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Cross-Subject Zero Calibration Driver’s
Drowsiness Detection: Exploring Spatiotemporal

Image Encoding of EEG Signals for
Convolutional Neural Network Classification
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Abstract— This paper explores two methodologies for
drowsiness detection using EEG signals in a sustained-
attention driving task considering pre-event time windows,
and focusing on cross-subject zero calibration. Driving
accidents are a major cause of injuries and deaths on the
road. A considerable portion of those are due to fatigue and
drowsiness.Advanced driver assistance systems that could
detect mental states which are associated with hazardous
situations, such as drowsiness, are of critical importance.
EEG signals are used widely for brain-computer interfaces,
as well as mental state recognition. However, these systems
are still difficult to design due to very low signal-to-noise
ratios and cross-subject disparities, requiring individual
calibration cycles. To tackle this research domain, here,
we explore drowsiness detection based on EEG signals’
spatiotemporal image encoding representations in the form
of either recurrence plots or gramian angular fields for deep
convolutional neural network (CNN) classification. Results
comparing both techniques using a public dataset of 27 sub-
jects show a superior balanced accuracy of up to 75.87%
for leave-one-out cross-validation, using both techniques,
against works in the literature, demonstrating the possibility
to pursue cross-subject zero calibration design.

Index Terms— Driver’s drowsiness detection, electroen-
cephalography, recurrence plot, Gramian angular fields,
convolutional neural network.

I. INTRODUCTION

MENTAL fatigue and drowsiness are associated with
a substantial number of road traffic accidents. It is
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estimated to reach as much as 20% of the total number
globally [1]. Its detection can help prevent a significant number
of these events and with them injuries and deaths.

Fatigue and drowsiness detection has been extensively stud-
ied to better understand and prevent their negative effects
in performance activities where vigilance is required, like
heavy-machine operation [2], surgery [3], and driving [4].
Different modalities have been used to assess and record
data related with drowsiness. The subjective approach makes
use of psychometric questionaires [5]–[8], however, a self-
assessment questionnaire-based methodology is unpractical in
the driving context and does not assess sudden variations in
sleepiness level [9]. More practical solutions that can be used
in the driving context resort to visual monitoring or detection
of specific behaviors like pupil dilation and eye blinking
frequency [10], however, these last approaches are affected by
occlusions, light changes, and facial apparel. Another approach
is the use of physiological measurements, such as electrocar-
diography (ECG) [11], electrooculography (EOG) [12], and
electroencephalography (EEG) [9]. These approaches have the
capability of early detection and allow anticipatory interven-
tion. Considering the physiological approach, EEG is the most
researched and promising modality, as it directly measures
brain activity associated with the underlying processes of
drowsiness, and features high temporal resolution. EEG has
been used in the driving context much beyond just drowsiness
detection. It has been used for applications like vehicle control
(brain-computer interface) [13], motor anticipatory potentials
to predict driving actions [14], correct automatic erroneous
decisions (e.g., driving cues provided by intelligent car sys-
tems) [15] based on error-related potentials [16], and detection
of stressful situations [17]–[19].

Looking at the EEG modality, a problem intrinsically
present is the inter-subject variability. The EEG signals differ
from subject to subject and even for the same subject, they
change from trial to trial. The signals are non-stationary,
non-stable, and non-linear [20]. This makes it difficult to
create an efficient drowsiness detection system that can be
used with everyone. Most works on drowsiness and fatigue
detection in the driving context test their approaches using
subject-dependent models, which require a calibration step
for each subject [21]–[23]. However, systems should be
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calibration-free since it is unpractical to be required to acquire
calibration data related to non-fatigue and fatigue conditions
for each new user, which can take hours. Hence, drowsiness
detection systems should focus on subject-independent devel-
opment and validation.

In this work, we contribute to the state of the art by
presenting an approach to drowsiness detection, while driving,
focusing on the design of a system that can be used by
any user without the need for user-specific calibration, hence
cross-subject zero calibration. We present novel EEG data
representations based on encoding for deep learning clas-
sification. We exploit recurrence plots and gramian angu-
lar fields to transform EEG signals’ band powers into an
image-like structure. This image is fed to a convolutional
neural network (CNN) with a single convolutional layer archi-
tecture, which is less computationally expensive then the other
approaches found in the EEG literature, but still efficient.

Results with a public dataset of 27 individuals perform-
ing a simulated sustained-attention driving task, reveal a
cross-subject accuracy above 75%, which is a superior result
comparatively to the works found in the literature.

