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Abstract— Recent studies have investigated bilateral
gaits based on the causality analysis of kinetic (or kine-
matic) signals recorded using both feet. However, these
approaches have not considered the influence of their
simultaneous causation, which might lead to inaccurate
causality inference. Furthermore, the causal interaction of
these signals has not been investigated within their fre-
quency domain. Therefore, in this study we attempted to
employ a causal-decomposition approach to analyze bilat-
eral gait. The vertical ground reaction force (VGRF) signals
of Parkinson’s disease (PD) patients and healthy control
(HC) individuals were taken as an example to illustrate
this method. To achieve this, we used ensemble empirical
mode decomposition to decompose the left and right VGRF
signals into intrinsic mode functions (IMFs) from the high to
low frequency bands. The causal interaction strength (CIS)
between each pair of IMFs was then assessed through the
use of their instantaneous phase dependency. The results
show that the CISes between pairwise IMFs decomposed
in the high frequency band of VGRF signals can not only
markedly distinguish PD patients from HC individuals, but
also found a significant correlation with disease progres-
sion, while other pairwise IMFs were not able to produce
this. In sum, we found for the first time that the frequency
specific causality of bilateral gait may reflect the health sta-
tus and disease progression of individuals.This finding may
help to understand the underlying mechanisms of walking
and walking-related diseases, and offer broad applications
in the fields of medicine and engineering.

Index Terms— Causal decomposition, ensemble empir-
ical mode decomposition (EEMD), frequency domain,
gait analysis, Hilbert transform, instantaneous phase,
Parkinson’s disease (PD), phase coherence.
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I. INTRODUCTION

A. Walking Mechanisms and Quantitative Gait Analysis

WALKING is one of the most important movements in a
person’s daily life, and mainly involves the locomotion

of the human body through the coordination of both legs.
Although walking seems to be quite simple, it actually involves
the participation of a number of different physiological com-
ponents, including the muscles, joints, cerebral cortex, cere-
bellum, spinal cord, and more. It should be noted that if there
is a problem in any one of these physiological components,
it may produce an abnormal gait in the individual. Therefore,
quantitative analysis of individual gait patterns has become an
important way to understand the mechanisms of walking and
diseases related to it.

Quantitative gait analysis usually involves the study of an
individual’s walking patterns through the collection and analy-
sis of the person’s physiological, kinetic, and kinematic sig-
nals, such as their electromyographic signals, vertical ground
reaction force (VGRF), and acceleration signals, and these
have been broadly applied in many different fields to date.
For example, many different diseases are related to abnormal
gait, including cerebral palsy, Parkinson’s disease (PD), Hunt-
ington’s disease, and stroke. Quantitative gait analysis based
on kinetic (or kinematic) signals not only helps clinicians to
diagnose these diseases, but can also be used as a standard tool
to evaluate the rehabilitative effect of their treatment. In addi-
tion, performing quantitative analysis on the gait patterns of
children and the elderly can help the clinicians to assess
their physical development and aging process. Furthermore,
many wearable devices on the market can be used to monitor
personal health by collecting and analyzing real-time walking
data such as gait rhythm. It can thus be seen that quantitative
gait analysis plays an increasingly important role in the fields
of medicine and engineering.

B. Performing Bilateral Gait Analysis Through Causal
Decomposition

There have been many previous studies on quantitative gait
analysis. For example, Joshi et al. extracted gait parameters
based on performing wavelet decomposition of time series of
stride time intervals, swing time intervals, and stance time
intervals, and successfully differentiated PD patients from
healthy control (HC) individuals [1]. Anna et al. proposed a
symbol-based approach for acceleration signals, and this was
regarded as a new measure to evaluate walking symmetry [2].
Gouwanda et al. used normalized cross-correlation to evaluate
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the waveform patterns generated by the lower limb in each
gait cycle, and found that normalized cross-correlation can
be considered as a single value indicator that determines the
gait asymmetry [3]. Although all of these previous studies
quantified gait patterns from different perspectives, they did
not investigate how both left and right legs causally influence
each other while walking, i.e., they did not explore the
causality of bilateral gait, not until a recent paper published
by Gong et al. [4]. In that study, a causality index was
calculated based on the acceleration signals recorded from
bilateral knee joints in order to differentiate individuals with
multiple sclerosis from HC. However, this study still contained
a number of insufficiencies: (1) The calculated causality index
is mainly based on the concept of Bayesian prediction; that
is, the events occurring in the past contribute to predicting the
current state (the effect). A time lag between cause and effect
is thus required for causal reasoning. However, cause and
effect may also be able to influence each other simultaneously,
and this phenomenon is widely present in the physiological
regulation of body functions [5], [6]. In other words, at the
moment when an effect manifests, it is always affected by
both current and past causes. More importantly, recent studies
have already indicated that a cause-effect relationship cannot
be accurately inferred without considering their simultaneous
influence [5]–[7]. Therefore, it can be seen that the methods
employed in [4] may not only underestimate the simultaneous
nature of the cause-effect relationship observed in bilateral
gait, but also lead to inaccurate causal inference. (2) The time
domain information of acceleration signals employed in [4]
might not be enough to capture the causal interaction between
both legs during walking, since human gait is a periodic,
rhythmic, and dynamic process of movement [8]. Furthermore,
the oscillatory components for kinetic and kinematic signals
within specific frequency bands generally have different phys-
iological meanings [9], [10]. Thus, it is very reasonable to
investigate the frequency-specific causal interaction of kinetic
(or kinematic) signals in both left and right feet. Due to the
reasons mentioned above, in this study we tried to analyze
bilateral gait through causal decomposition.

It is worth noting that the method of causal decomposition
is not based on the time dependency of the two signals, but
on the instantaneous phase dependency between their oscilla-
tory components in a specific frequency band. Furthermore,
we define the cause-effect relationship of the two signals
(e. g. A and B) according to the principle of covariation
of cause and effect [11]. Specifically, when a component in
B that is causally related to A is removed from B, if the
instantaneous phase dependency between these two signals
is diminished, then we can assert that B causes A, but not
vice versa [12]. In addition, this approach also considers
simultaneous cause and effect relationships not accounted for
by predictive causality methods used in [4].

