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Abstract— Recently, convolutional neural network (CNN)
has been widely investigated to decode human intentions
using surface Electromyography (sEMG) signals. However,
a pre-trained CNN model usually suffers from severe
degradation when testing on a new individual, and this
is mainly due to domain shift where characteristics
of training and testing sEMG data differ substantially.
To enhance inter-subject performances of CNN in the wrist
kinematics estimation, we propose a novel regression
scheme for supervised domain adaptation (SDA), based
on which domain shift effects can be effectively reduced.
Specifically, a two-stream CNN with shared weights is
established to exploit source and target sEMG data
simultaneously, such that domain-invariant features can
be extracted. To tune CNN weights, both regression losses
and a domain discrepancy loss are employed, where the
former enable supervised learning and the latter minimizes
distribution divergences between two domains. In this
study, eight healthy subjects were recruited to perform
wrist flexion-extension movements. Experiment results
illustrated that the proposed regression SDA outperformed
fine-tuning, a state-of-the-art transfer learning method,
in both single-single and multiple-single scenarios of
kinematics estimation. Unlike fine-tuning which suffers
from catastrophic forgetting, regression SDA can maintain
much better performances in original domains, which
boosts the model reusability among multiple subjects.

Index Terms— sEMG, wrist kinematics estimation, CNN,
domain adaptation, transfer learning.

I. INTRODUCTION

THE surface electromyography (sEMG) reflects the elec-
trical activity of muscle fibres during contraction, and it

has been widely used for intelligent prostheses or exoskele-
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ton robotics control [1], [2]. To decode human intentions
from sEMG more intuitively, artificial intelligence (AI) can
be leveraged in either the classification-based hand gesture
recognition [3], [4] or regression-based kinematic estimation
[5], [6]. Different from the classification scheme which is
only able to estimate discrete movements sequentially [7],
regression approaches estimate continuous joint motions and
can enable simultaneous and proportional control in multiple
degrees of freedoms [8].

Recently, deep learning (DL) techniques, particularly con-
volutional neural networks (CNN), have gained considerable
attentions to shift the paradigm of AI from conventional fea-
ture engineering to feature learning. For example, Ameri et al.
proposed a CNN-based regression model which estimated
wrist angles more accurately than support vector regres-
sion (SVR) and achieved better performances in the Fitts’ law
test [9]. Yang et al. investigated data-augmentation methods
for CNN, and observed that CNN outperformed SVR signifi-
cantly in the decoding of wrist kinetics [10], [11]. Moreover,
CNN can also work as the deep feature extractor in the hybrid
CNN-RNN (RNN denotes recurrent neural networks) scheme
to further increase the estimation accuracy [12], [13]. However,
these results are mainly obtained in laboratory settings which
are simplistic and static. In fact, characteristics of sEMG
can be easily influenced by external factors including muscle
fatigue, electrode shift, impedance changes in electrode-skin
interface, variations of contraction forces, and arm position
effects, etc. [14]–[17]. In particular, sEMG signals have a
user-specific nature, causing the amplitude and frequencies
to be highly variable among individuals even when signals
are measured from the same location with the same motion
[18]. Although it has been reported that features learned by
deep neural networks may be able to share similar distributions
across different subjects [11], [19], the inter-subject problem
can still lead to a sharp decline in the estimation performance
of the previously trained model [11], [20].

Traditional DL approaches assume that training and testing
data stem from the same underlying distribution. However,
this assumption barely holds in practice [21], where the source
domain DS and target domain DT have different feature spaces
or marginal probability distributions [22], i.e. DT �= DS . This
issue is also known as domain shift. To this end, transfer
learning (TL) has been investigated by exploiting knowledge
learned in DS and to effectively train DL models in DT

with insufficient labelled data. A simple but prevalent deep
TL approach is fine-tuning (FT), where weights of a DL
model developed in DS are used as the starting points for
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the model to be trained in DT . FT has also been reported to
enhance model training or adaptability in sEMG-based hand
motion estimation. For instance, Wang et al. utilized FT in
the training of a multimodal recurrent CNN. In this study,
DS data came from the NinaPro project [23], and DT was
composed of multimodal data collected from experiments.
Ameri et al. employed FT to enhance CNN performances
under the condition of electrode shift [24]. Experiments in
both hand gesture recognition and wrist kinematics estimation
verified the outperformance of FT when compared with a
simple aggregation of pre-shift and post-shift sets. In addition,
Kim et al. also fine-tuned the supportive CNN classifiers
in the proposed subject-transfer framework, such that the
estimation model can be more robust in terms of intra-user
variability [25]. However, FT is prone to be overfitting when
too few labelled data are available in the target domain [26].
Besides, a fine-tuned network usually suffers from catastrophic
forgetting which destroys the model reusability [27].