This paper is organized as follows: Section II is dedicated
to the related works of drowsiness detection, particularly
focused on driving tasks. Section III describes the proposed
methodology, followed by its validation in Section IV, where
results are presented. Lastly, Section V presents the final
remarks and future lines of research.

II. RELATED WORK

Drowsiness detection has been extensively studied using
neurocognitive information, particularly, through EEG, which
has been used to evidence changes in global brain dynamics
related to changes in alertness during driving [24], [25]. EEG
was also studied as a robust measurement for driver’s cognitive
state estimation [26], and mental state changes through the
exploration of working memory [27] and inhibitory con-
trol [28]. However, EEG acquisition setups still face many
challenges, from the electrode types, to their cumbersome
montages, as well as the specific EEG signals’ properties
that make them difficult to handle due to low signal-to-noise
ratio and non-stationary nature, with the added trait of high
variability between individuals.

In the literature, we can find studies addressing drowsi-
ness and fatigue detection using EEG, like the work of
Jap et al. [29] who demonstrate that the ratio of slow to
fast EEG waves increased when the subject is influenced by
fatigue. Gharagozlou et al. [30] suggested that different levels
of fatigue can be estimated using band power features and
EEG signal entropy features, reporting a significant increase in
alpha power associated with driver fatigue. In [31], 4 different
types of entropy combined with different classifiers were used
for subject-dependent driver fatigue classification. The work
in [32] used approximate entropy and Kolmogorov complexity
to discriminate between fatigue states. In [33], entropy features
were used combined with Gradient Boosting Decision Tree
Model. The use of deep learning models for fatigue classi-
fication was also proposed, as in [22], through a Residual

Convolutional Neural Network (EEG-Conv-R), using data
collected from 10 healthy subjects over 16 channels. In [23]
a combination of a deep neural network with support vector
machine (SVM) classifier at the last layer was also proposed.
In [34], [35], the authors used graph convolutional networks
and multi-layer perceptron, respectively, to address fatigue
detection in pre-event and during steering wheel operation on
the same dataset of our work.

Most of the previous works are based on intra-subject
approaches. Cross-subject approaches have been proposed,
but mixing up EEG samples from all subjects, followed by
splitting them into training and testing randomly, like [22].
This approach, however, due to its random nature, ultimately,
ends up mixing some training subjects’ samples with the
testing ones, not being truly cross-subject. Other works per-
form cross-session instead of cross-subject [36], but this is
only useful for the same subject in future trials. To the
best of our knowledge, it could only be found 4 preliminary
works which performed cross-subject validation, considering
the driving context [34], [35], [37], [38]. In [37], the authors
perform domain adaptation, a branch of transfer learning,
to adapt the data distributions of source and target so that the
classification could be more efficient in a cross-subject sce-
nario. In [38], EEG features, statistics, higher order crossing,
fractal dimension, hjorth, signal energy, and spectral power
were extracted and combined with several classifiers, such
as logistic regression, linear discriminant analysis, 1-nearest
neighbor, linear SVM, and naïve Bayes. While in [34], [35],
as described above, the authors pursue driver’s drowsiness
detection using the same dataset as in this paper, relying neural
network-based methodologies.

Considering the methodologies used in this work (recur-
rence plots and gramian angular fields), that have been suc-
cessfully applied in computer vision algorithms combined with
deep learning [39]–[41], these are now starting to be used in
recent works in the EEG research domain, but still are rela-
tively unexplored. In [42]–[44] recurrence plots are used for
epileptic seizures detection, Alzheimer’s resting state analysis,
and motor imagery, respectively. In [45], [46] gramian angular
fields are used in combination with deep learning techniques
for epileptic seizure detection.

The use of these methodologies for a cross-subject appli-
cation is considered to be a good fit to our purpose since
recurrence plots and gramian angular fields are time series
analysis techniques, which are not limited by data stationarity
and size constraints of dynamical nonlinear systems’ features
which are present in EEG signals due to subjects’ variability.
These methodologies may find application in any rhythmical
system, whether they are mechanical, electrical, neural, hor-
monal, chemical, or even spacial [47].

EEG calibration and non-practical systems are, together,
two of the most critical issues that limit the use of EEG in
scenarios outside the laboratory. Additionally, the very low
signal-to-noise ratio (SNR) of EEG signals is one of the main
challenges faced by EEG-based systems. Here, the CNN acts
as a statistical temporal and spatial filter in search of relevant
features that maximize the discrimination between classes,
indirectly improving the SNR, which, however, can not be
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quantified as in other domains. The scenario in our work is
even more challenging, as it deals with the variability between
subjects that may result from different electrode locations
(due to different sizes of the head), and different mental
and cognitive states. The signals of interest to be found are,
therefore, unique patterns common to all subjects.