Abnormal gait is one of the main symptoms of many
diseases, and it is almost impossible to list them exhaustively
in this article. Therefore, in this study, we only chose to
analyze PD patients, which may be regarded as a sample to
illustrate this method. In addition, the VGRF signals of PD
patients have been widely analyzed in order to characterize
their walking patterns, which are known as one of the most
important kinetic signals for gait analysis. However, there is no

current research which has used VGRF to quantify the mutual
causal influence between the legs during walking. Apart from
this, some previous studies have shown that different frequency
components of VGRF signals can generally reflect a diverse
set of walking mechanisms [9], [10]. Therefore, this study
attempts to employ the method of causal decomposition to
analyze the bilateral VGRF signals of HC individuals and PD
patients in order to reveal whether the disease changes the
causality of specific frequency components while they walk.

II. MATERIALS AND METHODS

A. Data Records and Preprocessing

The data set used in this study was collected by Haus-
dorff et al., and can be obtained from PhysioNet [13]. This
data set includes 93 PD patients (age: 66.3 ± 9.5 (SD)
years; 58 males and 35 females) and 73 HC subjects (age:
63.7 ± 8.7 (SD) years, 40 males and 33 females). During the
experiment, all subjects were required to walk at a self-selected
pace for approximately 2 minutes on level ground. Eight
sensors (Ultraflex Computer Dyno Graphy, Infotronic Inc.)
were applied underneath each foot in order to record the
VGRF signals of individuals during the walking process. All
VGRF signals were digitized and sampled at 100 Hz. Apart
from this, the total VGRF signal of each foot is provided
in this data set as well, and is composed as the sum total
of the 8 sensors’ outputs. It should be noted that the total
VGRF signals were used for analysis in this study, and in the
following text all references to “VGRF signals” refer to total
force signals. Finally, this data set also contains the clinical
scale scores of each PD patient, including their Hoehn &
Yahr (HY) scale score (a commonly used clinical scale for
evaluating the progression of PD) and the individual’s time up
and go (TUG) test score (a commonly used screening tool to
assist clinicians to identify patients at risk of falling).

In data preprocessing portion, a fourth order Butterworth
low-pass filter with a 25Hz cutoff frequency was employed,
and this has been proved to be able to eliminate 99% of noise
while retaining all major components of the VGRF signal [14].

B. Causal Decomposition

In this study, the causal decomposition method was used to
detect the causal relationship between pairwise IMFs extracted
from the VGRF signals of both left and right feet. Here, causal-
ity inference is based the covariation principle proposed by
Galilei: cause is that which, once present, is followed after by
effect; if removed, the effect is then removed [11]. To achieve
this, three steps are required: (1) using the EEMD to decom-
pose each VGRF signal into a finite number of sub-band
components, namely IMFs (the numbers of decomposed IMFs
are the same for both VGRF signals); (2) calculating the
instantaneous phase of each IMF via Hilbert transform; (3)
estimating the causal interaction strength (CIS) between paired
IMFs [12].

1) Ensemble Empirical Mode Decomposition: In this paper,
the method of EEMD was adopted to decompose the pre-
processed VGRF signal into a finite number of components
with different frequency distributions, namely IMFs. EEMD
has many advantages, such as being data-driven, locally
adaptive, multi-scale, and robust [15]. Furthermore, it is also
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very suitable for processing non-stationary, non-linear, and
time-varying data [15]. Thus, in this study the EEMD was
selected to decompose VGRF signals first, and its procedures
contain three parts, which are shown as follows:

Step 1: In the preprocessed VGRF signal, random white
noise weighted by coefficients is added to form a set of
noise-added signals, which can be expressed as follows:

Sk(t) = S(t) + r × wk(t) (k = 1, . . . , K ) (1)

where S(t) is a preprocessed VGRF signal and wk is the kth
added white noise weighted by amplitude coefficient r . Sk(t) is
the kth noise-added signal. K is the number of signals added
with different white noise, namely the number of ensemble
members.

Step 2: Decompose each noise-added signal into IMFs.
(a). Take Sk(t) as the initial signal. Identify and record its

local maxima and minima.
(b). Construct the cubic spline curve between each two

adjacent maxima to form upper envelope, denoted as Eu(t).
(c). Construct the cubic spline curve between each two

adjacent minima to form the lower envelope, denoted as El(t).
(d). Take the average of Eu(t) and El(t) to obtain its

averaged envelope mk1(t):

mk1(t) = 1

2
(Eu(t) + El(t)) (k = 1, . . . , K ) (2)

(e). Make the difference between Sk(t) and mk1(t):

Sk1(t) = Sk(t) − mk1(t) (k = 1, . . . , K ) (3)

where Sk1(t) denotes the first IMF decomposed from the
preprocessed VGRF signal added with kth white noise.

(f). Set first residue resk1 equal to mk1(t). Thus, the fol-
lowing equation can be obtained:

resk1 = Sk(t) − Sk1(t) (k = 1, . . . , K ) (4)

(g). Iterate steps (a)-(f) on the resk( j−1), which is generated
in the latest iteration, and the following IMFs can be obtained
as follows:

resk( j−1) − reskj = Skj (k = 1, . . . , K ; j = 2, 3 . . . , J ) (5)

where Skj represents the j th IMF of the preprocessed VGRF
signal added by the kth white noise, and reskj indicates
the residual generated in the j th iteration. J represents the
maximum number of IMFs decomposed from the preprocessed
VGRF signal added by the kth white noise.

Such iterations will stop only when reskj is smaller than the
predefined threshold, or the number of IMFs reaches a certain
limit [12]. The kth noise-added signal can then be expressed
as:

Sk(t) =
J∑

j=1

Skj + resk J (k = 1, . . . , K ; j = 1, . . . , J ) (6)

where resk J denotes the residual generated in the last iteration
of the decomposition of Sk(t).

