetic knee are used. The sitting mode and the
corresponding transitions are excluded from the experiment.

TABLE IV
RUNNING TIME (MEAN AND SD) IN ms FOR THE PREDICTION OF THE
THREE OUTPERFORMING DEEP NEURAL NETWORKS, AVERAGED ON
1000 SEQUENTIAL SAMPLES INCLUDING THE SITTING MODE
AND THE CORRESPONDING TRANSITIONS

| One IMU (above knee) [ Two IMUs (above/below knee) |

WaveNet 17.56 + 5.33 [ms] 16.87 £ 5.00 [ms]
LSTM 17.29 + 6.02 [ms] 17.33 £+ 6.58 [ms]
GRU 17.79 £ 13.59 [ms] 18.17 + 13.72 [ms]

processing time does not increase when two IMUs are used,
while the performance does increase significantly. Moreover,
the table shows that the SD of the running time of the GRU
is higher than the other two networks.

D. Discussion

Table V summarizes the results of the three best performing
deep neural networks in the four experimental scenarios of
this study, i.e., one/two IMUs and with/without the sitting
mode. It can be noted that the GRU outperforms the other
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TABLE V
SUMMARY OF THE BEST PERFORMING DEEP NEURAL NETWORKS IN
DIFFERENT EXPERIMENTAL SCENARIOS: ONE IMU (ABOVE THE
PROSTHETIC KNEE) OR TwO IMUS (ABOVE AND BELOW THE
PROSTHETIC KNEE) AND WITH OR WITHOUT THE SITTING
MODE. THE HIGHEST F1 SCORES FOR EACH
EXPERIMENTAL SCENARIO ARE IN BOLD

Locomotor and transition intentions prediction for one
osseointegrated transfemoral amputee

106 (for one IMU), 212 (for two IMUs)
For each IMU:

- 3 acceler. and 3 gyros. (mean values)
- 4 quaternions (from the mean)

- 96 frequencies (from STFT)

785.174 (~13 minutes)

Features

n. of original data points
(sampled at 1000Hz

and filtered)

n. of samples
(locomotion + transitions)
n. of modes & transitions

77.331

(72.031 + 5300)
32 (with sitting)
27 (without sitting)
With sitting:

Mean F1 score (one IMU)

from 5-fold cross-validation | WaveNet:  76.56% SD = 0.64
LSTM: 83.21% SD = 1.86
GRU: 84.78% SD =1.33
Without sitting:
WaveNet:  77.70% SD = 1.53
LSTM: 79.68%  SD = 3.48
GRU: 86.50% SD =0.38

Mean F1 score (two IMUs) With sitting:

from 5-fold cross-validation | WaveNet:  89.30% SD = 0.95
LSTM: 90.11%  SD = 3.08
GRU: 93.06% SD = 1.21
Without sitting:
WaveNet:  90.14%  SD = 1.15
LSTM: 89.68%  SD = 1.82
GRU: 89.99%  SD =5.95

networks except when sitting is removed from the data-set
and two IMUs are used. However, the running time of the
GRU is higher and fluctuates more between different sam-
ples than the other two networks, but remains far below
300 ms [2]. Specifically, this study shows that the best
performing deep neural network is a RNN, realized with four
layers of gated recurrent unit networks, which achieves a mean
F1 score of 93.06% (SD of 1.21) by using features from
two IMUs for the real-time prediction of eight locomotion
modes (including sitting) and twenty-four transitions inten-
tions. As expected, the GRU outperforms the other deep neural
networks because, thanks to its memory units, it appears to be
better suited for forecasting time-series in the time-frequency
domain.

Figure 8 shows the confusion matrix for this best perform-
ing experimental scenario. It can be noted that the GRU is
able to jointly predict the intentions of both the locomotion
modes and the transitions of the osseointegrated transfemoral
amputee. The most challenging intentions’ predictions (i.e., for
which the mean F1 score is below 94%) are: the locomotion
mode TW (walking on uneven terrain) and the transitions
W - ST (walking to standing), W - SA (walking to stair
ascent), W - TW (walking to walking on uneven terrain),
TW - ST (walking on uneven terrain to standing), TW - W
(walking on uneven terrain to walking).

E. Comparison to the State of the Art

In comparison to the state of the art (see Table I), this study
contributes on the aspects detailed hereafter.

1) Transfemoral Amputees: This study focuses on feature
learning methods (deep neural networks) on data from one
or two IMUs placed on the prosthetic leg of an osseointe-
grated transfemoral amputee. Previous research has build on
feature engineering methods for the prediction of locomotion
modes of six transtibial amputees [6] (LDAs on IMUs), six
transfemoral amputees [8] (LDAs on IMUs and mechanical
sensors), eight transfemoral amputees [11] (gradient tree on
IMUs and several mechanical sensors), or on feature learning
methods on ten impaired subjects (DBN) for the recognition
of the freezing of gait [13], and on one transtibial amputees
(CNN) [17] for the recognition of locomotion modes and
transitions.

