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Abstract— We provide an open access dataset of High
densitY Surface Electromyogram (HD-sEMG) Recordings
(named “Hyser”), a toolbox for neural interface research,
and benchmark results for pattern recognition and EMG-
force applications. Data from 20 subjects were acquired
twice per subjecton different days following the same exper-
imental paradigm. We acquired 256-channel HD-sEMG from
forearm muscles during dexterous finger manipulations.
This Hyser dataset contains five sub-datasets as: (1) pattern
recognition (PR) dataset acquired during 34 commonly used
hand gestures, (2) maximal voluntary muscle contraction
(MVC) dataset while subjects contracted each individual
finger, (3) one-degree of freedom (DoF) dataset acquired
during force-varying contraction of each individual finger,
(4) N-DoF dataset acquired during prescribed contractions
of combinations of multiple fingers, and (5) random task
dataset acquired during random contraction of combina-
tions of fingers without any prescribed force trajectory.
Dataset 1 can be used for gesture recognition studies.
Datasets 2–5 also recorded individual finger forces, thus
can be used for studies on proportional control of neuro-
prostheses. Our toolbox can be used to: (1) analyze each
of the five datasets using standard benchmark methods
and (2) decompose HD-sEMG signals into motor unit action
potentials via independent component analysis. We expect
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our dataset, toolbox and benchmark analyses can provide
a unique platform to promote a wide range of neural inter-
face research and collaboration among neural rehabilitation
engineers.

Index Terms— HD-sEMG, neural interface, hand gesture
recognition, prosthetic control.

I. INTRODUCTION

SURFACE electromyogram (sEMG)-based neural inter-
face techniques [1] have attracted increasing attention in

recent years. Neural interfaces help amputees regain function
via neuroprostheses which can be intuitively controlled by
sEMG signals from residual muscles in the stump. In more
general applications, intact users can use neural interfaces
to enhance function via sEMG-based intuitive control of
exoskeletons [2], or to manipulate mobile devices via gesture
recognition [3].

In recent years, with the advancement of flexible sen-
sor techniques, 2-dimensional (2-D) high-density sEMG
(HD-sEMG) electrode arrays have substantially increased the
spatial resolution and number of recording sites, compared
with traditional sEMG electrodes. Specifically, HD-sEMG
provides a high-resolution spatial activation image of the
muscle group covered by the array. Furthermore, HD-sEMG
allows decomposition of the global multi-channel HD-sEMG
at the macroscopic level into motor unit (MU) spike trains
at the microscopic level [4], using independent component
analysis (ICA) [5], [6]. This breakthrough analysis method to
decode information of MUs from HD-sEMG has been applied
in diverse fields such as neuromuscular physiology [7], clinical
neurophysiology [8], neuromuscular biometrics [9] and neural
interface [2].

In the past decade, open-access sEMG datasets have made
research on neural interfaces easier by saving a huge amount
of time for researchers to acquire experimental data. Further-
more, researchers can easily compare the performance of their
proposed methods using the same benchmark dataset. So far,
there have been five open-access sEMG datasets recorded
from the forearm: (1) Ninapro [10], [11], (2) CapgMyo [12],
(3) CSL-HDEMG [13], (4) SEEDS [14] and (5) HIT-
SIMCO [15]. A comparison of these datasets and our dataset
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TABLE I
COMPARISON BETWEEN PREVIOUS SEMG DATASETS AND OURS

is presented in Table I. The Ninapro dataset used traditional
sEMG electrodes to acquire sEMG from both intact and
amputated subjects. CapgMyo, CSL-HDEMG and SEEDS
datasets used HD-sEMG electrode arrays (up to 192 channels)
to acquire sEMG from intact subjects. The first four of these
datasets acquired sEMG during prescribed movements or ges-
tures. Prescribed movements or gestures limit the degrees
of freedom (DoFs) of neuroprostheses because, in practical
scenarios, users need to switch between arbitrary movements
(gestures) or any combinations of DoFs. The lack of arbi-
trary switching between DoF combinations limits that abil-
ity of these datasets to simulate realistic applications. The
HIT-SimCo Dataset acquired 8-channel sEMG under random
combinations of 3 DoFs of the wrist, filling in the cur-
rent gap to a certain extent. However, data acquired from
only one day cannot support studies on cross-day prosthetic
control. Furthermore, dexterous control of neuroprostheses
also requires precise prediction of the force corresponding
to each individual finger, which has not been provided in
previous datasets. Additionally, sEMG data under dynamic
and isometric contractions are not balanced in previous
datasets, with data under dynamic contractions more
common.

In this work, we provide open access High densitY Surface
Electromyogram Recordings (Hyser) to fill in the gaps in
existing datasets. We acquired 256-channel HD-sEMG from
forearm muscles contributing to dexterous finger manipula-
tions. Our Hyser dataset contains five sub-datasets to fulfill the
demands of different applications. Dataset 1, named the pattern
recognition (PR) dataset, was acquired under 34 hand gestures
in common daily use. Both dynamic hand movements and
gesture maintenance tasks were involved. Dataset 2, named
the maximal voluntary muscle contraction (MVC) dataset, can
be used to evaluate MVC of muscles corresponding to each
finger. Dataset 3, named the one-DoF dataset, was acquired
during isometric contraction (ranging from 30% MVC flexion
to 30% MVC extension) of muscles corresponding to each
finger. Dataset 4, named the N-DoF dataset, was acquired
during isometric contraction (ranging from 30% MVC flexion
to 30% MVC extension) of muscles corresponding to sev-
eral prescribed combinations of multiple fingers. Dataset 5,