III. METHODOLOGY

A. Dataset Description and Processing

1) Sustained-Attention Driving Dataset: To study drowsiness
detection in the driving context we used the publicly available
sustained-attention driving task dataset detailed in [48]. In a
sustained-attention task, reaction-times to events are directly
related with drowsiness [49]. This is also true for the driving
context [36], [37], [50]. The authors of the dataset collected
data from 27 participants, aged from 22 to 28 years, who
enrolled in 90-minute sustained-attention driving sessions at
different times on the same or different days. The partici-
pants drove a car in a VR-based driving simulator, where an
event-related lane-departure paradigm was implemented. The
subject’s reaction time to perturbations during a continuous
driving task was quantitatively measured. The experimental
paradigm simulated night-time driving on a four-lane highway,
and the subject was asked to keep the car cruising in the center
of the lane. Lane-departure events were randomly introduced
within a 5 to 10 second period following a previous trial. These
events forced the car to drift from the cruising lane towards
the sides (deviation onset). The participants were instructed to
immediately correct the trajectory to the original cruising lane
(response onset).

During the experiments, EEG signals were collected using
the Scan SynAmps2 Express system (Compumedics Ltd.,
VIC, Australia). Recorded EEG signals were collected using
a wired EEG cap with 32 Ag/AgCl electrodes, including
30 EEG electrodes and 2 reference electrodes (opposite lateral
mastoids). The EEG electrodes were placed according to a
modified international 10–20 system. The EEG recordings
were sampled at 500 Hz.

The EEG dataset was band-pass filtered between 1 Hz and
50 Hz. Artefact rejection and apparent eye blink contamination
removal was performed by the authors manually, followed by
Automatic Artifact Removal (AAR) for automatic correction
of ocular and muscular artefacts in the signals.

2) Data Labeling: With the goal of drowsiness detection
through a classification strategy, we adopted an approach
to label observations as either ‘Alert’ or ‘Drowsy’, as pro-
posed in [36]. Considering the pre-event period before the
lane-departure event, we extract a 3-second window of EEG
data before the event, as shown in Fig. 1. These windows are
the observations to be classified, defining if the subject is either
’Alert’ or ’Drowsy’. Their labeling is based on the reaction
time (RT) of the subject for the respective trial, which is the
time between the lane-departure event and the response onset.
The RT at each lane-departure event was named local RT,
which represents the short-term level of drowsiness. On the
other hand, the long-term level of drowsiness was defined by
global RT, which was calculated by averaging the RTs across

Fig. 1. EEG signals for all the channels with a 3-second window and
visual events registration, the time frame between the lane departure
event (green) and the response onset (blue) is the reaction time of the
subject which is used to label the 3-second windows.

all trials within a 90-second window before the respective
trial in study. For each driving session, the ‘alert RT’ was
measured as the 5th percentile of local RTs across the entire
session, representing the RT that the subject could perform
during alertness. Considering these variables, the labeling of
the observations is divided in ’Alert’ when both local and
global RT are shorter than 1.5 times the alert RT, whereas
they are labeled ’Drowsy’, when the windows are associated
with trials with local and global RT both above 2.5 times alert
RT [36]. This categorization excludes the transitioning trials
that correspond to a moderate performance of the driver which
do not require intervention. In this sense, this work focuses
on the detection of low performance (drowsiness) “where
intervention is crucial” by training the CNN with well-defined
’Alert’ and ’Drowsy’ observations. The total number of ’Alert’
and ’Drowsy’ windows for the 27 subjects were 8903 and
3976, respectively.

3) Neurophysiological Analysis: To understand the behavior
of the EEG rhythms, we performed topographical analysis
comparing both scenarios (’Alert’ and ’Drowsy’). Figure 2
presents the topographical views for the band power differ-
ence of specific EEG frequency sub-bands to evaluate their
relation to drowsiness and alertness states (δ, θ , α, β, and γ ),
showing the power differences between ’Drowsy’ and ’Alert’
observations from all subjects over 4 time intervals within a 3-
second observation window. For this particular analysis, it was
used 100 ms frames of cumulative power per channel averaged
across all subjects using

Pc
all =

∑27
s=1

∑n f
n=n1 Xc

D,b(n)2 −∑27
s=1

∑n f
n=n1 Xc

A,b(n)2

27
(1)

where Xc
D,b and Xc

A,b are the filtered signals for each respec-
tive frequency sub-band b per channel c for ’Drowsy’ and
’Alert’ observations, respectively, for all the 27 users. n1 and
n f are the beginning and end of the particular 100 ms frame,
respectively. This width of 100 ms allows us the analysis of
the neurophysiological temporal dynamics of the brain during
the sustained-attention driving task at different sections of the
observation. It supported our selection of frequency sub-bands
and groups of channels to use.