Step 3: For each white noise added signal Sk(t), its decom-
posed IMFs, Skj (t) ( j = 1, 2, . . .), can be obtained from step
1 and 2. Then, because of the zero-mean nature of white noise,
the different white noise attached to each decomposed IMF Skj

can be cancelled out by summing, and the final IMFs Sj can
be obtained by

Sj = 1

K

K∑
k=1

Skj ( j = 1, . . . , J ) (7)

Thus, the original signal can be expressed as follows:

S(t) =
J∑

j=1

Sj (t) + resJ (8)

where resJ is the average of resk J (k = 1, . . . , K ). In this
study, we attempted to decompose a VGRF signal into three
IMFs to represent high, intermediate, and low-frequency com-
ponents. J is thus designated as 3. Figure 1 shows the EEMD
analysis of VGRF signals obtained from one HC individual
and one PD patient, where the SL and SR represent the VGRF
signal extracted from left foot and right foot respectively.

It is worth noting that there are two parameters which
must be specified in advance in practice of EEMD, namely
the number of ensemble members K and noise amplitude r ,
both of which play an important role in EEMD calculation.
Theoretically, using the statistical characteristics of white
noise, i.e. zero mean, we can obtain the true IMFs since a
collection of white noise cancels each other out during the
averaging process, as can be seen in (7). But in fact, if K is
not large enough, the added noise would not be completely
canceled out, producing biased IMFs [15]. With regard to
parameter r , as illustrated in (1), the added noise will become a
fraction of the decomposed signal. If r is too large, the original
signal will be covered. On the contrary, if r is too small,
it would not be an effective tool to simulate the different levels
of noise present in the process of signal collection [15]. Apart
from this, in order to better reconstruct the original signal,
its decomposed IMFs should remain orthogonal or nearly
orthogonal to each other. However, the additional noise will
interfere with the manifestation of the original signal, thereby
affecting the orthogonality of the IMFs [16]. It can thus be seen
that the value selections for r and K are very important for
EEMD analysis. For more details about parameter selection,
please refer to the supplementary material.

2) Hilbert Transform: The Hilbert transform is the second
part of causal decomposition. Specifically, the Hilbert trans-
form of decomposed IMFs, namely Sj , is defined as Sj H =
1
π

∫ S j (τ )
t−τ dτ , thereby its instantaneous amplitude is defined

as A j (t) =
√

S2
j (t) + S2

j H (t), and the instantaneous phase is

defined as ϕ j (t) = arctan(
S j H (t)
S j (t)

) [12]. With this transform,
each IMF can be represented by instantaneous amplitude and
instantaneous phase, which is shown as follows:

Sj (t) = A j (t) cos ϕ j (t) ( j = 1, . . . , J ) (9)

3) Causality Estimation:
a) Phase Coherence: Two nonlinear coupled oscillators

may synchronize their phase, even if their amplitudes remain
uncorrelated [17]. This phenomenon is known as phase syn-
chronization, and can be measured using several indexes, such
as phase coherence. In this study, phase coherence between the
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Fig. 1. EEMD analysis of the VGRF signals obtained from one HC individual and one PD patient. The VGRF signals of the left and right foot are
represented in red and blue respectively. The plots are as follows, from top to bottom: the original VGRF signal, the first IMF, the second IMF, and
the third IMF.

pairwise IMFs derived from both VGRF signals is calculated,
which was expressed as:

�ϕL R
j (t) = ϕR

j (t) − ϕL
j (t) ( j = 1, . . . , J ) (10)

where ϕL
j (t) and ϕR

j (t) represent the instantaneous phases
of the j th IMF derived from the VGRF signals of the left
and right foot respectively. �ϕL R

j (t) indicates their phase
difference.

If there is a high degree of consistency between these two
IMFs, their phase difference will be almost constant over time;
otherwise their phase difference will fluctuate dramatically
over time [12]. The instantaneous phase coherence (Coh)
measurement between SL

j and SR
j can then be calculated as:

Coh(SL
j , SR

j ) = 1

T
|
∫ T

0
ei�ϕL R

j (t)dt| ( j = 1, . . . , J ) (11)

where ei�ϕL R
j (t) is a vector with unit length on a complex

plane. T is the length of the signal. SL
j and SR

j represent
the j th IMF decomposed from the left and right foot respec-
tively. If the Coh coefficient is close to 1, it means that the
instantaneous phase difference changes only slightly over time,
which indicates that there is a strong correlation between IMF
pairs. If the Coh coefficient is close to 0, we can infer that
the instantaneous phase difference of the paired IMFs changes
markedly over the entire time period [12].

b) Causal Interaction Strength Evaluation: Causal inference
between pairwise IMFs derived from both VGRF signals
is based on Galilei’s principle: cause is that which, when
present, is followed on by effect; when removed, the effect is
removed [11]. Specifically, there are three key steps to achieve
estimation of CIS [12]:

Step 1: Decompose both VGRF signals (SL and SR) into
two sets of IMFs (SL

j and SR
j ) and determine the instantaneous

phase coherence between each pairwise IMFs;
Step 2: Remove the qth IMF in a given VGRF signal

(e.g., SL), and then produce a new VGRF signal through
the removal of the qth IMF (e.g., SL(−q)). Then perform a
redecomposition procedure to generate a new set of IMFs (e.g.,
SL(−q)

j ) and recalculate the instantaneous phase coherence
between the original IMFs in one VGRF signal (e.g., SR

j )
and the re-decomposed IMFs in the other VGRF signal (e.g.,
SL(−q)

j );
Step 3: Because each IMF represents a dynamic process

operating on different time scales, we regard the phase
coherence between the paired IMFs as coordinates in a
multidimensional space. Thus, the CIS can be quantified by
the variance-weighted Euclidean distance between the phase
coherence of the paired IMFs decomposed from the original
signals (SL

j vs. SR
j ) and the phase coherence of the paired

original IMF and re-decomposed IMF (e.g. SL(−q)
j vs. SR

j ).
The formula for the CISes between the qth IMF decomposed
from SL and SR can be calculated as follows:

D(SL
q → SR

q ) = {
J∑

j=1

W j [Coh(SL
j , SR

j )

− Coh(SL(−q)
j , SR

j )]2} 1
2 (12)

D(SR
q → SL

q ) = {
J∑

j=1

W j [Coh(SL
j , SR

j )

− Coh(SL
j , SR(−q)

j )]2} 1
2 (13)



PENG et al.: GAIT ANALYSIS BY CAUSAL DECOMPOSITION 957

Fig. 2. The re-decomposed IMFs of SL(−1) and the original IMFs of SR of one PD patient and one HC individual based on the EEMD analysis.
SL(−1) is obtained by subtracting the first IMF from SL. According to Fig. 1 and 2, the CIS estimation for D(SL

1 → SR
1 ) can be achieved.