named the random task dataset, was acquired during isometric
contraction of muscles corresponding to any random com-
bination of fingers without any prescribed force trajectory.
Subjects switched between any combinations of DoFs at any
time. Dataset 1 can be used to develop gesture recognition-
based prosthetic control. Datasets 2–5, with both HD-sEMG
and synchronized force labels, can be used for proportional
estimation of the force corresponding to each single fin-
ger, further contributing to controlling dexterous prosthetic
hands. Twenty subjects participated in our experiment with
the data of each subject acquired twice on different days
following the same experimental paradigm. The inter-day data
can be used to simulate cross-day factors (e.g., the cross-
day variation of sEMG characteristics and the shift of elec-
trode arrays) in practical applications. Application results
are reported from all datasets using standard (benchmark)
analysis methods or emerging deep learning-based methods.
Besides, we provide a toolbox for HD-sEMG analysis, which
performs: (1) analysis of the pattern recognition dataset using
linear discriminant analysis (LDA)-based and deep learning-
based hand gesture classification, (2) analysis of datasets 2–4,
i.e., EMG-force regression, (3) decomposition of HD-sEMG
signals into MU spike trains using ICA. All analyses in
our toolbox were implemented via Matlab. We provide our
dataset and toolbox on PhysioNet [16]. We expect our dataset,
toolbox and benchmark analyses can provide a unique plat-
form to promote a wide range of neural interface research
and collaboration among neural rehabilitation engineers in the
future.

II. OPEN ACCESS DATASET: APPARATUS

AND DATA COLLECTION METHODS

A. Subjects

Twenty intact subjects participated in this study. The
detailed information of recruited subjects is presented in
Table IX (in Appendix). All subjects were informed about
the research purpose and experimental procedure. All subjects
signed written informed consent before the experiment. This
study was reviewed and approved by the ethics committee of
Fudan University (approval number: BE2035).
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Fig. 1. Electrode Placement and Experiment Setup. We show photos
of the same arm.

B. Data Acquisition

To reduce skin-electrode impedance, subjects’ right forearm
was carefully cleaned with abrasive gel and then wiped using
an alcohol pad. Four electrode arrays were mounted about
the forearm. Each electrode array consists of 64 gelled ellip-
tical electrodes (5-mm major axis, 2.8-mm minor axis) with
a 10-mm inter-electrode distance (center-to-center), arranged
in an 8 × 8 electrode layout. Four such arrays were used, two
placed on each of the extensor and flexor muscles (Fig. 1).
The 256 channels were arranged by successively concatenating
the 64 channels of array 1, 2, 3 and 4 labeled in Fig. 1. The
arrangement of the 64 channels of each array was presented
in the top right corner of Fig. 1. Note that the HD-sEMG
electrode arrays are difficult to be placed exactly on the
extensor or flexor muscles. Accordingly, signals generated
from other muscle groups may also be captured. However,
all these captured signals together form the unique patterns
of the extracted feature set. The radial and ulnar aspects of
the forearm, the humeroulnar joint and the head of the ulna
together formed the boundaries of the area to place electrode
arrays. On each forearm side, two 8 × 8 electrode arrays
construct a 16 × 8 electrode array. We aligned the center
of the area to place electrode arrays and the center of the
16 × 8 electrode array, with the long axis of the constructed
16×8 electrode array along the long axis of subjects’ forearm.
A right leg drive electrode was placed on the head of the
ulna. A reference electrode was placed on the olecranon.
During data acquisition, subjects sat in a comfortable chair,
following the instructions shown on a computer screen in
front of them to perform the required experimental tasks.
A total of five datasets, comprised of the (1) PR dataset,
(2) MVC dataset, (3) one DoF dataset, (4) N DoF dataset and
(5) random task dataset, were acquired in our experiment. The
256-channel HD-sEMG signals were acquired using the Quat-
trocento system (OT Bioelettronica, Torino, Italy), with a gain
of 150, an ADC resolution of 16 bits (second-order high-pass
cut-off at 10 Hz; low-pass cut-off at 500 Hz having a transition
bandwidth of ∼25 Hz and a stop band attenuation > 100 dB),
and a sampling rate of 2048 Hz. For the MVC dataset, one DoF

Fig. 2. All involved gestures: (1) thumb extension, (2) index finger
extension, (3) middle finger extension, (4) ring finger extension, (5) little
finger extension, (6) wrist flexion, (7) wrist extension, (8) wrist radial,
(9) wrist ulnar, (10) wrist pronation, (11) wrist supination, (12) extension
of thumb and index fingers, (13) extension of index and middle fingers,
(14) wrist flexion combined with hand close, (15) wrist extension com-
bined with hand close, (16) wrist radial combined with hand close,
(17) wrist ulnar combined with hand close, (18) wrist pronation com-
bined with hand close, (19) wrist supination combined with hand close,
(20) wrist flexion combined with hand open, (21) wrist extension com-
bined with hand open, (22) wrist radial combined with hand open,
(23) wrist ulnar combined with hand open, (24) wrist pronation com-
bined with hand open, (25) wrist supination combined with hand open,
(26) extension of thumb, index and middle fingers, (27) extension of index,
middle and ring fingers, (28) extension of middle, ring and little fingers,
(29) extension of index, middle, ring and little fingers, (30) hand close,
(31) hand open, (32) thumb and index fingers pinch, (33) thumb, index
and middle fingers pinch, (34) thumb and middle fingers pinch.

dataset, N DoF dataset and random task dataset, the ground
truth force trajectories of the five fingers were acquired
using five separate sensor-amplifier pairs (sensor: SAS, Hua-
tran, Shenzhen, China; amplifier: HSGA, Huatran, Shenzhen,
China) with a sampling rate of 100 Hz. The detailed parame-
ters of used equipment and sensors are available in the “equip-
ment_info.pdf” file in our dataset. The acquired HD-sEMG
and force data were synchronized by transmitting a synchro-
nization trigger signal to both HD-sEMG and force acquisition
systems at the onset of each task. For each subject, acquisition
of all five datasets was conducted on two different days, with
an interval varying from 3 to 25 days (8.50 ± 6.72 days on
average), following the same experiment paradigm.