2) Locomotor and Transition Intention Joint Prediction: This
study focuses on the joint intention prediction of eight loco-
motion modes and twenty-four transitions of one osseoin-
tegrated transfemoral amputee. Previous research has been
devoted to the disjoint prediction of five locomotion modes
and nine transitions of healthy subjects with (several) feature
engineering methods [5], to the prediction of six locomotion
modes and twelve transitions of healthy subjects with a
feature engineering method (LDA) on IMU data combined
with pressure insoles [7], to the disjoint prediction of three
locomotion modes and four transitions of healthy subjects with
a features engineering method on one IMU [10], to the disjoint
prediction of four locomotion modes and four transitions of
healthy subjects with different features engineering methods
on several IMUs and other sensors [12], and to the recognition
of five locomotion modes and eight transitions of healthy sub-
jects and transtibial amputees with feature learning methods
(CNNs) [17].

3) Accuracy: This study shows that a RNN, realized with
four layers of gated recurrent unit networks, achieves (with a
5-fold cross-validation) a mean F1 score of 93.06% (standard
deviation of 1.21) using time and time-frequency domain
features engineered from two IMUs, in the best preform-
ing experimental scenarios (eight locomotion modes and
twenty-four transitions). Previous research on the prediction of
both locomotor and transition intentions has reported 97.65%
on healthy subjects (five locomotion modes and nine tran-
sitions) with engineered features in the time-domain from
seven IMUs [5], 99.71% on healthy subjects (six locomotion
modes and twelve transitions) with engineered features in
the time-domain from IMUs and pressure insoles [7], 98.7%
on healthy subjects (three locomotion and four transitions)
with engineered features from raw-data of one IMU [10],
99% on healthy subjects (four locomotion and four tran-
sitions) with engineered features from raw-data of several
IMUs and several other sensors [12], 94.15% on healthy
subjects (five locomotion modes and eight transitions) with
features learned from raw-data of three IMUs [17], and
89.23% on transtibial amputees (five locomotion modes and
eight transitions) with features learned from raw-data of three
IMUs [17].
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Fig. 8. Confusion matrix of the GRU neural network for the best experimental scenario (two IMUs above and below the prosthetic knee of the

osseointegrated transfemoral amputee, including sitting).

F. Limitations and Future Outlook

1) Proposed Methods: In this study, nine different deep
neural networks have been successfully trained, validated,
and tested on the data collected on one transfemoral
amputee. The potential of feature learning methods of being
subject-independent has been shown in our previous work on
the locomotor intention prediction of ten healthy subjects [16].
However, the generalization of these methods, and specifically
of the GRU as the best performing one, to other transfemoral
amputees (even with different K-levels) is left as future work.

2) Real-Time Implementation: To achieve an intuitive con-
trol, the intentions of the user should be predicted and
converted to a proper control input to the prosthesis
within 300 ms [2]. In this study, for each prediction of either
locomotor or transition intentions, a neural network needs to
acquire 10 ms of new raw IMU data (at 1000 Hz), to derive
features from windows of 30 ms for a total of 70 ms of
data (see Figure 1), and to process them for the intention
prediction. Specifically, the best performing neural network
(i.e., the GRU) needs 10 ms to acquire 10 ms of IMU raw
data, 4.98 £ 0.038 ms (averaged on 70.000 data points) to
preprocess 70 ms of data, and 17.79 &£ 13.59 ms (averaged on
70.000 data points) for the intention prediction (see Table IV).
This overall computation time is calculated on a desktop
computer, whose computational power is comparable with

processors that can be placed on prosthetic leg prototypes,
and it is far below the 300 ms requested for real-time control.

3) Clinical Requirements: Future research should focus on
the implementation and evaluation of the proposed method
on osseointegrated amputees in clinical trials, which could
start from the amount of data already collected for this study
since the F1 scores are always above 90% (see Figure 8). The
F1 scores might be further improved by training the GRU
neural network on more data. However, it is not surprising that
the most challenging intentions predictions mainly concern
transitions from/to walking on uneven terrain (which require a
high level of adaptability of the prosthesis at both the knee and
ankle joints), and the transitions from walking to stair ascent
(which in general is performed by the amputee by stopping
before starting ascending the stairs).

V. CONCLUSION

This study presented the design and comparison of
nine deep neural networks for the prediction of eight
locomotor (i.e., sitting, standing, level ground walking, stair
ascent/descent, ramp ascent/descent, walking on uneven
terrain) and twenty-four transition intentions of one osseoin-
tegrated transfemoral amputee. Inputs to these networks are
derived from features in the time and the time-frequency
domain, which are extracted from either one IMU
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(above the prosthetic knee) or two IMUs (above and
below the prosthetic knee). The features are (i) the means of
the angular accelerations and angular velocities (i.e., the raw
data obtained from the 3-axis accelerometers and the 3-axis
gyroscopes of each IMU) computed within a time window;
(i) the quaternions calculated on the mean IMU data in
the same time window; (iii) the time-localized frequency
information of each IMU, calculated using the STFT within
the same time window.

This study shows that a RNN, realized with four layers of
gated recurrent unit networks, achieves (with a 5-fold cross-
validation) a mean F1 score of 84.78% (SD of 1.33) and
86.50% (SD of 0.38) using one IMU, and 93.06% (SD of 1.21)
and 89.99% (SD of 5.95) using two IMUs, with or without
the sitting mode, respectively.
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