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Detection of Emotional Sensitivity Using fNIRS
Based Dynamic Functional Connectivity
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Abstract— In this study, we proposed an analytical
framework to identify dynamic task-based functional con-
nectivity (FC) features as new biomarkers of emotional
sensitivity in nursing students, by using a combination of
unsupervisedand supervised machine learning techniques.
The dynamic FC was measured by functional Near-Infrared
Spectroscopy (fNIRS), and computed using a sliding win-
dow correlation (SWC) analysis. A k-means clustering tech-
nique was applied to derive four recurring connectivity
states. The states were characterized by both graph theory
and semi-metric analysis. Occurrence probability and state
transition were extracted as dynamic FC network features,
and a Random Forest (RF) classifier was implemented to
detect emotional sensitivity. The proposed method was
trialled on 39 nursing students and 19 registered nurses dur-
ing decision-making, where we assumed registered nurses
have developed strategies to cope with emotional sensitiv-
ity. Emotional stimuli were selected from InternationalAffec-
tive Digitized Sound System (IADS) database. Experiment
results showed that registered nurses demonstrated single
dominant connectivitystate of task-relevance,while nursing
students displayed in two states and had higher level of
task-irrelevant state connectivity. The results also showed
that students were more susceptive to emotional stimuli,
and the derived dynamic FC features provided a stronger
discriminating power than heart rate variability (accuracy
of 81.65% vs 71.03%) as biomarkers of emotional sensi-
tivity. This work forms the first study to demonstrate the
stability of fNIRS based dynamic FC states as a biomarker.
In conclusion, the results support that the state distribution
of dynamic FC could help reveal the differentiating factors
between the nursing students and registered nurses during
decision making, and it is anticipated that the biomarkers
might be used as indicators when developing professional
training related to emotional sensitivity.

Index Terms— Emotional sensitivity, dynamic functional
connectivity, functional Near-Infrared Spectroscopy,
Random Forest, heart rate variability.
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I. INTRODUCTION

ACCORDING to the Appraisal Theory of Emotion [1],
emotion is a psycho-physiological process arising from

the evaluation of an event. Wansink and Sobal showed that
humans may make more than 200 decisions daily just only on
food [2]. The change of emotion, however, will result in the
meaning of a message being twisted or making an unusual
decision [3]. The primary evaluation of emotion based on
the facial expression, tone of human voice or self-assessment
questionnaire are subjective and susceptive to language or
habit bias, resulting in a low recognition accuracy [4]. Humans
can pretend or hide their true emotion via their voluntary
action. Besides, the diagnosis of human’s neurological con-
dition such as depression requires interview and is expert
dependent [5]. Such human based recognition of emotion
might inherent human error. Thus, the emotion recognition
techniques now involve physiological signal measurements
such as cardiac response, electromyogram and galvanic skin
response [6], [7].

Recent neuroimaging studies in functional magnetic res-
onance imaging (fMRI) [8], [9] have produced some
promising results to better explain the neural activi-
ties in emotional processing. Findings showed that the
emotional response is being reflected in neural activ-
ities or functional connectivity (FC) between multiple
brain regions such as lateral prefrontal cortex (PFC),
hippocampus, cingulate cortex, and amygdala. This pro-
vided a hint on how we might detect emotional state by
inspecting the change of activities in the central nervous
system and peripheral nervous system, which are involved
in emotional processing [10]. Coupled with machine learning
(ML), neuroimaging modalities such as electroencephalogra-
phy (EEG) and fMRI have gained popularity in predicting
humans’ emotional states [11], [12].

One potential application of emotion recognition techniques
is in professional training. While it is not new, high nurs-
ing student dropout rate is a global concern [13]. Although
the reasons for leaving could be complicated and probably
inter-linked [14], lack of stress coping strategies has been
identified as a contributing issue [15]. In particular, the clinical
part of the nursing education is found to be more stressful
than the theoretical part [16]. Studies have suggested the
need of academic authorities to provide necessary training
on effective coping strategies to nursing students [17]–[19].
However, little is known about how aforementioned emotion
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recognition techniques could assist in the training of stress
coping strategies.