C. Experimental Paradigm

1) PR Dataset: Subjects were instructed to perform the
34 hand gestures shown in Fig. 2. Each subject performed
two repeated trials for each single gesture before they con-
tinued to the next one, following the sequence order shown
in Fig. 2. In each trial, three dynamic tasks (1 s duration,
from subjects’ relaxing state to the required gesture) and one
maintenance task (4 s duration, from subjects’ relaxing state to
the required gesture followed with maintenance at that gesture)
were performed. Subjects were provided with a 2 s inter-task
resting period and a 5 s inter-trial resting period to avoid the
impact of muscle fatigue on sEMG properties. An audible
“beep” queued each task. For each subject, HD-sEMG signals
during 204 dynamic tasks (34 gestures × 2 trials × 3 tasks)
and 68 maintenance tasks (34 gestures × 2 trials × 1 task)
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Fig. 3. Visual instruction for the one DoF dataset experiment. Force
tracking using the thumb is shown. Positive %MVC refers to extension
forces.

were acquired. If subjects missed a specific task or performed
a wrong task, they were asked to inform the experiment
assistant. The missed and wrong tasks were removed from
the dataset. On average, 2.30 ± 2.71 dynamic tasks and
0.85 ± 1.05 maintenance tasks in each experiment were
removed from the final dataset.

2) MVC Dataset: Subjects were instructed to perform their
MVC (isometric contractions) flexion and extension of each
finger. Subjects’ hands were not in the finger constraints for
the PR data collection, but were in the constraints (with a
subject’s hand in a natural state) for all other data collection
experiments, as shown in the right part of Fig. 1. The finger
force sensors were secured to the table so that they could mea-
sure subjects’ force in both flexion and extension directions.
Note that the thumb is relatively complicated compared with
the other four fingers due to its multi-DOF trapeziometacarpal
(TM) and metacarpophalangeal (MCP) joints. We only con-
sidered flexion and extension of the thumb because these
two contraction directions can support most daily activities,
and to be consistent with the other four fingers. Subjects
performed 2 successive trials to measure their flexion and
extension MVC values of one target finger and then continued
to the next finger. The MVC corresponding to the five fingers
were measured following the order of thumb, index finger,
middle finger, ring finger and little finger. In each trial, subjects
were provided with a 10 s duration to perform the MVC of
the required direction and finger. Within the 10 s window,
subjects could perform MVC at any time, but they were
required to maintain the MVC for at least 2 seconds so that
the average force during the steady period can be taken as
the MVC value. A 30 s inter-trial resting period was provided
to avoid the impact of muscle fatigue. During the experiment,
the real time measured force data were presented on the screen
as a visual feedback for subjects. We provided the acquired
force segments corresponding to the 10 trials (5-channel time
series for each segment, one finger per channel) in all our
datasets. The MVC of each finger in both extension and flexion
directions can be used to normalize the acquired force data.

3) One DoF Dataset: Subjects were instructed to perform
25-s duration, isometric contraction of each single finger. Sub-
jects used the real time finger force as visual feedback to track
a slowly force-varying “triangle” target trajectory, as shown in
Fig. 3. The target force trajectory for the active finger ranged
from 30% MVC flexion to 30% MVC extension. All other

Fig. 4. Visual instruction for the experiment of N DoF dataset. Force
tracking using the thumb and index finger is shown. Positive %MVC refers
to extension forces. In the presented trial, thumb and index fingers were
activated with opposing extension vs. flexion contraction efforts.

fingers were relaxed without co-contractions. Subjects per-
formed 3 trials for each finger tracking the target force trajec-
tory shown in Fig. 3. Our previous work [17] has demonstrated
that a small size of data acquired from the same subject on a
single day can capture most of the important neuromuscular
information, and shows limited performance differences com-
pared with a large data size using least squares based model
estimation. For cross-subject validation of generalized control
models, the dominant factor is the “data diversity” (the number
of training subjects) rather than “data size” (the total signal
duration from each subject). Accordingly, we assume that
three trials of each DoF from each subject, with a relatively
long duration of 25 s each trial, can support most research
directions. Subjects were asked to re-perform a trial if any
obvious co-contraction of other fingers was observed. A total
of 30 trials (5 fingers × 3 trials) were included in the one DoF
dataset. Subjects performed all thumb flexion and extension
trials, then progressed in order to the index finger, middle
finger, ring finger and little finger. After finishing one trial,
subjects were provided with a resting period of self-selected
duration. The target force trajectory only instructs subjects to
vary their contraction efforts. Failure to perfectly track the
force trajectory does not result in that trial being excluded.