This aimed to understand the spatial dynamics between the
two scenarios, hence identifying predominant discriminative
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Fig. 2. Topographical view of the difference of the band powers of the
EEG signals between ’Drowsy’ and ’Alert’ in different moments of a trial
(3-second window) using data from the whole trials of all the subjects.
The difference is obtained for each band after computing the mean power
for each context from all subjects.

activation regions in the brain (scalp), and observe the dis-
crimination in the power of the EEG frequency sub-bands.
From Fig. 2, we can observe a wide discriminative activation
of different regions of the brain across the whole scalp, being
most widely distributed on the theta and alpha frequency
bands. In these bands the frontal, central, and parietal regions
are very active, but as well prefrontal, temporal, and occipital
regions show high activity. All channels show this activity
(Fp1, Fp2, F7, F3, Fz, F4, F8, FT7, FC3, FCz, FC4, FT8,
T3, C3, Cz, C4, T4, TP7, CP3, CPz, CP4, TP8, T5, P3, Pz,
P4, T6, O1, Oz, and O2). In the delta band, it is observed
a more significant activity in the central and frontal regions
(Fz, FCz, and Cz). Looking at the beta and gamma frequency
bands, there is a stronger discriminative presence in the frontal
and prefrontal regions (Fp1, Fp2, F7, F3, Fz, F4, and F8).
Increases in alpha and theta rhythms have been shown to be
related to decreases in vigilance and performance degradation
[51], which is very evident in the topographic map, showing
the ’Drowsy’ state with a higher power (positive difference)
in theta and alpha sub-bands. The delta band also shows an
increase of power, but with some time dependency associated.
On the other hand, the beta and gamma bands show a
power decrease, as the alertness level decreases, which is also
consistent to the literature [52], [53].

We have also analyzed the two scenarios using a r2 sta-
tistical measurement. For the entire 3-second observation,

Fig. 3. On the left, the topographical view of the r2 of the band powers
of the EEG signals between ’Drowsy’ and ’Alert’ for the whole 3-second
window using data from the whole trials of all the subjects. On the right
the view of r2 per channel along the 3-second window with a sample
of 50 ms cumulative power.

we analyzed the discrimination at each channel per band
power, as seen in Fig. 3. In this case, a 50 ms cumulative
power step is used, similar to the proposed approach explained
below in this paper. Moreover, it is provided a topographical
view of the cumulative power of the whole 3-second window
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using the r2 statistics. The θ and α frequency sub-bands show
discriminative features across all channels, consistent over the
time window. δ shows a time-dependent discrimination higher
at the end of the 3-second window. The β and γ frequency
sub-bands are less discriminative having less consistency.
When analyzing their temporal evolution along the window,
β is very focused on central the region and γ manifests a
light focus in the occipital region.

The two scenarios are distinct in their distribution over space
and time, as demonstrated by this cumulative analysis of all
the subjects. Looking at the literature [52], [53] and from our
analysis, we have elected to use the frequency sub-bands θ , α,
and β, which are consensually used in this context [36], across
the 30 channels, with the goal of having the discriminative
information to account for cross-subject zero calibration. The
β band is less discriminative, as is the γ one, than the two
other bands, but given its widespread use in the context of
attention analysis in the literature [52], [53], it was decided to
include it.

B. Methodology Overview

From the previous subsection, it is defined as the input
observation a 3-second sliding window of 30 channels. This
translates into an input X of dimension 30× 1500, being
the sampling rate of 500 Hz. An overview of the proposed
approach is illustrated in Fig. 4. The goal is to classify if
an observed window of data is ’Alert’ or ’Drowsy’. The
data is processed according to the following steps: (i) the
data X is band-pass filtered into 3 EEG frequency sub-bands
(θ , α, and β); (ii) For every 3-second window observa-
tion, in each frequency sub-band, the window is divided
into frames of 50 ms, followed by cumulative band power
computation for each channel’s frame. A metric of attention
is also computed, resulting from the combination of the
3 band powers; (iii) The resulting band powers (3 band
power vectors and the attention metric power vector, per
channel) are used to compute an image encoding represen-
tation, which result in a multiple-channel image; (iv) The
CNN handles this image and outputs the class of the
observation.

The following subsections provide the details of the afore-
mentioned blocks.