This study proposes to exploit functional Near Infrared
Spectroscopy (fNIRS) to detect emotional sensitivity. Emo-
tional sensitivity can be defined as a lower threshold to respond
to emotional stimuli, or a higher probability of experiencing
stimuli as emotional [20]. Our previous study [21] showed
that nursing students had a higher correlation between static
FC coherence and behavioral accuracy in an affective task,
as compared with a neutral task. Yet, brain connectivity is
inherently dynamic, especially when involving task-evoked
neural activities [22]. A recent fNIRS study [23] inves-
tigated emotional dysregulation in children with attention-
deficit/hyperactivity disorder (ADHD), and examined them
using cortical activation (i.e., hemodynamic concentration
changes). However, Sutoko et al [24] demonstrated that
dynamic FC could provide a better performance than hemody-
namic activation in screening ADHD children whom often dis-
play lack of emotion recognition [25]. Hence, we hypothesize
that dynamic FC network features could provide useful bio-
markers to detect emotional sensitivity among nursing students
and registered nurses, where we assumed registered nurses
have developed strategies to ameliorate emotional sensitivity.
We further propose an analytical framework, a combination
of unsupervised and supervised ML to identify dynamic
FC features as new emotion sensitivity neural markers, and
compare the results against a benchmark method (heart rate
variability, HRV). This work is also the first in demonstrating
the stability of fNIRS based dynamic connectivity state feature
as a biomarker of emotional sensitivity.

II. METHODOLOGY

In this section, we first explain about the designed exper-
iment involving a group of nursing students and a group
of registered nurses. Then we describe the proposed method
which comprises data analysis, unsupervised clustering analy-
sis, and supervised machine learning modules. Network char-
acterization and statistical analysis are included to validate the
experiment results. We assess our hypothesis by comparing:
1) the affective effects on dynamic FC of nurses and students,
and 2) the discriminating power of dynamic FC and HRV as
input features in detecting emotional sensitivity.

A. Designed Experiment

1) Participant Demographics: Two groups of right-handed
and healthy nursing members comprising 19 registered nurses,
abbreviated as nurses (Edinburgh Handedness Inventory [26]
scale = 92.11 ±10.10, age = 30.44 ±3.20 years old, working
experience = 8.32 ±3.04 years) and 40 nursing students, abbre-
viated as students (Edinburgh Handedness Inventory scale
= 87.18 ±14.30, age = 19.48 ±1.04 years old, internship
experience = 2.70 ±0.41 years) were recruited for this exper-
iment. None of the subjects had a history of cardiovascular
or psychiatric disease. They were also not allowed smoking,
exercising and taking any caffeine and alcohol 3 hours before
the experiment. One student who violated the requirements

Fig. 1. Task paradigm for designed experiment.

was excluded from the analysis. This study was approved
by the ethics committees of Universiti Kuala Lumpur Royal
College of Medicine Perak with approval number of UniKL-
RCMP/MREC/2018/018. All subjects gave written consent
prior to the experiment and the experiment was carried out
in accordance with the Declaration of Helsinki.

2) Data Acquisition: A dual-wavelength (695 nm and
830 nm) multichannel continuous wave OT-R40 fNIRS sys-
tem (Hitachi Medical Corporation, Japan) was employed to
measure the cerebral hemodynamic activities at the temporal
resolution of 0.1 s (10 Hz). The 52-channel probes (consist-
ing of 17 sources and 16 detectors) with a source-detector
distance of 3 cm was deployed as 3 × 11 optodes configu-
ration. The optodes were setup on PFC and temporal areas
along the T4-Fpz-T3 positions in line with the international
10-20 system [27]. A simultaneous measurement (sampling
rate: 200 Hz) of photoplethysmographic (PPG) signals for
HRV analysis was recorded using a Nellcor DS-100A ear clip
sensor connected to AFE4490SPO2EVM Evaluation Board
(Texas Instruments Inc, Dallas, Texas). The PPG was selected
as its measurement was correlated to electrocardiogram
signals [28].