W j = (V ar L
j × V ar R

j )/
∑J

j=1
(V ar L

j × V ar R
j )

(14)

where coefficient D(SL
q → SR

q ) represents the causal effect of

the qth IMF in SL on its corresponding IMF in SR . SL(−q)
j

represents a new set of IMFs, which have been re-decomposed
from VGRF signal SL with the removal of its qth IMF. Coeffi-
cient D(SR

q → SL
q ) represents the causal effect of the qth IMF

in SR on its corresponding IMF in SL . SR(−q)
j represents a new

set of IMFs, which are re-decomposed from VGRF signal SR

with the removal of its qth IMF. W j indicates the weight based
on the variance of the j th IMF decomposed from SL and SR ,
namely V ar L

j and V ar R
j . Fig. 2 shows the original IMFs of

SRand the re-decomposed IMFs of SL(−1) for one PD patient
and one HC individual based on the EEMD analysis. SL(−1)

is obtained by subtracting the first IMF from SL . According
to Fig. 1 and 2, the CIS estimation for D(SL

1 → SR
1 ) can

be obtained. Fig. 3 shows the original IMFs of SL and the
re-decomposed IMFs of SR(−1) for one PD patient and one HC
individual based on the EEMD analysis. SR(−1) is obtained by
subtracting the first IMF from SR . According to Fig. 1 and 3,
the CIS estimation for D(SR

1 → SL
1 ) can be obtained.

It should be noted that the motor symptoms of PD patients
are often asymmetric, since their abnormal gait usually occurs
first on one side and then on the other, and the onset side
has different clinical manifestations compared to the other
side [18]. However, this data set does not provide any infor-
mation about which lower limb of a given PD patient has the
initial motor dysfunction. Thus, CISes in different directions,

that D(SL
q → SR

q ) and D(SR
q → SL

q ), were averaged, denoted
as Dq .

C. Statistical Analysis

In this study, in order to evaluate whether PD significantly
alters the causality of both feet during walking, statistical
test was performed. Due to the non-normal distribution of
Dq (detected by Jarque-Bera test at 5% significance level),
the nonparametric statistical analyses were employed in this
study. In addition, considering the potentially overpowered
results caused by the size of the dataset [19], we adopted
the bootstrap method. The specific procedures for statistical
analysis are as follows.

In the first section, we examined the difference of Dq
between PD patients and HC individuals through bootstrap-
based Wilcoxon rank-sum tests. Specifically, sample size was
initially determined for bootstrap, and the calculated appropri-
ate sample size was 11 (The R package named “samplesize”
was used to perform sample size calculation [20]. In this
software package, the power was set to 0.9 and the significance
level was set to 0.05). Then, 11 subjects were randomly
selected from 93 PD patients and 73 HC individuals, respec-
tively. In comparing the two subsets, Wilcoxon rank-sum test
was used, and the corresponding p-value was obtained. These
operations were repeated 1000 times and 1000 p-values were
gained. To control the false discovery rate, these p-values
were subsequently fused by harmonic mean p-value (HMP)
technique [21]. It should be noted that, for HMP, the critical
value of significance depends on the false positive rate α and
the number of tests [21], which were set to 0.05 and 1000 in
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Fig. 3. The original IMFs of SL and the re-decomposed IMFs of SR(−1) for one PD patient and one HC based on the EEMD analysis. SR(−1) is
obtained by subtracting the first IMF from SR. According to Fig. 1 and 3, the CIS estimation for D(SR

1 → SL
1) can be obtained.

this study, respectively. According to [21], the calculated
critical value of significance for HMP should be 0.034.

In the second section, the correlation coefficients between
Dq and the PD progression scores (i.e. HY score and TUG
score) were evaluated through bootstrap-based Spearman cor-
relation test. Concretely, the sample size for bootstrap was
initially calculated using the R package named “pwr” [22]
(In that package, correlation coefficient was set at 0.8; the
power was set to 0.9; and the significance level was set
at 0.05), and the sample size for this study was 12. Next,
Spearman correlation test was performed on the features and
PD progression scores of 12 randomly selected subjects, which
yielded one correlation coefficient and one p-value. These
operations were repeated 1000 times, and thus 1000 correlation
coefficients and 1000 p-values were obtained. Finally, these
p-values were fused by HMP technique (the critical value
of significance for HMP is also 0.034), and the arithmetic
mean, as well as 95% confidence interval of 1000 correlation
coefficients, were calculated.

D. Classification

In order to further estimate the effectiveness of our proposed
approach for disease detection, the calculated Dq values
were used for two-group classification. Similarly, to avoid
the potential overpowered result, we performed classifica-
tion on bootstrap subsamples [23]. And five commonly
used classifier models, namely logistic, multilayer perceptron
(MLP), decision tree (DT), support vector machine (SVM),
k-nearest neighbor (KNN) were selected. Concretely, for each
feature and classifier model, we first divided the feature

dataset randomly into 10 folds for cross-validation (i.e.,
one-fold for validating and remaining nine folds for training).
Then, we randomly selected 1000 subsets from these nine
folded training datasets and built 1000 classifiers on them
respectively. Finally, the remaining one-fold dataset used for
validation was successively fed into the 1000 trained classi-
fiers. Thus, 1000 groups of classification results were obtained.
For each validating sample, the label predicted by the majority
of the classifiers was regarded as its final classification result.
This procedure was repeated until each of the 10 folds had
served as the validation set. And the mean of area under the
receiver operating characteristics curve (AUC) values of the
repeats, was taken as the performance index of that feature.