4) N DoF Dataset: Subjects were instructed to perform 25-s
duration, isometric contractions of a combination of multiple
fingers. Subjects used the finger force as feedback to track
up to five targets (one per finger), as shown in Fig. 4. The
larger blue were targets which moved along the vertical screen
direction. Subjects performed different slowly force-varying
contraction efforts of up to five fingers to control the move-
ment of smaller red triangles to track the targets. The target
force trajectories ranged from 30% MVC flexion to 30% MVC
extension. A total of 15 different contraction combinations
of DoFs (fingers) were examined. In 10 combinations, all
active fingers used the same force trajectory (same “triangular”
trajectory as the 1 DoF dataset, with extension performed first),
those fingers being: (1) thumb + index, (2) thumb + middle,
(3) thumb + ring, (4) thumb + little, (5) index + middle,
(6) thumb + index + middle, (7) index + middle + ring,
(8) middle + ring + little, (9) index + middle + ring + little,
and (10) all five fingers. In the other 5 combinations, pairs
of fingers were active but with opposing “triangle-trajectory”
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extension vs. flexion effort with the first finger performing
extension first and the second finger performing flexion first),
those finger pairs being: (11) thumb + index, (12) thumb +
middle, (13) thumb + ring, (14) thumb + little, and
(15) index + middle. Subjects performed two trials for each
combination of DoFs before they continued to the next one,
following the order from combination (1) to combination (15)
listed above. A total of 30 trials (15 different combinations
of fingers × 2 trials) were included in the N DoF dataset.
After finishing one trial, subjects were provided with a resting
period of self-selected duration. Because we aimed to acquire
HD-sEMG signals with multiple DoFs to advance the develop-
ment of multi-DoF prosthetic control, co-contractions of other
fingers did not lead to the exclusion of trials.

5) Random Task Dataset: Subjects were allowed to ran-
domly perform isometric contractions of muscles correspond-
ing to any combination of fingers with any force trajectory.
The force trajectories in all trials can be different. We aim
to provide HD-sEMG data for multi-DoF prosthetic control
in the most realistic scenario, where subjects do not need
to follow any instructions. The real time measured force
data corresponding to five fingers were presented on the
screen. An example of random task was shown in Fig. 5
(in Appendix). A total of 5 trials were included in the random
task dataset. Each contraction task was with a 25 s duration.
A 5 s inter-trial resting period was provided to avoid the impact
of muscle fatigue on sEMG properties.

III. BENCHMARK ANALYTICS AND RESULTS

A. Data Preprocessing

The acquired HD-sEMG signals were first filtered with
10 Hz highpass and 500 Hz lowpass Butterworth filters (both
are zero-phase digital filters processing the signals in both
the forward and reverse directions, 8-order each direction).
A notch filter combination was then used to attenuate the
power line interference at 50 Hz and all harmonic compo-
nents up to 400 Hz. Force data were filtered with a 10 Hz
lowpass Butterworth filter (zero-phase digital filter processing
the signals in both the forward and reverse directions, 8-order
each direction).

B. Pattern Recognition of Hand Gestures

1) Methods for Pattern Recognition:
(1.1) LDA-based Method
The first 0.25 s reaction time after each task onset

was removed, leaving 0.75 s and 3.75 s signals for
dynamic and maintenance tasks, respectively. The widely used
EMG features of root mean square (RMS) [3], waveform
length (WL) [9], zero crossing (ZC) [18], and slope sign
change (SSC) [18], were extracted separately from each EMG
channel. For ZC and SSC, a noise threshold (approximately
3% of the RMS during rest [18]) was used. For each feature,
a 256-length feature vector was constructed, one value per
channel. The four 256-length feature vectors were concate-
nated together to obtain a 1024-length feature vector. All
feature vector were normalized to a mean of zero and a
standard deviation of one.

Principal component analysis (PCA) [19] was applied
to reduce the length the constructed feature vectors. For
a classification task with N f -length feature vectors and
Ns training samples, the dimensionality D of the feature
space is constrained by both D ≤ Ns − 1 and D ≤ N f .
For the pattern recognition of hand gestures in our work,
N f = 1024 > Ns − 1. Accordingly, we reduce the length of
feature vectors to the maximal dimensionality of the feature
space, Ns − 1. In our work, Ns varies with different subjects,
depending on the number of correctly performed gestures. All
PCA processed feature vectors were used to train and test a
LDA [20] classifier.

We validated the LDA-based classification accuracy of
dynamic tasks and maintenance tasks separately. Specifically,
we employed a leave one out cross-validation strategy on
data (either dynamic or maintenance task) acquired within a
session from each subject. We first mixed all data samples
(204 dynamic tasks or 68 maintenance tasks, if all gestures
were correctly performed). Then we held out one testing
sample, using all remaining samples for training. For testing
set feature normalization, the mean value to subtract and the
standard deviation to divide are taken as the corresponding
values of the training set. Both the projection matrix of PCA
and the parameters of LDA model were obtained using training
data. The trained LDA model was then used to give the gesture
label of the held out testing sample. The same procedure was
performed for all data.