Apart from FT, another popular TL scheme is domain
adaptation (DA) which improves the target predictive
function f(•) by exploiting the knowledge in DS and DT

simultaneously. Compared with FT, DA not only reduces the
demand for labelled target data but also enables consistent
performances on different domains [21]. The main idea of
DA is to align feature distributions of DS and DT in an
embedding space. In practice, many efforts have followed
the Siamese architecture [28], i.e. a two-stream CNN with
shared weights. In this structure, one stream represents the
source model and the other represents the target model.
By adding additional discrepancy losses such as maximum
mean discrepancy (MMD) [29]–[32], correlation alignment
(CORAL) [33], or higher-order moments [34] etc. in model
training, distribution divergences can be effectively minimized.
Representative works include deep domain confusion (DDC)
[29] and deep adaptation networks (DAN) [30]. In specific,
DDC exploited a two-stream CNN and minimized MMD
between outputs of the last fully-connected (FC) layer in
each stream. DAN expanded DDC by employing multiple
MMD terms to process outputs of several FC layers. Further
advancements can be found in residual transfer network
(RTN) [31] and joint adaptation networks (JAN) [32], etc.
However, these approaches were mainly proposed to enhance
CNN classification in computer vision (CV) tasks. To our
best knowledge, few investigations have been conducted to
address domain shift in sEMG-based kinematics estimation.

Inspired by the recent success of DA in deep learn-
ing, we propose a novel regression scheme for supervised
domain adaptation (SDA) to reduce domain shift effects on
CNN-based wrist kinematics estimation in the inter-subject
circumstance. In our study, the source domain DS denotes the
source subjects which provide sufficient labelled data for CNN
training, and target domain DT represents the target subject to
be tested using the pre-trained model. Specifically, a Siamese
architecture is established to exploit both source and target
data simultaneously, such that the domain-invariant features
can be extracted. To tune CNN weights effectively, three
types of loss functions are employed, including the regression
losses for supervised learning in DS and DT , a MMD loss to

reduce distribution mismatches between two domains in the
latent space, and a regression contrastive loss to learn more
discriminative deep features for domain alignment. In this
study, eight healthy subjects were recruited to perform wrist
flexion-extension. In order to stimulate the fast recalibration
in myoelectric control, only a very short session in DT

was leveraged for the transfer learning. This setting is also
consistent with many studies on supervised domain adaptation
[35], [36]. Compared with conventional deep learning methods
which require the labelled dataset to be sufficiently large in the
target domain, SDA effectively reduces the burden of regular
model re-training/recalibration under domain shift effects.

The remainder of this paper is structured as follows.
Section II describes the regression SDA, where the model
structure, the CNN layers and the loss functions are presented
elaborately. Section III introduces experimental setups for
wrist kinematics estimation. Section IV presents experimental
results of regression SDA and baseline methods. The paper is
discussed in Section V and then concluded in Section VI.

II. METHODOLOGY

In general, DA can be divided into supervised (SDA) and
unsupervised (UDA) approaches [35]. In UDA, there are no
labelled data in DT , and existed works mainly focus on the
alignment of feature distributions between domains. As for
SDA, a small number of labelled samples in DT can be utilized
to build a bridge from sources to targets. Herein we prefer
SDA since it can be more accurate in terms of the adaptation
to large changes in sEMG signals [24]. The superiority in
estimation performances have also been reported in CV tasks
[36]. Specifically, in SDA we are given DS =

{(
X S

m , yS
m

)}M
m=1,

Dtrain
T = {(

XT
n , yT

n

)}N
n=1 and Dtest

T = {(
XT

l , yT
l

)}L
l=1, where

X denotes sEMG matrix extracted from raw signals and y is
the related wrist angle (ground-truth). Dtrain

T participates in the
model training together with DS , whilst Dtest

T is utilized to test
SDA performances. It is noted that data in Dtrain

T are normally
insufficient to train a conventional CNN, i.e. N � L ≈ M .

A. Framework of Regression SDA
Following most efforts in DA [21], [29]–[32], [36], our

regression SDA is also designed based on the two-stream CNN
structure with shared weights. As depicted in Fig. 1, a pairwise
sample

{(
X S

m , yS
m

)
,
(
XT

n , yT
n

)}
is imported into regression

SDA, in which the first stream operates xS
m and the second

operates xT
n separately. The construction of pairwise samples

allows each target sample
(
XT

n , yT
n

)
to be paired with all

source samples
(
X S

m, yS
m

)
, which is able to effectively align the

entire source data with the few target data [36]. This process
can also be regarded as the Cartesian product of two datasets
[37]. It is noted that the total number of pairwise samples,
i.e. M × N , will not be overlarge due to the size of Dtrain

T .
In practice, the computational load can be further reduced
by downsampling these pairwise samples for model training
[36], [37]. Apart from the model structure, loss functions are
also of vital importance to regression SDA. In this framework,
regression losses and a domain discrepancy loss are combined
to tune CNN, where the former is leveraged for supervised
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Fig. 1. Framework of regression SDA for kinematics estimation.

learning and the latter works to align feature distributions of
source and target streams.