E. Method Comparison

To assess the practicability of our proposed method,
the approaches mentioned in the introduction part were
compared, including causal index, symmetry index, cross-
correlation, and discrete wavelet transform (DWT). In order to
analyze the gait in three frequency bands as our method does,
VGRF signals were initially separated by Butterworth filters.
According to previous research, EEMD can be interpreted
as a filter bank of overlapping band-pass filters [24], thus,
the frequency bands of Butterworth filters were set to the
ranges of 13Hz-25Hz, 6Hz-13Hz and 0-6Hz to approximate
the frequency distribution of the extracted IMFs. Then, the four
methods mentioned above were applied to the high, inter-
mediate and low frequency components of VGRF signals,
respectively. In the first three methods, one feature was
extracted from each frequency component, while in the method
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Fig. 4. Fused p-values of bootstrap-based Wilcoxon rank-sum tests for
PD patients and HC. The letters A to G indicate the features derived
from the six detail coefficients (from level 1 to 6) and one approximation
coefficient of VGRF signals after DWT in sequence. The red circle
represents the critical value of significance 0.034 (false positive rate
α = 0.05, number of tests = 1000).

based on DWT, 35 features were extracted from each fre-
quency component, including the maximum, minimum, mean,
variance and energy of six detail wavelet coefficients (from
level 1 to level 6) and one approximate coefficient. Finally,
the above extracted features were used for statistical analysis
and classification, to serve as a benchmark for the comparison
of our proposed method.

III. RESULTS

Fig. 4 shows the fused p-values of the Wilcoxon rank sum
tests for our proposed and comparative methods. It is apparent
that only three features can significantly distinguish the two
groups, that is, D1 and the DWT-based features extracted
from intermediate and low frequency band of VGRF signals.
It should be noted that, the average values of D1 in the PD
patients and HC individuals are 0.115 and 0.075, respectively.
This suggests that in the high frequency band, PD patients have
stronger bilateral causal reaction compared to HC individuals.

Fig. 5 shows the results of Spearman correlation test
between HY score and the features extracted by all methods.
Obviously, only D1 and the DWT-based features from the
intermediate and low frequency bands of VGRF signals can
reveal the progression of PD patients. It should be noted that
D1 has the highest absolute value of correlation coefficient
among all the features as mentioned above. Fig. 6 shows the
results of Spearman correlation test between TUG score and
the features extracted by all methods, which are similar with
the results shown in Fig. 5.

Fig. 5. The results for bootstrap-based Spearman correlation analysis
between HY score and the features of all methods. The bar indicates
95% confidence interval. The letters A to G represent the features
derived from the six detail coefficients (from level 1 to 6) and one
approximation coefficient of VGRF signals after DWT in sequence. The
asterisk indicates that the HMP is less than critical value of significance
0.034 (false positive rate α = 0.05, number of tests = 1000).

Fig. 7 shows the AUC values for the classification of PD
and HC. D1 achieved higher AUC values compared with other
features extracted by different methods from various frequency
bands.

IV. DISCUSSION

The understanding of human gait has, for a long time,
involved researchers from numerous different scientific disci-
plines such as biomechanics, functional anatomy, physiology,
and neuroscience. Presently, an increasing number of data
scientists are also participating in this field, and one of the
purposes of their research is to provide new perspectives for
the analysis of walking data, which might reveal biological
mechanisms that traditional methods cannot obtain [9], [10].

Causal relationship exists widely in various physiological
systems, such as cardiovascular system, nervous system and
so on. In addition, many new physiological mechanisms have
been discovered through causal analysis. Therefore, causal
analysis in medicine has become a research hot spot in recent
years. For cardiovascular system, Faes et al. found that systolic
blood pressure may causally influence changes in cardiac
cycle [25]. For neural system, it has been recognized for
a long time that the interaction between brain neurons is
directional, that is, there exists causality among them [26].
The ability of assessing the causal relationship between brain
regions is not only important for exploring brain mechanisms,
but it can also provide ideas for the diagnosis and treatment
of epilepsy, Alzheimer’s disease and other brain diseases.
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Fig. 6. The results for bootstrap-based Spearman correlation analysis
between TUG score and the features of all methods. The bar indicates
95% confidence interval. The letters A to G denote the features derived
from the six detail coefficients (from level 1 to 6) and one approximation
coefficient of VGRF signals after DWT in sequence. The asterisk indi-
cates that the HMP is less than the critical value of significance 0.034
(false positive rate α = 0.05, number of tests = 1000).

Fig. 7. AUC values for the classification of PD patients and HC. The
letters H, I and L indicate the features extracted from high, intermediate,
and low frequency bands of VGRF signals, respectively.

Furthermore, in recent years, many papers have pointed out
that causality exists not only within a single physiological
system, but also among different physiological systems. For
example, Porta et al. found that strong causality exists between
cardiovascular system and nervous system, which constantly
affect each other [27].

Gait is a type of motion accomplished by the cooperative
movement of bilateral lower limbs. It is obvious that there
must be a causal relationship between the two lower limbs for
the following reasons: (1) In terms of gait, we can imagine
that if one side of the lower limb is completely unaffected
by the other, the walking pattern with one foot removed,
should be exactly the same as the walking pattern with two
feet. In other words, if one side of the lower extremity is
completely unaffected by the other, the kinetic/kinematical