3) Experiment Protocol: The selection of emotional stimuli
was based on the Self-Assessment Manikin (SAM) 9-point
rating in the emotional circumplex model [29], consider-
ing two independent neurophysiological dimensions: valance
and arousal. From the model, ten affective (case) sound
clips (negative valence: 2.147 ±0.473; high arousal: 7.388
±0.494) and ten neutral (control) sound clips (neutral valence:
5.197 ±0.720; medium arousal: 4.560 ±0.380) were retrieved
from the International Affective Digitized Sounds system
(IADS) [30].

This experiment was designed in a counterbalanced manner
to avoid the order effect, where each participant had to
attend two sessions (one with affective stimuli and the other
with neutral stimuli). Participants were randomly assigned to
each session where 50% would be under affective stimuli
at one time. Participants were seated in front of a monitor.
As shown in Fig. 1, a 3-minute baseline establishment was
conducted prior to the experiment. The experiment began
with 20 seconds of rest followed by five alternating trials
of task and rest. While resting, subjects were asked to relax
by concentrating on the displayed white cross. During the
task, up to five four-choice nursing-scenario-study questions
were presented successively on the screen. The difficulty level
of the questions in both sessions were standardized based
on the Bloom’s taxonomy [31]. Within 60 seconds, subjects
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Fig. 2. Source-Detector pair configuration based on the international
10/20 system.

were to answer promptly and complete as many questions as
possible. The total correct attempt, accuracy (correct attempt
over the total attempt) and response time were recorded for
statistical analysis. Simultaneously, subjects were listening to
the acoustic stimulus played by a speaker without knowing
the valance and arousal ratings. After six weeks’ time, all
subjects would attend the second session of the experiment
with emotional stimuli different from their own first session.

B. Proposed Method

The proposed method comprises seven modules,
as described in Fig. 3. The collected fNIRS signals were
initially preprocessed and the subjects’ dynamic FC
constructed by sliding window correlation (SWC). The
extracted dynamic FC matrices were analyzed using
unsupervised clustering analysis to identify key recurring
states. These states were characterized by graph theory
analysis and semi-metric analysis. In parallel, the dynamic
FC properties were extracted as features before fed into a
Random Forest classifier and quantified its performance for
comparison between the two groups of participants.

1) Data Preprocessing: In this study, the fNIRS signal
preprocessing was conducted using MATLAB (MathWorks
Inc., Natick, MA). First of all, as shown in Fig. 3 we applied
wavelet-based motion correction [32] on the optical density
of dual-wavelength fNIRS signals to remove the artifact due
to body motion. By converting to oxygenated hemoglobin
concentration change (�H bO) and deoxygenated hemoglobin
concentration change (�H bR) using Modified Beer-Lambert
Law, the high-frequency noise (i.e., cardiac pulsation and
respiration effect) and baseline drift were removed by 4th
order Butterworth band-pass filter on frequency band between
0.01 Hz to 0.2 Hz and first order polynomial baseline fitting
respectively. Subsequently, we performed the hemodynamic
modality separation (HMS) method [33] to eliminate systemic
physiological fluctuations including skin blood flow. As the
HMS method extracted the functional signal components
based on the assumption of the linear relationship between
�H bO and �H bR, the generated FC maps would eventually
be the same for both signal types. Therefore, we only selected
the functional �H bO signals as the backbone signals.

2) Dynamic FC: To capture the dynamic FC, we performed
the SWC method [22], [34]. Based on previous studies [35],
[36], we selected a fixed window size of 30 s to provide a good
trade-off between the false fluctuation and over-smoothing.
With a step size of 1 s, we captured the channel-pairwise
correlation, producing (channels × channels × sliding time)

dynamic FC matrices for each subject, where sliding time is
the difference between total signal times and window size.
After that, we concatenated all subjects’ dynamic FC matri-
ces, resulting in a 2D matrix of all inter-channel correlation
vectors × sliding time across all subjects.