C. Image Encoding Representations

This subsection details the computational steps of the
pre-processing group of blocks of Fig. 4. The goal is
to generate an image-like representation of the data,
at each observation, to be used by a CNN to classify
drowsiness.

As referred in section II, studies on drowsiness detection
have shown that the change of cognitive state is strongly
correlated with changes of specific EEG frequency bands such
as theta (4-8 Hz), alpha (8-13 Hz), and beta (13-30 Hz),
[29], [54]. Therefore, the EEG signals of the 3-second win-
dow observation X are initially band-pass filtered for each
frequency sub-band with a fourth-order Butterworth filter. The

Fig. 4. Drowsiness detection methodology’s flowchart using data
representations as input for the CNN.

result are three 30-channel filtered EEG signal windows Xb,
being b either θ , α, or β.

Each window Xb is divided into 50 ms intervals followed
by a computation of the cumulative band power Pc

b, f for each
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of the 30 channels, per frame, according to

Pc
b, f (Xc

b) =
25∑

n=1

Xc
b, f (n)2 (2)

where c is one of the 30 channels, b is the frequency sub-
band, f is the sequential frame of 50 ms, n is the sample
within a frame, and Xc

b, f is the 50 ms EEG signal of a given
channel and frequency sub-band. Since the sampling rate is
500 Hz, 3 seconds are represented by 1500 samples, each
50 ms corresponds to 25 samples (n), resulting in 1500/25 =
60 frames ( f ). The band power vector for each channel is
computed using Pc

b = [Pc
b,1, . . . , Pc

b,60].
An attention metric (AM) is additionally computed which

is correlated to fatigue, as described in the work of
Cao et al. [55]. It consists of the power ratio (θ + α)/β,
computed at each channel c per frame f , forming the vector
Pc

AM = [Pc
AM,1, . . . , Pc

AM,60].
From the computation of Pc

b and Pc
AM results 4× 30 = 120

vectors of 60 elements

P =

⎡
⎢⎢⎣

Pc
θ

Pc
α

Pc
β

Pc
AM

⎤
⎥⎥⎦ , c = 1, . . . , 30 (3)

P is a matrix resultant of the concatenation of these vectors
that are encoded into an image as proposed below.

For the image encoding, two techniques are used in this
work, the recurrence plot and the gramian angular fields.
Each method explores different perspectives. Recurrence plots
explore the recurrence over time of the phase space trajectory
of a dynamical system, while gramian angular fields try to
reveal temporal correlations of a time series.

1) Recurrence Plot: A recurrence plot is a visual tool to
inspect the periodic nature of a trajectory through a phase
space. It is a technique of nonlinear data analysis through a
square matrix, in which the matrix elements correspond to
those times at which a state of a dynamical system recurs
(columns and rows correspond then to a certain pair of times).
It shows for each moment i in time, the times at which a phase
space trajectory visits roughly the same area in the phase space
as at time j [56]. The benefit of recurrence plots is that they
can also be applied to rather short and even nonstationary data.

In our work, we explore three recurrence approaches, tem-
poral recurrence for each separate channel, spatiotemporal
recurrence between pairs of channels over time, and spatial
recurrence.

For our temporal approach, a recurrence plot is a square
matrix where each element is represented by

Rc
b,i, j (Pc

b ) = �
(
ε −

∥∥∥Pc
b,i − Pc

b, j

∥∥∥
)

,

Pc
b,i ∈ R, i, j = 1, . . . , N (4)

where N = 60, which is the number of frames corresponding
to samples within Pc

b , ε is a threshold distance and �(·)
is the Heaviside function. The vector Pc

b is a band power
vector of 60 elements for one channel c, where b is either
θ , α, β, or AM. From (4), the result is a binary image

(black and white), being the binary difference determined by
the user-defined threshold parameter εi .

In this work, we use a variation of the recurrence plot,
also called global recurrence plot or unthreshold recurrence
plot [57], which is computed as follows

Dc
b,i, j (Pc

b ) =
∥∥∥Pc

b,i − Pc
b, j

∥∥∥ , i, j = 1, . . . , 60 (5)

With this variation, there is no need to choose a threshold,
which in this case could disguise important information.
As such, the whole spectrum of the difference between states
is used. At the end of the recurrence plots computation,
120 square matrices of 60 × 60 elements are obtained, cor-
responding to each band power and attention metric for each
channel. An example of such a recurrence plot is provided in
Fig. 5. To produce a usable representation for a CNN, the final
step is the combination of all 120 matrices in a 120× 60× 60
image-like structure.