signals recorded during walking with one foot removed will
be exactly the same as those recorded during walking with
two feet. However, that is obviously not going to happen.
Therefore, it is reasonable to infer that the bilateral lower limbs
constantly affect each other during walking. (2) A number
of previous studies have implied that the lower limbs are
constantly causally influencing each other during walking.
For example, Artemiadis et al. applied vertical perturbations
on the unilateral leg of the subject walking on the split-belt
treadmill and found out that when one leg looses the walking
surface, the contralateral leg was observed to try to land
earlier [28]. Dietz et al. changed unilateral belt speed with
a constant contralateral speed to observe the reflection of the
subjects while they walked on the split-belt treadmill. They
discovered that the space-temporal behavior of one leg varied
with the speed of the other [29]. Kuo et al. studied the dynamic
walking model and found out that the foot placement of the
swing leg must make lateral adjustments constantly to achieve
bilateral stabilization [30]. (3) In addition to the study of
HC individuals, similar phenomena have been observed in
clinical practice. Boonstra et al. perturbed the PD patients
with two independent continuous multi-sine perturbations, and
they reported that PD patients compensate for balance control
asymmetries by increasing the relative contribution of the leg
of their least affected body side [31]. Karnath et al. reported
that for patients with hemiplegia, the center of gravity of their
body will tilt to the side of hemiplegia when they walk, but the
side that is not affected, as compensation, will show abduction
and extension to help in the push toward the affected (paretic)
side [32]. Echeverria et al. conducted a research and observed
that for patients with leg length discrepancy, whose paired
lower extremity limbs have a noticeably unequal length,
there are also compensation strategies between their lower
limbs, including calcaneal eversion, toe walking, circumduc-
tion, hip flexion and knee flexion [33]. These patients express
decreased stance time and stride length in the shorter leg,
which may indicate that the shorter leg changes its movement
pattern to adapt to the movement pattern of the longer one.
Sousa et al. observed the subjects with stroke during step-
to-step transition of walking and discovered that the lower
performance of one limb in forward propulsion during gait is
not only related to ipsilesional supraspinal damage but also
to a dysfunctional influence of the contralateral limb [34].
Therefore, through clinical observations, it is easy to realize
that when one side of a person is disturbed by the disease,
the movement mode of the other side will also change.
In other words, in the process of walking, the two sides of
the individual causally influence each other, rather than being
independent.

Thus far, no study has focused on the causal relationship
analysis involved in gait except a recent paper published
by Gong et al. [4]. As mentioned in the introduction, our
article has made the following two improvements: (1) The
simultaneous nature of causal interaction of both legs are
included in the analysis of this study. Simultaneous causation
means that the cause has already had an effect on the outcome
at the moment the cause occurs [7]. The succession of the time
of the cause and effect is produced because the cause cannot
achieve the totality of its effect in one moment [12]. In fact,
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this phenomenon has been widely discovered in different
physiological systems, such as cardiovascular regulation and
cerebrovascular regulation [5]. In the field of kinesiology, it is
generally believed that an individual’s current state of motion
is the result of instantaneous interaction between various parts
of the body. Of course, the same rule applies for walking [35].
With regard to gait analysis, it is well-known that a gait
cycle consists of two periods of single support (when one
leg is on the ground and the other leg is in the air) and
two short periods of dual support (when both legs are on
the ground) [35]. As can be seen, the criterion of gait stage
classification also depends on the relationship of instantaneous
movement between the two legs. More importantly, many
studies have shown that causal inference is not very accurate if
instantaneous causality is not considered (when the immediate
lag is equal to zero) [5]–[7]. Thus, due to the facts mentioned
above, the simultaneous causal interaction between bilateral
gait was taken into account for purposes of analysis in
this study. (2) As is widely known, time series observed in
nature usually contain oscillatory components within a specific
frequency band [36], [37]. For physiological signals, such as
electroencephalography, their oscillatory components are able
to reflect individuals’ different physiological mechanisms, and
the causal network they construct can even be employed for
purposes of disease diagnosis [36], [37]. With regard to kinetic
(and kinematic) signals, recent studies have found that they are
also composed of oscillatory components with different levels
of physiological significance [9], [10]. However, the causal
interaction between both feet have not been investigated yet.
Therefore, in this study we took the VGRF signals of PD
patients and HC individuals as an example, and conjectured
that PD might change the frequency-specific causal interac-
tions of VGRF signals recorded while walking.

In this study, the VGRF signals with 100 Hz sampling
rate was used to perform gait analysis. Previous studies have
pointed out that through the analysis of GRF signals recorded
at 960 Hz sampling rate, the highest frequency of the GRF
signals was 24.37 Hz when the subjects walked at comfortable
speed [38]. Therefore, the sampling rate of 100 Hz is basically
enough to capture the frequency domain information of VGRF
signals. In addition, many literature have used the data with
100 Hz or less sampling rate to analyze gait [38]–[40].

As the first step of causal decomposition, the EEMD method
was implemented to extract the intrinsic oscillatory compo-
nents embedded in VGRF signals. According to previous
studies, EEMD has many advantages: (1) Compared with
wavelet decomposition and Fourier transform, EEMD is a type
of self-adaptive and data-driven approach that does not require
setting any basis function in advance. Thus, EEMD is able to
separate signals into IMFs, each of which can be generally
associated to a physical aspect of the process from which
the signal is obtained [9]. (2) EEMD can be regarded as a
substantial improvement over empirical mode decomposition
(EMD). The primary drawback of EMD is the mode mixing
caused by the interference of random noise on the original
signal, which cannot be completely removed by filter. Mode
mixing means that there is a serious frequency distribution
overlap between different IMF components, which makes
these IMFs fail to meet the requirements of orthogonality and

separability. EEMD is a noise-aided data analysis method, and
its main approach is to eliminate the random noise that affects
the original signal by using the zero-mean characteristics
of white noise [15]. (3) Kinetic and kinematic signals are
non-linear and non-stationary. In this case, the frequency of
the wave changes with time, and its profile is no longer a
simple sine or cosine function. Thus, “harmonic distortions”
will appear when Fourier transform is performed on it. These
distortions show as sharpened crests and rounded-off troughs
of wave forms, and the degree of distortion depends on
the severity of nonlinearity [16]. Therefore, a predetermined
basis (or a traditionally used basis, such as sine) may not be
appropriate for the analysis of kinetic and kinematic signals.
However, for EEMD, the local adaptive method, the ampli-
tude and frequency of IMFs extracted by EEMD can vary
over time, so the nonlinear and non-stationary signals can
be effectively described [16]. Furthermore, many literatures
have already proven that EEMD can effectively represent the
physical nature of nonlinear and non-stationary data [15]. In
other words, traditional band-pass filter based on frequency
spectrum calculated by Fourier transforms may not be an
effective tool to represent frequency-domain information [16].
Accordingly, the method of EEMD was employed in this
paper, and this has been demonstrated to bypass assumptions
of non-linear and non-stationary behavior, this resulted in a
more precise instantaneous phase estimation for oscillatory
components [12]. (4) In addition, the IMF extracted by EEMD
was suitable for the Hilbert transform which was applied sub-
sequently. Previous studies have shown that when the Hilbert
transform is applied directly to nonlinear and non-stationary
signals that have undergone traditional high-pass filtering
(bandpass filtering /low-pass filtering), non-physical frequency
negative values occur [16]. Hilbert transform can only be
applied to narrow bandwidth signals, and IMF satisfies this
requirement.