3) Unsupervised Clustering Analysis: To identify the recur-
ring connectivity states, unsupervised k-means clustering algo-
rithm was applied to partition the 2D matrices into k clusters of
connectivity states without any label. However, it is important
to identify the suitable number of clusters prior to execution.
Excessively greater or smaller cluster number would lead
to mismatch or over-fitting in clustering, respectively. Thus,
to identify the optimal k, we executed k-mean clustering
analysis on the concatenated FC matrices by varying the
cluster number, k from 1 to 10. Thereafter, Elbow method was
applied to determine the bend (or elbow) of the curve with the
minimum intra-cluster variation based on within-cluster sum
of square (WSS) Euclidean distance [37].

4) Network Characterization: Based on the connectivity
states, we could observe the information transfer between
regions in the network using the generated correlation
matrices. To characterize each generated connectivity state,
we employed not only graph theory analysis but also the
semi-metric analysis as the shortest path is not always
the direct distance. The semi-metric permits higher level
of information sharing through circuitous paths and these
network redundancies are not considered in conventional
graph theory. Semi-metricity has also been identified as
one of the main symptoms of neurodevelopment disor-
der (autism) and post-traumatic stress disorder (emotional
processing) [38], [39].

a) Graph theory: As the first step of network quantifi-
cation, we performed a typical graph theory approach [40].
The network topology analysis was calculated using Brain
Connectivity Toolbox (BCT) [41]. First, the constructed FC
networks were then submitted to remove spurious or weak
connectivity by thresholding method. We selected proportional
(sparsity-based) thresholding rather than absolute (correlation-
based) thresholding because of its higher stability to assess
complex network FC in previous research [42]. The FC
networks were thresholded across all possible thresholds of
densities, K , which could be defined as the proportion of total
existing edges relative to total number of possible of edges in
the networks. To avoid the arbitrary of selecting thresholds,
we selected the density thresholds range 0.1< K< 0.5 with
the step size of 0.001 of the FC networks. Specifying the
thresholds range could avoid the brain network going random
at higher cost (when D approaching 0.5) and prevent excess
elimination of edges due to insufficient cost [43]. Within
the thresholds range, the brain networks were binarized into
unweighted and undirected graphs by setting suprathreshold
and subthreshold correlation values 1 and 0 respectively.

In this analysis, we focused on topological network effi-
ciency, one of the common quantifying tools to evaluate the
capability of information exchange in FC network. From the
thresholded functional network, we computed the network
topology efficiencies including global efficiency, Eglobal and
local efficiency, Elocal as shown in equation (1) and (2).
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Fig. 3. Proposed method to detect emotional sensitivity.

The Eglobal is defined as the inverse of the harmonic mean
of the shortest path length within the whole network [44].
It measures the capacity of global transmission of information
across the networks. It can be derived from the following:

Eglobal = 1

N(N − 1)

∑
j �=i∈G

1

di j
(1)

where di j the shortest path length between node i and j ;
N represents the total node number in the network, G. The
Elocal of a network is the average local efficiencies of each
node [40] and the local efficiency of each node, Elocal(G) can
be calculated using Eq. (2).

Elocal(G) = 1

N

∑
i∈G

Eglobal(Gi ) (2)

where the global efficiency of Gi each subgraph G comprising
node i with its first neighbors represents the local efficiency of
each node. Besides determining the effectiveness of informa-
tion transfer between node i and its nearest neighbor nodes,
Elocal(G) provides the estimation of nodal defect tolerance
for the neighboring nodes around node i . Across the specified
threshold range, the representations of Eglobal and Elocal were
computed as the area under the curve (AUC).

b) Semi-metric analysis: Besides graph theory, we also con-
ducted an emerging semi-metric analysis [45] as another net-
work metric. The weighted and undirected correlation matrix
graph was converted to a distance graph using a distance
conversion function [46] in Eq. (3):

d �
i j = 1

ri j
− 1 (3)

where d � denotes the distance function of ri j , correlation
weight between nodes i and j .