Looking at the spatiotemporal approach, we aim at explor-
ing recurrences between channels over time, using a pairwise
channel comparison. Recurrence plots are computed at each
frame of 50 ms (60 frames in total), instead of being computed
for each individual channel over time, using

D f
b,i, j (Pc

b ) =
∥∥∥Pi

b, f − P j
b, f

∥∥∥ , i, j = 1, . . . , C (6)

where f is the frame of the band power vector Pc
b , i and J

are channel indexes, and C = 30 which is the total number of
channels. After this step, we have 240 square matrices of 30×
30 elements, corresponding to each band power and attention
metric for each of the 60 frames. As before, the final step is the
combination of all 240 matrices in a 240× 30× 30 image-like
structure.

The spatial approach uses the spatiotemporal representation
of 240 plots of dimension 30× 30 to compute their density.
A single density matrix of dimensions 30× 30 for each
band power and the attention metric is computed, using the
60 respective frames as follows

Denb,i, j =
∑60

f=1 D f
b,i, j

60
, i, j = 1, . . . , C (7)

resulting in a final representation of 4× 30× 30. An illustra-
tive example of the three representations is presented in Fig. 5.

2) Gramian Angular Fields: This encoding is based on a
transformation of time series into polar coordinates followed
by the construction of a quasi-Gram matrix. This technique
allows to preserve the temporal dependencies and correlations
within the time series [58]. Given the band power vector of
each channel Pc

b = [Pc
b,1, Pc

b,2, . . . , Pc
b,60] of 60 real-valued

observations, first Pc
b is rescaled into the interval [−1, 1] using

a min-max scaler. This allows to represent the rescaled vector
P̃c

b in polar coordinates by encoding the value as the angular
cosine and the time line as the radius using

⎧⎨
⎩

φc
b,i = arccos

(
P̃c

b,i

)
,−1 ≤ P̃c

b,i ≤ 1, P̃c
b,i ∈ P̃c

b

r = i

N
, i ∈ N

(8)

where i = 1, . . . , 60 is the frame and N = 60 is the constant
factor to regularize the span of the polar coordinate system.
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Fig. 5. Illustrative examples of image representations of a 3-second ’Drowsy’ observation shown in a visible color spectrum scale. a) Temporal RP
of 60×60 elements, as time progresses along the diagonal we observe that the time disparities in terms of distance are larger between the last time
steps against the rest (lower right corner). b) Spatiotemporal RP of 30 × 30 elements, where it is observed the large disparities between specific
channels that appear in a brighter color, at a given time. c) A result of the spatial RP, density is showing larger disparities for channels 20 and up.
d) GAF showing the temporal correlations along the diagonal, with brighter regions presenting higher correlation.

As i increases, corresponding values warp among different
angular points. The rescaled vector results in cosine values in
the interval [−1, 1] which fall into the angular bounds [0, π].
This encoding has two properties: (i) it is bijective as cos(φ) is
monotonic when φ ∈ [0, π]. For a given band power vector,
the proposed map produces one and only one result in the
polar coordinate system with a unique inverse map; (ii) Polar
coordinates preserve absolute temporal relations.

After rescaling the band power vectors into polar coor-
dinates, we identify the temporal correlation within differ-
ent frame intervals by exploiting the angular perspective by
considering the trigonometric sum between each frame. Each
element of the Gramian Angular Field (GAF) is defined as
follows

G AFc
b,i, j =

[
cos

(
φc

b,i + φc
b, j

)]

= P̃ ′cb,i · P̃c
b, j −

√
I − P̃2

c
b,i ·

√
I − P̄2c

b, j ,

i, j = 1, . . . , 60 (9)

where c is each EEG channel, b either θ , α, β, or AM, I is
the unit row vector. For the above operation, we take a band
power vector at each frame as a 1-D metric space, and apply a
redefined inner product < x, y >= x · y−√1− x2 ·√1− y2.
In this manner, gramian angular fields are actually quasi-Gram
matrices, because the redefined function used does not satisfy
the property of linearity in the proper inner-product space.
The size of the Gram matrix is 60 × 60 since the length
of the band power vector is 60. The result is, alike the
above-mentioned recurrence plots combination, an image-like
structure of dimension 120 × 60 × 60. Figure 5 shows a
visualization of the GAF for each band power and attention
metric for the first channel of a single 3-second window
observation.

Considering the image encoding stage, it can be summa-
rized, for each observation, by Algorithm 1.