B. Design of CNN Stream
In CNN-based kinematics estimation, the sEMG matrix X

is normally constructed from the pre-processed sEMG signals
as the model input. Specifically, a sliding window method is
utilized to obtain a segment in the size of 1×W×C , where W
denotes the window length and C is the number of channels.
As suggested in [13], the fast Fourier transform (FFT) is
applied on the segment of each channel, and the spectrum
matrix X can be finally obtained. As depicted in Fig. 1,
the CNN stream consists of four convolutional blocks, two
FC blocks and a regression layer. Each convolutional block is
composed of a convolutional layer, a batch normalization layer,
a leaky ReLU layer, a max-pooling layer and a dropout layer.
The convolutional layer uses a kernel size of 3, a boundary
padding of 1 and the stride of 1. There are 16 kernels in the
1st and 2nd convolutional block, whilst 32 in the 3rd and 4th

block. In each FC block, a batch normalization layer, a leaky
ReLU layer and a dropout layer are added subsequently to a
FC layer. There are 100 hidden units in the 1st FC Block and
20 in the 2nd. Outputs of the 2nd FC Block will be utilized as
deep features for to calculate domain discrepancy.

C. Design of Loss Functions
To tune CNN weights θ , the source label yS

m and target label
yT

n are utilized to calculate the regression loss, i.e. mean square

error (MSE), for each stream. Meanwhile, a domain discrep-
ancy loss is also added to minimize the distribution divergence
between two domains. Therefore, the optimal weights θ∗ can
be learned by reducing the total loss which is formulated as

L
(
θ | X S, yS, XT , yT

)
= LS + LT + Ld (1)

LS = M SE
(
θ | X S, yS

)
(2)

LT = M SE
(
θ | XT , yT

)
(3)

Ld = γ1 M M D2
(
θ | X S, XT

)

+ γ2 RContrastive
(
θ | X S, yS, XT , yT

)
(4)

where LS denotes the regression loss calculated in DS whilst
LT represents the loss in Dtrain

T . Ld is the domain discrepancy
loss combined of a MMD loss and a regression contrastive loss
(RContrastive). In particular, RContrastive is an expan-
sion of the classification contrastive loss (CContrastive)
originally designed to guarantee deep features with better
intra-class compactness and inter-class separability in the
latent space [36], [38]. Coefficients γ1 and γ2 are used to
balance MMD loss and RContrastive in model training.

1) MSE Loss: MSE loss is one of the most commonly used
regression loss functions for supervised learning. It is the sum
of squared distances between ground-truth and predictions:

M SE
(
θ | X S, yS

)
=

∑M
1

(
yS

m − ŷ S
m

)2

M
(5)

M SE
(
θ | XT , yT

)
=

∑N
1

(
yT

n − ŷT
n

)2

N
(6)

where ŷ S
m and ŷT

n denote the predicted wrist angles in the
source and target stream, respectively.

2) MMD Loss: Given two sets of data drawn from two
distributions, MMD measures the distance between the mean
of these two sets after mapping each sample to a Reproducing
Kernel Hilbert Space (RKHS) [39]. The empirical estimate of
squared MMD is as follows

M M D2
(

X S, XT
)
=

∥∥∥∥∥
M∑

m=1

ϕ
(
xS

m

)
M
−

N∑
n=1

ϕ
(
xT

n

)
N

∥∥∥∥∥
2

H
(7)

where xS
m and xT

n represent the feature vectors extracted in
the 2nd FC Block of the source and target stream, respectively.
ϕ(•) indicates the mapping of the feature vectors to RKHS,
and � • �H denotes the RKHS norm. In practice, Eq. (7) is
usually calculated using kernel tricks, and the MMD loss can
be further expressed as

M M D2
(
θ | X S, XT

)
=

∑M
m,m∗ k

(
xS

m, xS
m∗

)
M2

−
∑M,N

m,n k
(
xS

m, xT
n

)
M × N

+
∑N

n,n∗ k
(
xT

n , xT
n∗

)
N2 (8)



BAO et al.: INTER-SUBJECT DOMAIN ADAPTATION FOR CNN-BASED WRIST KINEMATICS ESTIMATION 1071

where k(•,•) is a kernel function. Following most studies in
DA, the standard RBF kernel is adopted such that MMD can
compare all the orders of statistic moments [35]. As suggested
in [26], the variance in RBF kernel is empirically set as 1.