From the distance graph, we computed the ratio of semi-
metricity, si j , defining the proportion of direct distance to the
circuitous path between two nodes, as computed in Eq. 4 [45]:

si j = d �
i j

di j
(4)

where di j is defined as the shortest direct or circuitous path
between nodes i and j generated by path finding algorithm
(i.e., Johnson’s Algorithm [47]).

Ultimately, the semi-metric percentage (SMP) was calcu-
lated for each FC matrix as [45]:

SM P =
∑

i, j si j > 1

E
(5)

where E is the total number of direct connections in the
original network. The SM P quantifies semi-metric behavior
of the brain network, reflecting a higher level of synchronous
and dispersal connection between brain regions. Such network
behavior has been associated to the hyper-connectivity in
PFC areas during emotional processing such as anxiety and
stress [48], [49].

5) Dynamic FC Feature Extraction: From the gener-
ated dynamic FC matrices, we identified two different
time-varying properties: occurrence probability and state tran-
sition. To assess the task effect, the 20-s resting state data for
each trial was excluded from the calculation.

a) Occurrence probability: From each subject FC sliding
time point, the occurrence probability [34] was computed as
the ratio of total occurrence of a particular connectivity state
to the total task-relevant sliding time:

Occurrence Probability (k) =
∑T

t=1 (S(t) = k)

T
(6)
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where k denotes a connectivity state number; S(t) indicates
the connectivity states at time point t whereas T represents
the total task-relevant period.

b) States transition: The number of transitions of one state
to its subsequent state was calculated for each connectivity
state. Afterward, we computed the state transition in percent-
age which is defined as the number of state transition over
the total task-relevant period. A subject-wise (states × states)
transition map was generated.

6) Random Forest Classification: Random Forest (RF) is
formed by ensembles of classifiers. The RF randomly gen-
erates bootstrapped training data sets to enhance classification
and preserves the benefits of decision trees (DT). RF was
selected as when dealing with limited sample size, it provides
solution to 1) overcome weak classification; 2) be robust
against over-fitting; 3) be independent to data distribution;
4) manage to handle outliers [50], [51].

The classification function of RF was extracted from Clas-
sification Learner Tool in MATLAB (MathWorks Inc., Natick,
MA). The concept of RF was dependant on a collection
of DT classifiers which casts a vote for each predictor’s
variables [50]. At the beginning, RF followed two steps of
random selection to construct multiple DTs. In the first step,
by using bootstrap aggregating (bagging) method, the classifier
was trained by using a set of boostrapped data, which is
randomly chosen from the original data. Next, each node of
the DT was randomly chosen from a subset of variables prior
to splitting. The best feature was selected to maximize the
learning accuracy by setting the maximum number of splits at
default value of 77 (maximum observation number - 1).

Due to the limited sample features in this study, there
would be a risk of overfitting. Therefore, the k-fold (10-
fold) cross-validation was applied on the data features. First,
the two dynamic FC properties of each connectivity state
(occurrence probability and transition stability) were selected
as the features of classification. The trend of the features was
confirmed by assessing the previous paired t-test analysis and
the training of features were then repeated for 10 iterations
separately among two sample groups to split the k-fold in a
different manner. The same classification method was repeated
by applying on the HRV features (RM SSD and SDN N)
together as inputs.

7) Performance Analysis: In the performance analysis,
we initially examined the connectivity state(s) that would
provide the best emotional state classification performance.
To achieve the optimal features selection, we further included
all the possible connectivity states features, which identified
the significant emotional change, as the input of classification.
The subsequent analysis was aimed to compare the discrim-
inating power between dynamic FC features and the conven-
tional HRV features (RM SSD and SDN N , simultaneously).
The classification performance of HRV and the dynamic FC
features were identified based on the area under receiver
operating characteristic curve (ROC), classification accuracy,
sensitivity and specificity. The classification accuracy was
computed as the percentage of true classification (affective
task as case) over the total classification samples and the area
under ROC were then constructed as the true positive rate

against the false positive rate. From the ROC, we estimated the
sensitivity and specificity of the classification. The area under
ROC was also evaluated with varying a threshold ranged from
0 to 1 [52].