D. Drowsiness Detection

The presented CNN architecture in Fig. 6 was designed to
classify the data representation for drowsiness detection. The
network is composed by one convolutional layer and three
fully-connected layers. This architecture is used as an image

Algorithm 1 Image Encoding
input : P
output: D, Den, G AF

1 D = ∅;
2 Den = ∅;
3 G AF = ∅;
4 if Temporal RP then
5 for c← 1 to 30 do
6 Dc

b(Pc
b );

7 D =concatenate(D, Dc
b);

8 end
9 if Spatiotemporal RP then

10 for f ← 1 to 60 do
11 D f

b (Pb, f );
12 D =concatenate(D, D f

b );
13 end
14 if Spatial RP then
15 for f ← 1 to 60 do
16 Denb(D f

b );
17 end
18 if GAF then
19 for c← 1 to 30 do
20 G AFc

b (Pc
b );

21 D =concatenate(G AF, G AFc
b );

22 end

classification architecture processing our representations as an
image classification problem, following typical designs found
in the literature [59]. The convolutional layer is followed by
Batch Normalization and a Rectified Linear Unit (ReLU).
The network is trained with a cross-entropy loss function and
uses the Adam optimizer [60] with a learning rate of 0.0001.
Between the convolutional layer and fully-connected layers a
dropout of 25% is applied (except for the last fully-connected
transition with a dropout of 50%). A kernel of 5× 5 is used
in the convolutional layer with 1 stride and 2 padding. Data
are normalized after the convolutional layer and max pooling
of 2× 2 with 2 stride is applied. The input of the CNN is the
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Fig. 6. Convolutional neural network architecture.

proposed representation and the output assumes one of two
classes ’Alert’ or ’Drowsy’.

IV. RESULTS AND DISCUSSION

Considering the objective of cross-subject drowsiness detec-
tion, a leave-one-subject-out cross-validation strategy was per-
formed to validate the proposed methodologies. Two subjects
had to be discarded from the group, due to the absence
of ’Drowsy’ observations, resultant from the data labeling
described in section III-A.2. The first test focused on under-
standing the contribution of the use of the attention metric
resultant from the combination of the band powers. We per-
formed a classification test using the band power vectors
as inputs to the CNN without being encoded by any type
of image representation. The contribution of the attention
metric from the leave-one-subject-out cross-validation using
just band power vectors is undetectable. Accuracy values for
data with and without attention metric are 69.64% and 69.99%,
respectively. Taking into account this result, we performed the
following tests without the use of the attention metric.

A validation was carried out at the subject level, to under-
stand each subject’s contribution to the classification per-
formance, so that by selecting groups of subjects with the
highest individual contributions to train the network with,
a better cross-subject generalizable model could be created.
For this purpose, a single training subject against the others
cross-validation strategy was performed. We obtained for
each subject a classification accuracy from the test with the
remaining 24 subjects, and then sorted a list of all subjects by
increasing accuracy. For the purpose of cross-subject model
creation, groups of subjects from the above list were cre-
ated for the training stage [61]. 3 groups were created: all
subjects (control group); subjects with individual contribution
above 50% accuracy; subjects with individual contribution
above 60% accuracy. The results of a leave-one-subject-out
cross-validation in each scenario, compared to each other, did
not offer statistical differences between them (balanced accu-
racy values of 69.99%, 69.48%, and 70.08%, respectively).
From these results, the remainder of the experiments were per-
formed considering all subjects. Considering the data-driven

TABLE I
RESULTS WITH LEAVE-ONE-SUBJECT-OUT CROSS VALIDATION FOR

THE MODALITIES AND MONTAGES ADDRESSED

nature of CNN training, it is expected that for a performance
improvement that could be noticeable it would be required
more data from a higher number of training subjects.

To understand the specific contribution of the proposed
image representations, we performed a test using the
non-encoded band power vectors against the representations.
The comparison results are shown in Fig. 7 presenting the
balanced accuracy for each subject, and in Table I showing
the comparison of the average of those balanced accuracies,
precision, and recall. The balanced accuracy is used, due
to the imbalanced nature of the dataset towards the ’Alert’
observations. The obtained balanced accuracy without any
of the representations is 69.99%, while for the gramian
angular fields and recurrence plots representations (temporal,
spatiotemporal and spatial) we achieved 74.53%, 75.87%,
75.24%, and 68.36%, respectively. These results demonstrate
an added contribution for the use of the proposed represen-
tations, except when using the spatial approach. This result
shows that discriminative information is found mainly in the
time domain, corroborating our previous analysis and that of
the literature [62], showing an increase in theta and alpha
rhythms during fatigue over the entire cortex.

As a comparison, we also present results from works using
the same dataset with a cross-subject approach [34], [35], [37],
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Fig. 7. Comparison results for leave-one-subject-out cross-validation for each subject for GAF, RP, and band power approaches. Each subject has
one accuracy value per approach.