3) Regression Contrastive Loss: RContrastive is to learn
more discriminative deep features in regression tasks. The
basic idea is that samples from different domains but with
similar kinematics should be mapped nearby in the latent
space. On the contrary, dissimilar samples should be distant
from each other. Therefore, RContrastive is formulated as

RContrastive
(
θ | X S, yS, XT , yT

)

= Y
∥∥∥xS

m − xT
n

∥∥∥2 + (1− Y )
{

max
(

0, σ −
∥∥∥xS

m − xT
n

∥∥∥)}2

(9)

where � • � denotes the Frobenius norm, and σ is a margin
to specify the separation of feature vectors in the embedding
space. Y is the label defined for the similarity of a pairwise
sample. As mentioned before, RContrastive is the expansion
of CContrastive which is designed for the classification tasks
[36], [38]. In CContrastive, Y can be denoted as a binary
value determined by the rule: Y = 1 if the source and target
data are from the same category; otherwise Y = 0. However,
in regression tasks yS

m and yT
n are continuous values that

cannot be assigned to specific categories. To address this issue,
the computation of Y in RContrastive is modified as

Y = 1−
∣∣yS

m − yT
n

∣∣
α

(10)

where α denotes a constant which normalizes

∣∣yS
m − yT

n

∣∣
α

into

[0,1]. From Eq. (8) we can see that Y=1 if yS
m = yT

n .
By contrast, Y will become smaller or even close to zero when
yS

m and yT
n are dissimilar substantially.

To summarize, in the proposed method, both regression
losses and discrepancy losses are employed to tune CNN
weights θ : LS and LT utilize MSE losses to enable supervised
learning in each domain, whilst Ld works as a regulariza-
tion term to ensure that CNN can perform well in both
domains. Specifically, Ld is combined of MMD loss and
RContrastive, where MMD loss minimizes the distribution
mismatch of two different domains in the latent space, and
RContrastive provides more discriminative deep features
to further boost domain alignment. With these losses, θ

can be updated effectively using the backpropagation algo-
rithm. The final weights θ∗ can be leveraged to estimate
wrist kinematics in Dtest

T . The overall process is summarized
in Algorithm 1.

D. Baseline Methods
To demonstrate the effectiveness of regression SDA, we fur-

ther compare it with several baseline methods. The descrip-
tions of these methods are as follows.

1) Source Only (SO): SO simulates the implementation of
a pre-trained CNN in the TL process DS → DT , where only
data in DS are utilized for supervised learning.

Algorithm 1 The Proposed Regression SDA

Input: Source domain dataset DS =
{(

X S
m, yS

m

)}M
m=1, target

domain dataset Dtrain
T = {(

XT
n , yT

n

)}N
n=1, learning rate β, max

training epochs T , loss coefficients γ1 and γ2, parameters σ
and α.
Output: Optimal weights θ∗
1: Construct pairwise samples

{(
X S

m, yS
m

)
,
(
XT

n , yT
n

)}
based

on DS and Dtrain
T .

2: Initialize θ

3: while epoch t < T do
4: ŷ S

m, xS
m ← C N N

(
X S

m, θ(t)
)

5: ŷT
n , xT

n ← C N N
(
X S

n , θ(t)
)

6: Calculate LS , LT and Ld based on Eq. (5)-(10)
7: θ(t + 1)← θ(t)− β∇θ (LS + LT + Ld )
8: end while
9: return θ∗

2) Target Only (TO): TO represents the conventional training
of CNN using Dtrain

T , in which the network weights are
randomly initialized.

Similar to regression SDA, SO and TO are also trained using
pairwise samples reconstructed from DS and Dtrain

T . However,
only LS is adopted in SO, whereas TO utilizes LT instead.
This strategy can also be regarded as a data augmentation
approach for deep learning [41].

3) Joint Training (JT): JT shares the same architecture with
SDA but the discrepancy loss is excluded. It can be considered
as a TL/DA approach which attempts to exploit information
in both DS and DT .

4) Fine-Tuning (FT): As aforementioned, FT is the simplest
but most prevalent TL approach in deep learning applications.
Following previous research [24], convolutional layers are
transferred from a CNN that is pre-trained in DS as the initial
values for a new model to be trained in Dtrain

T .
5) Ordinary Least Square (OLS): Since the least square

based approaches do not heavily rely on the size of training
data and computation resources, the OLS model is also
included for comparison. Similar to TO, OLS is also trained
using Dtrain

T . As suggested by previous studies [42]–[44],
several temporal-spatial features are extracted from sEMG,
including mean absolute value (MAV), root mean square
(RMS), variance (VAR), and fourth-order autoregressive
coefficients (4th AR). In case of overfitting, the principal
component analysis (PCA) is applied to reduce redundant
hand-crafted features.

III. MATERIALS AND EXPERIMENTAL METHODS

A. Experiment Setup
Approved by the MaPS and Engineering joint Fac-

ulty Research Ethics Committee of University of Leeds,
UK (MEEC 18-002), six males and two females (aged 25 to
31) participated in this experiment. A written informed consent
was obtained from each subject.