C. HRV Analysis

The current definition of emotion is the strong feeling
accompanied by physiological and behavioral changes in the
body. HRV has been a reliable biomarker in recognizing
emotional states based on the evaluation of the autonomic
nervous system responses [7]. To benchmark the proposed
dynamic FC, we evaluated the physiological change – HRV
using root mean square of successive differences between
normal heartbeats (RMSSD) and standard deviation of NN
intervals (SDNN). HRV analysis was executed using the
HRVTool v1.04 (https://github.com/MarcusVollmer/HRV) [53]
running in MATLAB (MathWorks Inc., Natick, MA). Sev-
eral preprocessing techniques including moving average filter,
NN interval [54] and artifacts elimination [53] were conducted
to generate clean NN-intervals signals. From the preprocessed
signals, we computed HRV RMSSD and SDNN using the Eq. 7
and Eq. 8:

RM SSD =
√√√√ 1

n − 1

n−1∑
i=1

(N Ni+1 − N Ni )2 (7)

SDN N =
√√√√ 1

n − 1

n∑
i=1

(N Ni − N N )2 (8)

where NNi is the time intervals between successive beats and
NN indicates the mean of NN intervals.

D. Statistical Analysis

For each network quantifying index (Eglobal, Elocal and
SM P), we compared the statistical differences among the
four connectivity states by conducting one-way Analysis of
Variance (ANOVA). The following multiple comparison analy-
sis was conducted with the correction of false discovery rate
(FDR) [55] at desired q-level (FDR-corrected p = 0.05).
We also assessed the emotional effect and group effect on
the dynamic properties using pairwise comparisons with FDR
correction.

In the HRV analysis, one-sample t-test was used separately
among students and nurses to evaluate the emotional state
effect on RMSSD and SDNN.

III. RESULTS

A. Selection of Optimal Cluster Number

Based on the Elbow method, the curve of WSS distance
against cluster number is generated and displayed in Supple-
mentary Fig. S1. The optimal cluster was identified as the
cluster point (from k = 1 to 10) with the longest perpendicular
distance to a linear line (dotted straight line in the graph) [56].
In this case, the optimal k is 4.
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Fig. 4. Generated centroid maps using k-means clustering algo-
rithm. Each colour in the matrices indicates the channel pairwise
correlation, r.

B. Unsupervised Clustering Analysis

Using k-means clustering analysis with k = 4, four recurring
centroid maps were generated as shown in Fig. 4 to represent
different patterns of connectivity states. The matrices were
re-arranged according to the spatial registration oriented from
right to left PFC.

C. Dynamic FC Properties

1) Task Effect on Occurrence Probability: The overall group
results revealed that connectivity state 3 (S3) has the highest
mean occurrence probability (40.36%), followed by connec-
tivity states 1 (S1) (26.25%), 4 (S4) (20.82%) and 2 (S2)
(12.57%). By group, the multiple comparison, adjusted by
FDR correction, revealed that the nurses displayed signifi-
cantly high (FDR-corrected p < 0.001) occurrence probability
of single state, i.e., S3, as shown in Fig. 5a. No difference
between affective and neutral tasks (p > 0.05) was observed in
the nurse group. In contrast, the student group has task-relevant
states (S3 and S4) exhibited significant differently under dif-
ferent task conditions (FDR-corrected p < 0.05), as depicted
in Fig. 5b. S3 demonstrated significantly higher occurrence
probability (FDR-corrected p = 0.036) during affective task,
while S4 had lower occurrence probability (FDR-corrected
p = 0.036) than neutral task.

2) Occurrence Probability Between Groups: A multiple com-
parison was conducted on each connectivity state to compare
the group effect on the occurrence probability. The result (refer
to Supplementary Table S1) determined that as compared with
the nurse group, student group had generally higher level of
occurrence probability in S1 (FDR-corrected p = 0.014 and
= 0.033 in affective and neutral task respectively), which has
high correlation across all PFC areas [57]. Moreover, nurse
group demonstrated significantly higher occurrence probability
(FDR-corrected p = 0.033 and = 0.014 in affective and
neutral task respectively) in S3 than that in student group.
Among the group comparisons, the largest change was found

in S3, where nurses had 18.314% of occurrence probability
higher than students during the neutral task.