(1.2) Deep Learning-based Method
Compared with traditional machine learning methods, deep

neural networks with a considerably higher number of para-
meters, require a larger training dataset to avoid overfitting.
Accordingly, we further segmented the HD-sEMG signals
using 250 ms windows with 125 ms window overlap. In this
way, the training set were significantly augmented. A convo-
lutional neural network (CNN) [21] was trained and tested
using 250 ms signals. Since spectrogram is an efficient rep-
resentation in deep learning based sEMG pattern recognition
tasks [22], we transformed each obtained 250 ms signal to
spectrogram via short-time Fourier transform (STFT) [23].
STFT was performed using Hamming window with a length
of 256 data points and 50% overlap. The output of STFT for
each 250 ms signal is with 3 time frames and 128 spectral
bands (8 Hz for each band). Because the signals have been
filtered bellow 500 Hz, only the first 64 spectral bands were
retained. For each 250 ms signal, the representation X ∈
R

F×NR×NC was fed into the CNN model, where F = 3×64 =
192 denotes the length of vectors stacked by 3 time frames in
all 64 spectral bands, NC × NR = 16×16 denotes the 16×16
electrode array reshaped by the 256 channels. We used Adam
optimizer to update network weights. We used batch normal-
ization to speed up convergence and avoid gradient vanishing
problem. Dropout technique was applied to address overfitting
issues. The CNN architecture and all hyper-parameters were
presented in Table II and Table X (in Appendix), respectively.
Given a testing sample, the segmented M 0.25 s signals were
successively fed into the trained CNN model to obtain M
34-length score vectors Sm = [s1, s2, . . . sp, . . . , s34], where
Sm , m ∈ {1, 2, . . . , M}, denotes the score vector of the mth



1040 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021

TABLE II
NETWORK ARCHITECTURE

250 ms signal window and sp, p ∈ {1, 2, . . . , 34}, denotes the
probability that the gesture label of the corresponding 250 ms
signal is p. The average of all obtained M score vectors was
calculated. The index number corresponding to the maximal
score value in the average score vector was the final gesture
label.

To validate the deep learning based hand gesture classifica-
tion, we pooled data from all subjects in one session (either
session 1 or session 2) together to increase the data size,
considering deep learning-based models rely on a large data
size to train a large number of parameters. The 6-fold and
2-fold cross-validation was used for dynamic and maintenance
tasks, respectively. To make the data in all folds balanced
across all gestures, in each fold, we randomly allocated 1 out
of 6 dynamic samples or 1 out of 2 maintenance samples of
all 34 gestures from all subjects. Overall, each fold included
almost the same number of signal samples for each gesture.
Each time we employed data in one fold as testing set and all
other folds as training set. Note that, different with LDA-based
hand gesture classification, we used data from all subjects
together to train our deep learning model to avoid overfitting
of such a large number of parameters. By contrast, in all
other following validations, data acquired in different sessions
from different subjects were processed separately. Cross-day
and cross-subject variation of performance was not taken into
consideration, as we only provide benchmark results.

2) Results:
LDA-based classification results of dynamic and mainte-

nance tasks for the 34 gestures are shown in Table III. Average
classification accuracies of 96.86% and 93.80% were achieved
for the dynamic and maintenance tasks, respectively. Deep
learning based classification results are shown in Table IV.
Average accuracies of 88.96% and 89.84% were achieved
for the dynamic and maintenance tasks, respectively. Such
classification accuracies are generally considered high with
a ∼2.94% random assignment chance level for a 34-class
classification problem. For LDA-based method, our tests were
performed with training and testing data acquired in the same
session. Future studies using our dataset can further improve
the classification accuracy in both within-session and cross-
session (both cross-day and cross-subject) validation using
advanced signal processing and machine learning techniques.
Deep learning based hand gesture classification has attracted

TABLE III
LDA-BASED CLASSIFICATION ACCURACY (%) OF 34 HAND

GESTURES. THE REPORTED VALUE FOR EACH SUBJECT

IS THE AVERAGE OF CROSS VALIDATIONS

AND TWO SESSIONS

TABLE IV
DEEP LEARNING BASED CLASSIFICATION ACCURACY (%) OF 34 HAND

GESTURES. THE REPORTED VALUES ARE THE AVERAGE

OF CROSS VALIDATIONS AND TWO SESSIONS

increasing attention in recent years. So far, no consensus
exists on the optimal network architecture. Future studies can
develop more effective architectures by making modifications
on ours in the toolbox.

C. One-DoF Dataset

1) Feature Extraction and Model Description:
EMG amplitude of each channel was estimated by comput-

ing the RMS [18] of each 40 contiguous samples (19.5 ms).
WL, ZC and SSC [18] of each 40 continuous samples were
also extracted, as described previously. The average force of
force samples corresponding to each 19.5 ms window was
also calculated. EMG-force regression was performed on the
downsampled features and force values using training data.
The first 2 s and the last 2 s of the data were removed to
account for filter startup and tail transients.1

We trained linear finite impulse response models (to provide
dynamics) of the form:

Force[i ] =
Q∑

q=0

M∑

m=1

θq,m · xm[i − q] (1)

where i is the decimated sample index; Q = 20 (390 ms) is
the number of time lags, similar to our previous work [18];
and M is the number of utilized features. In this work,
a 1024-length feature vector was extracted (4 features×
256 channels). PCA [19] was applied to reduce the dimension-
ality of the 1024-length feature vector to 200. Accordingly,

1In real-time scenarios, all processing procedures would be performed using
causal filters, with no need to remove any tail transients.
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TABLE V
RMSE (%MVC) OF EMG-FORCE REGRESSION FOR ONE DOF
DATASET. THE REPORTED VALUE FOR EACH SUBJECT IS THE

AVERAGE OF CROSS VALIDATIONS AND TWO SESSIONS

M = 200 in our work. Optimal model parameters were
obtained using linear least squares, with singular values of the
design matrix discarded if their ratio to the largest singular
value was less than a tolerance threshold (selected as 0.05).