After decomposing the signal by EEMD, the Hilbert trans-
form was used to calculate the instantaneous phase of each
IMF and determine the phase coherence between the pairwise
IMFs extracted from the left and right foot’s VGRF signals.
If a pair of IMFs are highly coherent, then their instantaneous
phase difference is constant; otherwise, it fluctuates consider-
ably over time. In the study of biomedical signals, a problem of
particular interest is finding the dependency between the two
signals. The most straightforward method is the application of
cross measures, either cross-correlation or coherence. Cross-
correlation operates in the time domain and coherence in
the frequency domain. For time series mainly characterized
by cycles and rhythms such as VGRF signals, coherence is
usually the preferred choice. In addition, phase coherence
allows the instantaneous phase dependency to be calculated
without being subjected to the effect of time lag between cause
and effect (i.e., the time precedence principle), thus avoiding
the constraints of time lag in predictive causality methods [12].
Compared to conventional methods, it has been proved that
causality measurement based on phase coherence can offer a
more robust and reliable causality performance [12]. Up to
now, many previous researches have used phase coherence
to measure the relationship between two physiological sig-
nals [17], which also proved the validity of phase coherence.
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According to the calculated phase coherence, the CISes
between bilateral pairwise IMFs were estimated, and then
averaged as Dq due to the potential causal asymmetry. The
reasons are as follows: (1) According to previous studies,
healthy adults can fine-tune their movement without attention,
this is called motor automaticity [41]. But for PD patients,
the connectivity from the anterior putamen to the primary
motor cortex is decreased, and the dopamine in their posterior
putamen is significantly depleted [42]. Therefore, they appear
to lose previously stored automatic skills, and, simultaneously,
have difficulty in recovering them or acquiring new ones [42].
In addition, putamen exists in the bilateral hemispheres of the
brain. They separately control the body’s unilateral motor auto-
maticity and exhibit almost the same performance in a healthy
condition. But for PD patients, bilateral putamen commonly
has dopaminergic depletion in varying degrees [43]. Under
these conditions, bilateral motor automaticity degenerates and
their severity may be inconsistent. One side may not be able to
fine-tune its motion as much as the other side and needs more
compensation from contralateral motion regulation, which may
indicate that one side have a greater causal effect on the other
side. (2) Due to the brain’s contralateral control mechanism,
the unilateral substantia nigra is mostly associated with the
contralateral movement of the body. In a healthy condition,
they function almost as well as each other. However, for
PD patients, progressive degeneration of the substantia nigra
occurs with greater neuronal loss in one side [44]. Under
these circumstances, the function of bilateral substantia nigra is
impaired in different levels. And the different severity of motor
symptoms, include bradykinesia, rigidity, and tremor, appear
on both sides of the body [44]. To maintain the movement,
one side may compensate the contralateral more, which may
indicate causal asymmetry.

In order to evaluate whether PD significantly alters the
causality of both feet during walking, statistical analyses were
performed. Since excessively large samples may make the
results overpowered, the bootstrap-based statistical analysis
was implemented in this study. To control the false discovery
rate, HMP, the widely used technique, was performed, and
its advantages are as follows: (1) Combining p-values is one
of the most commonly used statistical strategy to synthesize
information from multiple tests. So far, many p-value fusion
methods have been proposed, including Fisher’s method,
Brown’s method, Kost’s method, et al [45]. HMP, as one
of them, combines the p-values together, which makes it
convenient to compare with the critical value of significance to
judge whether the null hypothesis of the statistical test should
be rejected. (2) Previous p-value combination techniques like
Fisher’s method makes the strong assumption that tests are
independent, but HMP is robust to dependency between p-
values and thereby avoids the restrictive assumption [21].
Thus, it applies not only to independent conditions but also
non-independent conditions. Since the subsets extracted by
bootstrap method are not completely independent of each
other, it is more accurate to use HMP to fuse the p-values
obtained from each subset. (3) HMP is insensitive to the
number of tests. Unlike traditional methods such as Bonferroni
correction, that require the critical value of significance to
decrease linearly with the increase in the number of tests, HMP

only requires the critical value of significance to decrease
logarithmically as the number of tests increases [21], which
prevents the critical value from being too stringent when
the number of tests is large. (4) HMP enables adaptive
multiple testing correction [21]. This means that, when there
are numerous p-values that are far below the critical value,
smaller fused p-values will be produced. On the contrary,
when there are few significant p-values, HMP technique tends
to be conservative and strict. In the extreme case where one
p-value is much more significant than others, the HMP tech-
nique becomes equivalent to Bonferroni correction. (5) So
far, a large number of studies have used HMP to combine
the p-values, including but not limited to combining the
p-values extracted from bootstrap analysis [46]–[50]. Such
widespread use of HMP also proves its effectiveness. There-
fore, in this study, the fused p-value was taken as the result
of p-values extracted from the statistical analysis performed
by bootstrap.