3) Task Effect on State Transition: The results of another
dynamic FC property – state transition were tabulated in
matrix form (refer to Supplementary Fig. S2). From the tran-
sition matrices, low transition percentages between different
states (less than 7%) were found among all sample groups.
On the other hand, subjects tended to exhibit high percentage
of time being at the same state, also defined as transition
stability. The dominant transition stability was found in S3
(nurses: affective = 48.83% and neutral = 47.46%; students:
affective = 36.41% and neutral = 28.29%).

When evaluated with the statistical analysis, the state tran-
sition was significantly different between affective and neutral
tasks for students in S3 (FDR-corrected p = 0.039) and S4
(FDR-corrected p = 0.039). No significant change between
the two tasks for nurses was found in similar S3 and S4
(p ≥ 0.626).

4) State Transition Between Groups: Based on the multi-
ple comparison in Supplementary Table S1, we observed a
significantly higher transition stability in S1 (FDR-corrected
p = 0.019 and = 0.026 in affective and neutral task
respectively) in student group that that in nurse group.
However, a lower transition stability in S3 (FDR-corrected
p = 0.032 and = 0.014 in affective and neutral task respec-
tively) was observed in the student group as compared with the
nurse group. In S3, the nurses demonstrated higher transition
stability than students with the largest difference (19.166%)
while participating neutral task.

D. Network Characterization

Two different graph theoretical approaches were introduced
to characterize each of the four recurring clustered connectivity
states, with statistical comparison.

1) Graph Theory: One-way ANOVA was conducted to
investigate the connectivity state effect on graph theory analy-
sis. As Mauchly’s test indicated the violation of sphericity
in the data of Eglobal (χ2(2) = 238.615, p < 0.001) and
Elocal (χ2(2) = 286.299, p < 0.001), Greenhouse-Geisser
correction was applied. Significant connectivity state effect
was observed in Eglobal [F(3,115) = 45.498, p < 0.001] and
Elocal [F(3,115) = 35.168, p < 0.001]. Multiple comparison
with the correction of FDR was conducted on the four recur-
ring connectivity states to verify the results of clustering. The
experiment results report that S3 has significantly the highest
global efficiency (vs S1: FDR-corrected p < 0.001; vs S2:
FDR-corrected p < 0.001; vs S4: FDR-corrected p = 0.001)
among all connectivity states (see Fig. 6a). S4 was ranked after
S3 (FDR-corrected p < 0.001) by having higher mean Eglobal

than S2 (but not statistically different) and 1 (FDR-corrected
p = 0.016).

Moving on to another pairwise comparison with FDR
correction in Fig. 6b, S2 exhibited the significantly high-
est local efficiency, Elocal among all connectivity states
(FDR-corrected p < 0.001). S3 possessed higher Elocal

than S4 (FDR-corrected p = 0.002) and 1 (FDR-corrected
p < 0.001).
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Fig. 5. Statistical comparison of affective versus neutral states based on the mean occurrence probability of connectivity states across the
task-relevant period between (a) Nurses (b) Students. * symbol represents significant level FDR-corrected p < 0.05.

Fig. 6. Statistical comparison of affective versus neutral states based on the network quantifying techniques: (a) Eglobal (b) Elocal (c) SMP. * and
** symbols indicate significant level FDR-corrected p < 0.05 and FDR-corrected p < 0.001 respectively.

2) Semi-Metric Analysis: Similar to graph theory analysis,
the effect of connectivity state on SM P was studied using
one-way ANOVA. Greenhouse-Geisser correction was applied
due to the violation of sphericity in Mauchly’s test (χ2(2) =
274.728, p < 0.001). The results revealed the main effect
of connectivity states to be significant [F(3,115) = 11.250,
p < 0.001] and remains significant in the post hoc analy-
sis. As illustrated in Fig. 6c, the multiple comparison with
FDR-correction demonstrated that a significantly higher mean
SM P was observed in S3 (FDR-corrected p < 0.001) than
that in S1 and S4. S2 demonstrated the highest (FDR-corrected
p < 0.001) SM P whereas S1 had the lowest (FDR-corrected
p < 0.001) SM P .