2) Validation Methodologies:
To validate the performance of EMG-force regression for

the one DoF dataset, we employed a leave one out cross-
validation strategy. For each finger per subject, we used 2 trials
for PCA-based feature reduction and training the regression
model. This model was then tested on the third trial. The
same procedure was repeated until all trials of all fingers have
been used as testing trial. Note that for each finger (DoF),
force values in extension and flexion directions were estimated
using the same model, with positive and negative force values
representing extension and flexion, respectively. Root mean
square error (RMSE) between the estimated force and the
ground truth force for each test trial was used for performance
evaluation.

3) Results:
The summary RMSE results of EMG-force regression in the

one DoF dataset is presented in Table V. The average RMSE
values for the thumb, index, middle, ring and little fingers are
6.43% MVC, 5.55% MVC, 5.98% MVC, 5.36% MVC and
7.15% MVC, respectively. The average RMSE of all fingers
is 6.09% MVC. Representative time series of the ground truth
and corresponding estimated force trajectories of the one DoF
dataset are presented in Fig.6 (in Appendix).

D. N-DoF Dataset

1) Feature Extraction and Model Description:
All data were preprocessed as in the one-DoF case, except

that we trained five models to estimate the force values of
five fingers separately, using the same features extracted from
HD-sEMG but different ground truth force data from 5 fingers.

TABLE VI
RMSE (%MVC) OF EMG-FORCE REGRESSION FOR N DOF DATASET.

THE REPORTED VALUE FOR EACH SUBJECT IS THE AVERAGE

OF CROSS VALIDATIONS AND TWO SESSIONS

Each of the five models gives the force estimation of one
finger. The five models together achieve concurrent force
estimation of all five fingers.

2) Validation Methodologies:
To validate the performance of EMG-force regression for

the N DoF dataset, we employed a 2-fold cross-validation
strategy. A total of 15 DoF combinations were examined.
In each fold, one trial of each DoF combination was included,
used for PCA-based feature reduction and training the regres-
sion model. This model was then tested on the other fold. Root
mean square error (RMSE) between the estimated force and
the ground truth force for each trial was calculated and used
for performance evaluation.

3) Results:
The summary RMSE results of EMG-force regression in the

N DoF dataset is presented in Table VI. The average RMSE
values for the thumb, index, middle, ring and little fingers are
7.10% MVC, 6.63% MVC, 5.66% MVC, 5.71% MVC and
7.09% MVC, respectively. The average RMSE of all fingers
is 6.44% MVC.

E. Random Dataset

1) Feature Extraction and Model Description:
All data were preprocessed as in the N-DoF case (five

models were used to estimate force values of five fingers).
2) Validation Methodologies:
To validate the performance of EMG-force regression for

the random task dataset, we employed a leave one out cross-
validation strategy. We used 4 trials for PCA-based feature
reduction and training the regression model. This model
was then tested on the fifth trial. The same procedure was
performed with each trial held out. Root mean square error
(RMSE) between the estimated force and the ground truth
force for each trial was calculated and used for performance
evaluation.
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TABLE VII
RMSE (%MVC) OF EMG-FORCE REGRESSION FOR RANDOM TASK

DATASET. THE REPORTED VALUE FOR EACH SUBJECT IS THE

AVERAGE OF CROSS VALIDATIONS AND TWO SESSIONS

3) Results:
The summary RMSE results of EMG-force regression in the

random dataset is presented in Table VII. The average RMSE
values for the thumb, index, middle, ring and little fingers are
8.03% MVC, 8.63% MVC, 7.59% MVC, 7.23% MVC and
11.39% MVC, respectively. The average RMSE of all fingers
is 8.57% MVC.

F. Decomposition of HD-sEMG Into MU Spike Trains

1) Procedures of ICA-Based HD-sEMG Decomposition:
A series of studies by Chen et al. [5], [24]–[26] demon-

strated the excellent performance of using fastICA [27] for
HD-sEMG decomposition. Negro et al. [6] also applied a
combination of fastICA and convolution kernel compensation
(CKC) [28] to decompose HD-sEMG into MU spike trains.
To avoid the convergence of ICA algorithms to the same
MU, either an automatic peel-off operation in [26] or an
orthogonalization operation in [6] was required. In our imple-
mentation, the latter one was applied. The details of procedures
to decompose sEMG in our work can be found in [6].
We present the main steps of sEMG decomposition briefly. All
of the following processing steps were performed separately
for extensor and flexor muscle array data (128 channels for
each muscle).

(1) Stack 4 copies of raw sEMG signals in each channel to
extend the number of channels from 256 to 1024 [6]. In each
copy, we progressively added one more sample delay to the
original signals.

(2) Whiten the extended sEMG through eigenvalue decom-
position.

(3) Perform fastICA on the whitened sEMG signals to
obtain the sources corresponding to different MUs.

(4) Identify MU spike train (discharge timings) of each
individual MU through peak detection and k-means clustering.

Silhouette distance values (SIL), as the indicators of the
consistency within clusters of data, were calculated. Only MUs
with a SIL higher than a threshold (0.6 in our work) were
retained for further analysis.

(5) Remove duplicate MUs. The ICA algorithm may con-
verge repetitively to the same MU or its delayed copies due
to limitations of the algorithm itself and/or the extension
operation in step (1). If several MU spike trains share more
than 50% synchronized firing events within a ± 1 ms match
window after compensating for delay, retain the one with the
highest SIL [29].