As shown in Fig. 5 and Fig. 6, for causal decomposition,
only the feature for high frequency, can significantly distin-
guish two groups and exhibit the significant correlation with
PD progression. According to previous literature, the high
frequency band of VGRF signals can reflect the walking
performance of individuals when their foot just touches the
ground (heel strike) or leaves the ground (toe-off) (see the
IMF1 shown in Fig. 1) [9], [51]. These time periods usually
require the participation of complex postural controls, such
as postural adjustment anticipation and external environment
adaptation, to maintain balance [35]. Therefore, these controls
and periods are also considered to be the key for walking
effectively, efficiently, and smoothly. However, motor dysfunc-
tions such as postural instability and stiffness of the lower
limbs makes it easy for PD patients to lose their balance,
especially during these two time periods. In order to prevent
falls, PD patients will consciously or unconsciously increase
the degree of coordination between their lower extremities.
In addition, this inference is also supported by a large number
of literatures, which have shown that in many gait stages,
PD patients mainly have a great difference in heel strike
when compared to HC individuals. Specifically, their heel
strike patterns change from the normal ‘heel-toe’ gait to the
abnormal ‘toe-heel’ gait or a gait with forefoot strike only [41].
This is mainly due to their walking postural changes, such as
thoracic kyphosis, hip and shoulder abduction, knee and elbow
flexion [52]. Apart from these, the body of PD patients is in
an unstable position during walking, when the heel of one
leg strikes the ground and the toes of the other leg are still
in contact with the floor [35]. Therefore, PD patients try to
avoid this unstable posture, which requires more coordination
of the feet, and this can be seen as an adaptive mechanism to
compensate for instability.

Apart from this, we also observed a positive increase in
feature D1 as the disease progresses in Fig. 5 and Fig. 6, this
indicates that with the development of disease, PD patients
need increased coordination between legs when heel strikes.
From here we see that it is very necessary to analyze the
CISes of VGRF signals at different frequency bands. Although
the correlation coefficients did not seem very high, we found
that the confidence intervals of the correlation coefficients did
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not contain 0, indicating that there was indeed a correlation
between the features we extracted and disease severity. The
scatter plot of the correlation coefficient between the feature
D1 and the scale score are shown in the supplementary
material.

The low correlation coefficient between our extracted fea-
tures and the scale score might be as a result of the following
reasons: (1) According to previous literature, the clinical
manifestations of PD vary widely because they span across
motor and non-motor related symptoms [53], [54]. The range
of initial motor symptoms include tremor (70.5%), rigidity and
bradykinesia (19.7%), akinesia (12.6%), gait disorder (11.5%),
myalgia and muscle spasm (8.2%), muscular weakness (2.7%),
mask face (1.6%) etc. [53]. The percentages in parenthesis
indicate the proportion of PD patients with these motor symp-
toms. On the other hand, the non-motor related symptoms
comprise autonomic nervous dysfunction, neuropsychiatric
problems (change in mood, cognition, behavior or thinking),
sensation (especially changes in smell), difficulty in sleeping
etc [54]. A large number of literatures have reported that
for PD patients, either motor or non-motor related symptoms
would be their main indicators, or it could also be accom-
panied by a severe simultaneous manifestation of these two
groups of symptoms [54], [55]. Therefore, it is apparent that
not all PD patients have gait disorder as their main symptom,
and this could be the possible reason why our extracted
features had no strong correlation with Hoehn & Yahr score
(and TUG score). (2) As we all know, gait procedure involves
the participation of a number of different physiological com-
ponents, including the muscles, joints, cerebral cortex, cere-
bellum, spinal cord, and more. Presently, an increasing number
of researches are based on multimodality. This is so, because a
mode can only show one aspect of the motion characteristics.
In this paper, only one mode, VGRF, is provided in the
dataset and it may not be sufficient to fully express the motor
characteristics of PD. Therefore, we suggest the extraction
of different features of different modes in the future, and
the use of multiple regression or ensemble learning methods
to study the relationship between these characteristics and
diseases.

In addition, inspired by [56], we calculated the relative
power. we discovered that D1 exhibited significant difference
between two-subject groups, and its corresponding IMF was
with 1.9% relative power to the original VGRF signal. This
may be due to the following reasons: (1) Such IMF reflects
high frequency component of VGRF signals and corresponds
to the heel strike stage. At this stage, the procedure of foot
load response and weight acceptance is just beginning [57].
Therefore, compared with the amplitude of VGRF in all gait
stages, its amplitude in this period is relatively small. (2) Heel
strike describes the stage in gait at which the heel first makes
contact with the walking surface, and this only lasts 2% of
the entire gait cycle [57]. Thus, the duration for this period
is relatively short. (3) Many previous studies have observed
that 99% of the power of VGRF is mainly concentrated in
the intermediate and low frequency band [14]. It can be seen
that the motion characteristics of the heel strike stage is the
main reason leading to the relatively low energy of the IMF
with high frequency. However, this IMF is still very important.

As mentioned above, it does reflect the impact of PD on gait
mechanism and bilateral causality, which cannot be reflected
by other frequency components.

In order to evaluate the effectiveness of our work, the fea-
tures extracted by the methods mentioned in introduction,
were also used for statistical analysis and classification. Their
results were taken as a benchmark for the comparison of our
proposed method, and we achieved the best performance. It is
worth noting that the purpose of this study is not to prove
that our proposed approach is omnipotent for gait analysis,
but to show that: (1) the study of bilateral gait causality in
frequency domain has physiological significance; (2) diseases
may lead to changes in gait causality, which has not been
found in previous studies.

V. CONCLUSION

In summation, our study applied a new method for perform-
ing gait analysis, namely causal decomposition, which is based
on analyzing the causal interaction of bilateral kinetic (or
kinematic) signals at different frequency bands. Furthermore,
this approach also considers the simultaneous nature of causal
interaction for both feet during walking. To illustrate this
approach, the VGRF signals of PD patients and HC individuals
were used for analysis. The results show that PD only changes
the causality of bilateral VGRF signals in the high frequency
band, but not in other frequency bands. As can be seen,
the identification of frequency-specific causal interactions is
essential to understand the underlying mechanisms of walk-
ing and these mechanisms’ relationship to PD. Finally, this
approach may be used broadly in the fields of medicine
and engineering, including the fields of neuroscience, sports
science, rehabilitative medicine, and in the field of wearable
devices.
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