1) Experiment Protocol: As shown in Fig. 2, subjects seat
on the armchair, with torso fully straight and forearm relaxed.
The current position of hand was set as the neutral position.
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Fig. 2. The placement of electrodes and markers in data acquisition
[40]. This figure also illustrates the neutral position in the wrist rotation.

In data collection, participants were asked to perform wrist
flexion/extension following a continuous cycle trial: the wrist
was rotated from neutral position to the flexion direction,
it was then moved back to the extension direction and finally
returned to neutral position. Each trial lasted around 20s and
5 trials were recorded for each participant.

2) Acquisition of sEMG: Delsys TrignoTM system was used
to record sEMG signals. Following SENIAM recommendation
[45], electrodes were placed over five primary wrist muscles
over right forearm: Flexor Carpi Radialis (FCR), Flexor Carpi
Ulnaris (FCU), Extensor Carpi Radialis Longus (ECRL),
Extensor Carpi Radialis Brevis (ECRB) and Extensor Carpi
Ulnaris (ECU). The sampling rate was set as 2000 Hz.

3) Motion Capture: To capture wrist movements through
the motion capture system (Vicon Motion Systems Ltd. UK),
16 reflective markers were placed on the subject’s right upper
limb. As illustrated in Fig. 4, markers were allocated over
the spinous process of the 7th and the 10th thoracic vertabra,
right scapula, xiphoid, acromio-clavicular joint, clavicle, lat-
eral/medial humerus medial epicondyle, right radial/ulnar sty-
loid, middle forearm and the right third metacarpus. The
sampling rate of Vicon Motion System was 250 Hz and
the synchronization of the kinematic data and sEMG were
conducted using a trigger module. The Vicon upper limb
model were applied to calculate wrist joint angles as the
measured angles or ground truth.

B. Data Pre-Processing
Collected sEMG signals were pre-processed using a 3rd

order Butterworth high pass filter (20 Hz) to remove movement
artifacts [46] and a low pass filter (450 Hz) to remove unusable
high frequency noise [47]. To extract samples for CNN,
the size of sliding windows was set to be 100ms length with
50ms increment. Since subjects were asked to rotate their
wrists in a comparatively low speed, the label of a sample
was obtained by computing the mean value of measured angles
within a sliding window. Besides, samples of each individual
were normalized by dividing the peak value of each given
muscle in the isometric maximum voluntary contraction [48].

C. Hyper-Parameter Setting
In this study, the two-stream network was trained in a

32 sized mini-batch for 100 epochs via adaptive moment

estimation (ADAM). The dynamic learning rate was 0.001.
The slope scale of leaky ReLU layers was set as 0.1. The
max-pooling layer used a pool size of 3, whilst the dropout
rate was set to be 30%. Following [36], we also set σ = 1 for
RContrastive. Based on experiment protocols, α in Eq. (10)
was set to be 180 since wrist rotations were normally within
[−90◦, 90◦]. In addition, we empirically set γ1 = 1000 and
γ2 = 0.1. The training of the network was implemented using
Pytorch backend.

D. Model Evaluation
Two commonly applied metrics, i.e. the normalized root

mean square error (NRMSE) and the coefficient of determina-
tion (R2) were used to evaluate the performances of regression
SDA. In particular, NRMSE and R2 indicate the difference in
terms of amplitude and correlation between the estimated kine-
matics and ground-truth, respectively. Specifically, NRMSE is
defined as [49]

N RM SE = RM SE

ymax − ymin
=

√∑N
t=1

(yt−ŷt )
2

N

ymax − ymin
(11)

where yt is the actual value of sample t , ŷt is the estimated
value, N is the total number of samples for evaluation, ymax
and ymin are the maximum and minimum of the actual values,
respectively.

The mathematical expression of R2 [50] is

R2 = 1−
∑N

t=1 (yt − ŷt )
2∑N

t=1 (yt − yt )
2

(12)

where ȳt is the mean of yt . The R2 of a perfect estima-
tion is close to 1, and it becomes negative if the square
sum of estimation errors are larger than the variance of
ground-truth. In this study we compared SDA with baseline
methods in both single-single and multiple-single scenarios
of kinematics estimation. Since this study focused on the
inter-subject transfer learning, the dataset of each subject
was categorized as either the source or target domain for
each TL process, which thus resulted in 56 processes in the
single-single scenario. For the sake of simplicity, we use
DSi → DT j (i, j = 1, 2, . . . , 8, i �= j ) to define the TL
process from source subject i to target subject j . To guarantee
a sufficient training, data in five experiment trials of a source
subject were combined to construct a comparatively large
DS . Differently, in the multiple-single scenario, the inter-user
data are leveraged for model training before testing on a
new participant. Assuming that more general and informative
features could be learned by CNN based on data aggregated
from multiple individuals, this scenario is also prevalent in the
inter-subject evaluations of TL approaches. In our experiment,
for each DT j , the corresponding DS was composed of data
from the rest seven subjects.