TABLE II
COMPARISON OF THE ACCURACY BETWEEN METHODS

whose authors used a reduced group of subjects from the
dataset, as shown in Table II. When put alongside our results,
shown in Table II, a superior performance was achieved
against those approaches, particularly when considering the
use of a more robust metric, balanced accuracy, and the use
of more test subjects, 25.

The previous tests considered the use of 30 channels, which
is a whole scalp montage which, in practice, is cumbersome.
Recently, some works have been proposing the use of more
practical montages with a reduced number of electrodes.
Specifically, we tested a non-hair-bearing (NHB) montage
which considers electrodes on scalp areas without hair focus-
ing on practical use of electrode montages, that are quicker
and simpler to set up, and they also avoid the interference
of electrode-skin contact caused by the hair [36], [64]–[66].
Since the electrodes in the dataset are referenced to the two
mastoids, the remaining NHB electrodes are Fp1, Fp2, F7,
and F8. Beyond this montage, we also applied our approach
to a montage used in sleep staging, using the electrodes F3,

C3, O1, F4, C4, and O2 [51]. We choose this montage to try
and evaluate the approximation of drowsiness to sleep states,
trying to find discriminative potential with the same electrodes.
We performed a leave-one-subject-out cross-validation, like
the previous test, where results are also presented in Table I.
For this test, the recurrence plot approach used was the
temporal since it previously yielded the best results.

Considering the results obtained, starting with the attention
metric test, we attribute the absence of a performance improve-
ment to the linear nature of the attention metric itself. Since we
use directly the 3 sub-frequency bands, their linear combina-
tion does not practically add value. The obtained results using
the proposed representations when compared to purely power
vectors demonstrate that spatial and temporal correlations
and dynamics are of important discriminative nature, in the
power domain. Both, RP and GAF, take into account temporal
recurrences and correlations into a single two-dimensional
encoding, which is well suited for a CNN. The marginal
difference between spatial and temporal RP approaches can
be partly justified by the convolutional nature of the CNN,
which explores the interaction between image channels also
aiding in a spatial or temporal analysis, complementing each
respective approach. The spatial approach being a summation
of frames ends in poorer performance justified by the loss
of information in the global sum. We also note that when
looking at each subject’s performance, there is a considerable
variability. This is a result of the challenging nature of EEG
signals that vary significantly even for the same subject in
different sessions. Even though we achieved higher results than
the literature, for a zero calibration system, performance still
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needs to improve. As an alternative approach, we estimate
that since the time-domain provides valuable information,
sequential analysis using recurrent neural networks could be
an appropriate approach, due to their handling of temporal
features successfully.

Considering our neurophysiological analysis of
Section III-A.3, the results here achieved with a complete
electrode montage and the two electrode groups, show that
the difference in the power domain between ’Alert’ and
’Drowsy’ states are not localized, but on the contrary are
widely spread all over the regions of the brain. Even though
the beta band frequency had a more noticeable difference in
the frontal regions of the brain, with a NHB montage the
classifier did not achieve a powerful enough performance as
with the use of all channels.

The chosen CNN architecture used follows a common
design found in the image classification domain with appli-
cation on EEG [59], being able to achieve superior results
compared to works in the same context. We consider this to
be a validation of the contribution of the proposed data rep-
resentations which efficiently encode the features associated
with the mental state.

V. CONCLUSION

This paper proposes the application of image encoding
representations that exploit time recurrences and correlations
of EEG signals, to be used with deep learning strategies,
with the objective of drowsiness detection in driving tasks.
We validated our methodologies with a challenging dataset
achieving superior performance against the works found in the
literature. Overall, results still demonstrate a need to further
research this domain to improve drowsiness detection so that
we can have a reliable safety system for advanced driver
assistance systems. A limitation of this work can be identified
pertaining to the practical use of the proposed approach. For
a real-world scenario the use of 32 channels is not a practical
solution, this is a physical constraint that makes these systems
hard to implement as a commercial product. As well, the lack
of online validation is also of notice, being a necessary future
step.

In the future, we plan to focus on the design of the CNN’s
architecture to further exploit the representation, extracting
deeper features beyond the spatiotemporal domain. Consider-
ing the demonstrated potential of time recurrences and correla-
tions found in our work, we plan to explore sequential analysis
using techniques found in the domain of natural language
processing such as recurrent neural networks with attention
mechanisms, as well as the recently proposed transformer
networks [67], using an approach that could replace the use
of the representations.
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