2) Validation Methodologies:
To validate the ICA-based HD-sEMG decomposition code

in our open access toolbox on the one DoF dataset,
we employed the three metrics:

(1) The number of decomposed MUs. A common limitation
of most current HD-sEMG decomposition algorithms is that
only superficial and large MUs can be identified [30]. The
number of decomposed MUs varies with different segments
of HD-sEMG signals. A larger number of decomposed MUs
could provide more information.

(2) Average SIL of decomposed MUs. SIL measures the
degree of separation of the MU spike trains from noise
(both the background noise and other potential source signals)
[29]. A higher average SIL represents better decomposition
performance.

(3) Pearson correlation coefficient [31] between the ground
truth force and the fitted force of MU spike trains. Decom-
position of each trial was performed separately. We then
calculated the firing frequency of the spike trains of each MU
in each contiguous 19.5 ms window (40 sample points). This
firing frequency was then filtered by an 8-order 10 Hz low-
pass Butterworth filter. All of the processed firing frequencies
from a trial were fit to the ground truth force, using linear
regression to determine one optimal scaling gain per firing
frequency/MU. A higher Pearson correlation coefficient rep-
resents better decomposition performance.

3) Results:
The average number of decomposed MUs, average SIL,

and Pearson correlation coefficient between the ground truth
force and the force estimated from the MU spike trains were
shown in Table VIII. On average, 32.57 MUs were obtained
through the ICA-based HD-sEMG decomposition algorithm.
The average SIL value is 0.7351. An average Pearson corre-
lation coefficient of 0.8611 was achieved. An example MU
discharge plot, showing the ground truth force and the force
estimated from MU spike trains were shown in Fig. 7 in
Appendix. The optimal linear combination of the filtered
discharge frequencies of all MUs showed a similar trend
with the ground truth finger force, indicating the decomposed
source signals obtained via HD-sEMG decomposition are
physiologically significance. These results were obtained with
a 0.6 SIL threshold. We also reported the decomposition
results vs. different predefined SIL threshold (0.7, 0.8 and 0.9)
in Table XII in Appendix. The selection of SIL threshold
varies in different studies, depending on their research pur-
poses. We present decomposition results with different SIL
thresholds to provide a baseline for comparisons in different
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TABLE VIII
SUMMARY RESULTS OF HD-SEMG DECOMPOSITION OF ALL ONE

DOF TRIALS OF BOTH EXPERIMENTAL SESSIONS FROM EACH

SUBJECT. FOR THE AVERAGE NUMBER OF MUS, THE REPORTED

RESULTS ARE THE NUMBER OF MUS IN EXTENSOR MUSCLE +
THAT IN FLEXOR MUSCLE. THE REPORTED VALUE FOR EACH

SUBJECT IS THE AVERAGE OF ALL TRIALS IN TWO SESSIONS

studies. These results support that the ICA-based HD-sEMG
decomposition algorithm in our toolbox was properly imple-
mented and the dataset has good signal quality.

G. Summary of Our Hyser Dataset and Toolbox

All available data segments in our dataset and important
functions in our toolbox were presented in Table XI and
Table XIII in Appendix, respectively. Gesture label data were
saved in “*.txt” files with comma-separated values format. All
force trajectory waveforms and EMG signal waveforms were
saved in waveform database (WFDB) format, with one “*.dat”
file storing all 16-bit signed type quantitized values, and one
“*.hea” file storing the scaling factors. To fully implement our
toolbox, users still need a MATLAB license. Instructions on
how to use the codes are given in the first few lines of each
function in our toolbox.

IV. DISCUSSION

A. Limitations of Our Dataset and Analysis

For LDA-based analysis of the PR dataset, we did not use a
sliding window to extract features, because the sliding window
technique yielded an extremely large feature dimensionality.
For example, a 3.75 s signal duration of maintenance tasks
combined with a 250 ms window length and a 125 ms
sliding step would result in a 29696-length feature vector
(29 windows × 4 features × 256 channels). Such a large
number of features make subsequent analysis, e.g. singular
value decomposition of the large covariance matrix in PCA,
difficult to implement, due to both the high computational
complexity and the high memory requirements. Many previ-
ously proposed techniques, e.g., sliding window, need to be

TABLE IX
DETAILED SUBJECT INFORMATION

TABLE X
SUMMARY OF USED HYPER-PARAMETERS IN CNN

re-considered in the context of HD-sEMG to better address
the challenges from the large number of channels, together
with the huge advantages. Our toolbox provides the functions
for tuning the width and step length of sliding windows,
supporting investigation of window selection in future studies.

Analysis of data from each subject in each session was
performed separately, with training and testing sets drawn from
the same session. We selected this analysis protocol because
our main purpose of analysis is to provide benchmark results
for dataset users to verify the good signal quality of our dataset
and the proper implementation of algorithms in our toolbox.
In practical scenarios, cross-session validation is preferred
because the trained model should be robust when applied to a
new subject or the same subject on a second day. So far, most
studies in the literature validated their methods with training
and testing data acquired in the same session from the same
subject. Cross-session validation of hand gesture classification
methods have attracted increasing attention in recent years [3].
Validating advanced algorithms in a more realistic cross-
session protocol is highly encouraged for future studies. Such
more rigorous validation may lead to performance degenera-
tion compared with previously reported classification results.
In this case, transfer learning algorithms such as transfer
component analysis (TCA) [32] and correlation-based data
weighting (COR-W) [17] are promising to tackle this issue.
Additionally, electrode arrays cannot be replaced on exactly
the same position day-to-day, so the issue of electrode shift
needs to be investigated in future studies. Wu et al. proposed a
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TABLE XI
ALL AVAILABLE SIGNAL SEGMENTS

data augmentation algorithm [33], which is promising to solve
electrode shift problems in gesture recognition tasks. Although
no data from patients were provided in our dataset and data
from each subject were not acquired across a large number
of days (two limitations of our dataset), data from 20 intact
subjects acquired on two separate days can still largely fulfill
the demands of research on cross-day and cross-subject control
of neural interfaces. Training models with data from only one
day, tested on data from a second day is also favorable for
practical applications, to achieve a low-cost training model.