According to the settings of regression SDA [35], [36], i.e.
sufficient labeled training data in the source domain and sparse
ones in target, Dtrain

T was composed of only 10% data collected
in one experimental trial (about 2 ∼ 3 sec to cover a wrist
contraction circle from extension to flexion), whilst the rest
data of this trial are stored in Dtest

T for evaluation. Besides,
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Fig. 3. Normalized sEMG signals and wrist angles of (a) subject 6 and
(b) subject 1 in a rotation cycle. The wrist angles are measured in
degrees. The channel numbers and measured muscles were consistent
among all subjects: CH1-FCR, CH2-FCU, CH3-ECRL, CH4-ECRB, CH5-
ECU. As shown in this figure, muscle activations varied dramatically
among two subjects. In particular, ECU of subject 6 was mainly activated
during wrist extension. By contrast, high activations can be found in ECU
of subject 1 during flexion.

to reduce the computational load, only the first 20% of the
shuffled pairwise samples were utilized for model training.
This procedure is similar to the ratio filter applied in [36],
[37]. Empirically, we observed that the estimation accuracies
when using downsampled training sets were close to those
when all M × N pairwise samples were involved.

IV. RESULTS

A. Domain Shift Effects on Inter-Subject Estimation
Fig. 3 demonstrates sEMG signals and related wrist angles

of two subjects in kinematics estimation. Amplitudes of sEMG
in each channel indicate the activation levels of the measured
muscle. As we can see, in some channels (such as CH5)
sEMG patterns can differ substantially among subjects even
though wrist motions are similar. We then validated the
performances of a conventional CNN model (see Section II.B)
in both intra-subject (DS and DT are from one subject) and
inter-subject (DS and DT are from two different subjects)
circumstance. As shown in Fig. 4, the validation loss decreases
effectively in the former circumstance but can hardly converge
in the latter.

B. Learning Process of Regression SDA
In this section, we investigated the learning process of

regression SDA in the inter-subject domain adaptation. Fig. 5
illustrates convergences of LS , LT and Ld in the TL process
DS6 → DT 1. From this figure it can be observed that
two regression losses and the domain discrepancy loss could
decrease simultaneously via backpropagation. Different from
iteration performances in Fig. 4, the convergence of LS was
substantially restricted due to the regularization of Ld , which
helped CNN to avoid overfitting to the low-error regions
of DS . Besides, we can also find that LT decreased faster
than LS even though their coefficients were set to be the

Fig. 4. Loss performances of CNN during model learning in both
intra-subject and inter-subject scenarios.

Fig. 5. Loss performances of regression SDA during model learning
in the TL process DS6 → DT1. Specifically, LS denotes the regression
loss calculated in DS, LT represents the loss in Dtrain

T , Ld is the domain
discrepancy loss combined of a MMD loss and the RContrastive loss.

same. Similar observations can also be found in many other
TL processes in our experiment. A possible reason is that,
although samples in Dtrain

T were extremely augmented in the
pairwise combinations, the information provided by Dtrain

T is
much less than DS due to its limited size.

C. Estimation Performances in Single-Single
TL Process

To illustrate the regression performances intuitively, Fig. 6
plots the estimated trajectories of all listed methods in the
transfer process DS6 → DT 1. The absolute error of each
method with regard to the ground-truth are also summa-
rized in the histograms accordingly. From Fig. 6 it can be
observed that, due to domain shift effects in the inter-subject
circumstance, the predicted trajectory of SO is quite distant
from the ground-truth. The absolute errors of testing samples
are substantially larger than other those of other methods.
By contrast, trajectories of JT, FT and regression SDA are
much closer to the ground-truth, which can be also verified by
the their better distributions of absolute errors. In particular,
the trajectory of SDA can mostly fit the ground-truth, with
absolute errors mainly smaller than 50 degrees.

For an explicit comparison, Table I summarizes the NRMSE
and R2 of SO, JT, FT and SDA in the single-single TL
processes targeted at Subject 1, i.e. DSi → DT 1(i =
2, 3, . . . , 8). Besides, according to the definition of TO and
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Fig. 6. Estimation performances (predicted wrist angles and absolute errors with respect to the ground-truth) of all methods in the TL process
DS6 → DT1. GT denotes the ground-truth. The NRMSE of SO, JT, FT and SDA are 0.35, 0.26, 0.25, 0.22 in DS6 → DT1, and the R2 of these four
methods are 0.38, 0.59, 0.59, 0.72, respectively. The NRMSE/R2 of TO and OLS in DT1 (TO and OLS are calculated once in each target subject)
are 0.32/0.43 and 0.30/0.51.

Fig. 7. Statistical analysis of SO, JT, FT and regression SDA for each target subject in the single-single transfer learning scenario (***p-value <
0.001, **p-value < 0.05, and *p-value < 0.1). TO and OLS are excluded in this figure since they are computed once in each target subject).

TABLE I
NRMSE AND R2 OF SO, JT, FT AND SDA IN TL PROCESSES DSi → DT1(i = 2, 3, . . . , 8)

OLS, these two methods are calculated once in each target sub-
ject. The NRMSE/R2 of TO and OLS in DT 1 (TO and OLS)
are 0.32/0.43 and 0.30/0.51, respectively. Since trajectories of
SO usually differ a lot from the ground-truth (see Fig. 6) due
to the domain shift impact, the R2 of SO in some TL processes
can be negative, such as−0.24 in DS4→ DT 1. From Table I it
can be observed that SDA surpasses other methods, especially
JT and FT in most cases. Another interesting observation
is that in the same row TL performances also vary a lot.

This is because the domain shift effects cannot be the same
between every two subjects due to different similarities in their
biochemical or physiological characteristics.

To better verify the effectiveness of regression SDA,
the one-way analysis of variance (ANOVA) is applied
for statistical analysis of SO, JT, FT, and SDA in each
target subject, and the results can be found in Fig. 7.
As aforementioned, the performances of each method vary
substantially among TL processes in each target subject,
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TABLE II
NRMSE AND R2 OF ALL LISTED METHODS IN TL PROCESSES OF

MULTIPLE-SINGLE SCENARIO

which can result in large standard deviations (Std). To this
end, we choose larger p-values to indicate the significance
in statistics (***p-value < 0.001, **p-value < 0.05, and
*p-value < 0.1). Since TO and OLS was computed once in
each target subject, statistical analysis of TO/OLS were only
included in the multiple-single scenario (see Section IV.D).

D. Estimation Performances in Multiple-Single TL
Process

In this subsection, performances of SO, TO, OLS, JT,
FT and SDA are compared in multiple-single processes.
Table II lists NRMSE and R2 of all listed methods in
the multiple-single scenario, where for each target subject
DT i (i = 1 · · · 8), the corresponding DS is composed of
data from the rest seven subjects. To fully exploit the
capability of neural network methods, the leave-one-out
cross-validation (LOOCV) is applied to tune hyper-parameters,
where data of each source subject work alternatively as
the validation subject in each TL process. Herein, four
hyper-parameters are selected to be optimized in SDA, includ-
ing learning rate β, max training epochs T , loss coeffi-
cients γ1 and γ2. Each hyper-parameter is given five optional
values, i.e. β ∈ [0.1, 0.05, 0.001, 0.0005, 0.0001], T ∈
[25, 50, 100, 150, 200], γ1 ∈ [100, 500, 1000, 2000, 5000],
and γ2 ∈ [0.01, 0.05, 0.1, 0.5, 1.0]. After LOOCV, the con-
figured hyper-parameters are applied to SDA for the target
subject. Statistical analysis is shown in Fig. 8, from which
it can be indicated that regression SDA still obtains the best
estimation performance in each process.

E. Estimation Performances in Source Domains
Apart from better results in DT , another main advantage

of regression SDA over FT is that the former can maintain
estimation performances in DS . Theoretically, without extra
guidance to tune CNN weights θ for original tasks, FT only
learns a final point θ∗ that yields a low error for DT but not
DS . This issue is also known as the catastrophic forgetting

Fig. 8. Statistical analysis of SO, TO, OLS, JT, FT and SDA on eight target
subjects in the multiple-single scenario (***p-value< 0.001, **p-value <
0.05, *p-value < 0.1).

Fig. 9. Optimization of CNN weights via FT and regression SDA. The
low-error region of two domains will become closer or more overlapped
in regression SDA due to the reduction of domain discrepancy.

[26], [27] which is prevalent in conventional deep neural
networks when learning new tasks. On the contrary, due to
the special design of loss functions in regression SDA, θ∗ can
be kept in the low-error regions of both DT but not DS . The
differences in the optimization of CNN weights θ via FT and
regression SDA are illustrated in Fig. 9.

In Fig. 10 we further compare the overall performances of
FT and regression SDA on each source domain DSi after
conducting TL processes to the rest seven target domains of
single-single scenario. As we can see, performances of FT on
DSi degraded substantially due to the catastrophic forgetting
[27]. By contrast, performances of regression SDA can be
maintained in a much better level for every DSi . Compared
with FT, this advantage of regression SDA can effectively
boost the model reusability among subjects. Although it is
claimed that after FT a specific network could be stored for
each subject separately, this strategy might be impractical in
real-time applications since an extra step is then required to
distinguish which subject the testing data should belong to.