Another limitation of our dataset is the lack of ground truth
of MU spike trains. The best way to validate decomposition
results is two-source validation [25]. However, we acquired
HD-sEMG from the entire forearm muscle groups, covering
a large area. Common intramuscular EMG can only detected
a limited area of muscle. Accordingly, applying two-source
validation for all spike trains is not feasible in our work.
The reliability of HD-sEMG decomposition was validated via
indirect metrics, such as the SIL. SIL has been demonstrated
to show a high positive correlation with the accuracy of HD-
sEMG decomposition [34]. Employing SIL to assess decom-
position accuracy is reasonable.

B. Possible Research Directions in Future Studies Which
Might Benefit From Our Dataset and Toolbox

Establishing a new dataset for research purposes is time-
consuming, thus our dataset can save a huge amount of time
for researchers. Research directions which might benefit from
our dataset and toolbox include:

1) HD-sEMG-based neuroprosthetic control. In previous
studies, both macroscopic features extracted from global
sEMG [3] and microscopic features extracted from MU spike
trains obtained via decomposition have been used as the input

Fig. 5. Example of random task dataset.

of control models [2]. Our dataset and toolbox can be used
to develop neuroprostheses based on both pattern recogni-
tion and proportional control, using both macroscopic and
microscopic features. Using our dataset, generalized neural
interface techniques can also be developed for intact users
to manipulate mobile devices in Internet of Things (IoT)
applications. Additionally, deep learning-based control models
have attracted increasing attention in recent years. However,
the large number of parameters used in deep learning models
necessitates large training data sets, which can be a limitation
(as compared to conventional processing methods) in the
neural interface field.

2) Compression of HD-sEMG signals. HD-sEMG acquires
signals from a large number of channels, greatly increasing the
burdens of data storage and transmission in tele-rehabilitation
applications. Several unique properties of HD-sEMG, such
as the similarity between neighboring channels, may facil-
itate new solutions for multi-channel sEMG compression.
To-date, investigations of HD-sEMG signal compression are
very scarce in the literature.
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Fig. 6. Example waveforms of ground truth and estimated finger
force trajectories (subject 2, session 1, middle finger, 2nd trial of 1 DoF
dataset). RMSE of the example trial was 3.56%MVC.

Fig. 7. Example MU discharge plot (subject 1, session 2, middle finger,
2nd trial of 1 DoF dataset). The Pearson correlation coefficient of the
presented trial is 0.8562.

TABLE XII
SUMMARY RESULTS OF HD-SEMG DECOMPOSITION THRESHOLDED

BY SIL. RESULTS ARE THE AVERAGE OF TRIALS

IN THE ONE DOF DATASET

3) Signal quality assessment of HD-sEMG. In many appli-
cations, sEMG measurement needs to be achieved in an
unsupervised way. In this case, low-quality signals may dispro-
portionately reduce the robustness of systems. By designing a
signal quality descriptor, we can exclude low-quality channels
from the analysis procedure, or set the system (neuroprosthe-
ses or health monitoring systems) to an idle state if signal
quality is lower than a predefined threshold. In the context
of signal quality assessment of sEMG, the specific properties
of large HD-sEMG arrays may provide new challenges and
opportunities.

4) Neuromuscular physiology studies. Neuromuscular
physiology studies highly rely on decoding the discharge
activities of MUs via non-invasive sEMG measurement. The
ICA-based HD-sEMG decomposition algorithm in our toolbox

TABLE XIII
IMPORTANT FUNCTIONS IN OUR TOOLBOX

can contribute to extending the body of knowledge in neuro-
muscular physiology.

5) Neuromuscular biometrics decoded from HD-sEMG for
user authentication or identification. Our recent study [35] has
demonstrated excellent performance using HD-sEMG as a new
cancelable biometric trait (validated on the Hyser PR dataset),
due to the individually-unique characteristics of HD-sEMG
signals. Our dataset provide HD-sEMG under diverse hand
gestures and muscle contraction efforts, which can be used
to investigate HD-sEMG-based biometrics. Data acquired on
different days can also support the evaluation of cross-day
variation of HD-sEMG biometrics.

V. CONCLUSION

In this work, we provide an open access HD-sEMG dataset,
signal processing toolbox, and benchmark application results
for neural interface studies. The dataset and toolbox support a
diversity of research directions. Signal analysis of the provided
data using the open access toolbox demonstrated the good
signal quality of our dataset and proper implementation of
the algorithms in our toolbox. To facilitate the dataset and
toolbox for research purposes, the data and code in our
toolbox were made as clear as possible. Our HD-sEMG
dataset and processing toolbox are available online. Please
fetch our data and toolbox via our PhysioNet project [36]
(https://doi.org/10.13026/ym7v-bh53).

http://dx.doi.org/10.13026/ym7v-bh53
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APPENDIX A
SUPPLEMENTARY FIGURES AND TABLES ON

DESCRIPTION OF DATA, METHODS AND

RESULTS IN OUR VALIDATION

See Figure 5–7 and Tables IX–XIII.
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