V. DISCUSSION

Domain shift issues are prevalent in sEMG-based motion
estimation, particularly when DL models are implemented in
the inter-subject circumstance. As illustrated in Fig. 3, a main
reason is that the physiological, anatomical and biochemical
characteristics of muscles are highly variable among
individuals. In addition, subjects may use different muscle
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Fig. 10. Statistical analysis of FT and regression SDA for each source subject in the single-single transfer learning scenario (***p-value < 0.001).

control strategies to produce the same movement [18], [48].
Consequently, results of SO in our experiments (Fig. 6-Fig.8,
Table I and II) indicate that models trained with sEMG from
previous subjects may fail to predict accurately on a new sub-
ject, which results in a great challenge to the practical applica-
tion of myoelectric control. In previous literatures many efforts
have been reported to enhance the model generalization among
individuals, including both machine learning approaches
[51]–[55] and deep learning ones [25], [56], [57]. However,
most of these works mainly focused on the hand gestures
recognition rather than kinematics estimation, where
specific designs were proposed for the classier or to match
classification strategies.

To this end, we propose the regression SDA to reduce
domain shift effects on CNN performances in the inter-subject
kinematics estimation. According to the experiment results
in both single-single and multiple-single scenario it can be
concluded that 1) by exploiting information of both source
and target domains, the proposed SDA can outperform baseline
methods significantly; 2) with help of the discrepancy losses,
SDA can further surpass JT which simply combines labelled
data of two domains; 3) due to the effectiveness of auto-
matic feature extraction via CNN, deep learning methods, i.e.
JT/FT/SDA, are better than OLS which depends heavily on the
quality of hand-crafted features; 4) different from FT which
suffers from the catastrophic forgetting in the source domains,
SDA can maintain good performances in two domains and
thus boost the model reusability among subjects.

Another interesting observation of SDA is that Dtrain
T and

Dtest
T might be able to come from different tasks. In particular,

participants were asked to perform two contractions: 1) wrist
flexion (WF) to move the wrist towards to the palm side and
then return to neutral position; 2) wrist extension (WE), which
starts from neutral position, move the wrist towards to the
back-hand side and then return to neutral position. Apparently,
both features (muscle activations denoted by sEMG) and labels
(wrist angles) are different between two tasks. Herein, both
DS and Dtest

T are composed of data from WE, whilst Dtrain
T is

obtained from WF. In our experiment, we empirically found
that TO, OLS and FT all performed very poorly since they
only utilized Dtrain

T which is irrelevant to Dtest
T . Therefore,

Fig. 11. Statistical analysis of SO, JT and SDA in multiple-single TL
processes when Dtrain

T and Dtest
T are from two tasks (**p-value < 0.05,

*p-value < 0.1). Specifically, DS and Dtest
T are composed of data from

wrist extension, whilst Dtrain
T is obtained from wrist flexion.

we mainly compared the performances of SO, JT and SDA.
Figure 11 illustrates the statistical results in the multiple-single
scenario, from which it can be found that SDA outperforms
both JT and SO significantly (p-value < 0.05 for R2). Interest-
ingly, there is no significance between JT and SO, indicating
that a simple addition of the irrelevant Dtrain

T may not benefit
the transfer learning between different tasks.

As aforementioned, domain adaptation can be divided into
SDA and UDA approaches [35]. Different from SDA, UDA
is also be of significance due to the exclusion of extra
hardware and time for data relabelling. In fact, our method
is a framework which is suitable for both SDA and UDA.
Based on the proposed two-stream CNN architecture, a UDA
model can be constructed when only the source regression
loss LS and MMD Loss are included. This setting is similar
to those proposed in [29], [30]. However, we empirically
observed that although UDA can continuously outperform SO,
its performances are significantly inferior to those of SDA,
mainly due to the lack of target labels to provide discriminative
information. Similar statements can also be found in many
relative works of myoelectric control [24], [52] and other
research fields [36], [58].
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Currently, the costs of hardware set-up and computations
during recalibration is still a limitation of the proposed SDA,
and there might be some solutions to address these disadvan-
tages. Firstly, quantization approaches [59] have been widely
investigated in recent years to reduce the computation load of
CNN models, and will be further explored to enhance SDA
approaches in our future work. Secondly, the hardware setups
in this experiment can also be further simplified by using the
armband for sEMG detection [57] and Leap Motion Controller
[60] which provides a cheap and efficient way to track the joint
angles as labels. With the acceleration of computation and the
simplification of hardware set-up, it can further benefit users
by requesting fewer trials for recalibration via SDA.

VI. CONCLUSION

In this study, we propose the regression SDA to reduce
domain shift effects on CNN performances in the inter-subject
circumstance. Based on the two-stream structure, data in both
source and target subject can be exploited simultaneously.
By adding the discrepancy loss in model training, distrib-
ution divergences between two domains can be effectively
minimized. The main merit of regression SDA compared
with fine-tuning can be summarized as 1) it further improves
the estimation accuracy with very limited data in the target
domain; 2) it also maintains good performance in original
domain and thus boosts the model reusability.
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