E. HRV Analysis

Statistical comparisons show significantly lower RMSSD
(p = 0.0345) and SDNN (p = 0.0138) among students in
the affective state than that in the neutral state. On the other
hand, the nurses did not exhibit any significant change in both
RMSSD and SDNN, under the two different emotional states.

F. Behavioral Performance

The statistical comparisons of the tasks and groups (refer
to Supplementary Table S4) were conducted to evaluate the
accuracy, correct attempt and response time while attempting
the tasks. The findings show that none of the comparison was
found to be significant (FDR-corrected p > 0.05). However,

the average behavioral performance of the students improves
by approximately 13% (accuracy: +15.64%, correct attempt:
+16.00%, response time: −7.31%) when under the affective
condition.

G. Supervised Classification

The RF classification results on the connectivity states
among nurses and students, as summarized in Supplementary
Table S2, show that the S3 of students Table S2, show that
the S3 of students produces the highest single-state emotional
state classification performance among all connectivity states.
Here, we set the affective state as case. An improvement of the
classification was observed in Supplementary Table S3, when
both the S3 and S4 were considered as input features to the
RF classifier. Two comparison analyses were further carried
out as follows. The first comparison was to examine which
group has a higher accuracy rate in detecting affective state (as
case). We argue that higher accuracy means that the dynamic
FC features were more differentiable under affective and
neutral emotional states. Conversely, the dynamic FC feature
responses to different emotional states would be similar if there
was no effect from emotional stimuli; the second comparison
was carried out to assess if the proposed dynamic FC features
could help detect emotional sensitivity more accurately than
the conventional HRV features.

1) Nurses Vs Students: The comparison of the emotional
state classification performance based on dynamic FC shows
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TABLE I
EMOTIONAL STATE CLASSIFICATION PERFORMANCE BASED

ON DYNAMIC FC AND HRV ANALYSIS AMONG

STUDENTS AND NURSES

that students had higher area under ROC, accuracy, sensitivity
and specificity than nurses (refer to Table I). This supports
our assumption that the students were more susceptive to
emotional change during the affective task, as compared to
the nurses.

2) HRV Vs Dynamic FC: The results in Table I show that
the dynamic FC (based on both S3 and S4) generated a better
emotional state classification performance when compared
with cardiac measurements (HRV), in the case of students.
In the case of the nurses, we observe a lower classification
performance on dynamic FC and HRV, suggesting the dynamic
FC does not originate from the emotion management but a
result of emotional sensitivity.

IV. DISCUSSION

A. Unsupervised Clustering Analysis

As depicted in Fig. 4, four unique connectivity states
were generated by unsupervised clustering analysis. First,
S1 demonstrated massively strong association between all
regional matrices. This phenomenon could be explained as
the global signal that causes widespread of correlation in the
brain regions. Besides the residual systemic noise (i.e., local
blood circulation), which could not be completely suppressed
by denoising method, there might be the arising of the other
possible neurovascular components, which required further
investigation.

S2 reflected an intrinsic FC network [58]. High correlations
were in Default Mode Network (DMN) regions, including
medial prefrontal cortex, posterior cingulate cortex and lateral
temporal cortex [59]. At the same time, anti-correlation was
found between the DMN and the task-positive network, such
as lateral prefrontal and parietal networks, reflecting the deac-
tivation of the latter network during the task execution [60].
However, the controversies of this kind of anti-correlation net-
work organization were found among a number of studies [61],
[62] due to the high variability of DMN and task-positive
network, which might reflect task-related or task-unrelated
neural activity. Therefore, it might be not necessary to suggest
S2 as a task-relevant connectivity state.

S3 showed strong connections within the bilateral prefrontal
network as well as across the networks such as DMN, fron-
toparietal (task-positive) network and other PFC networks.
Frontoparietal network has been well recognized as the control
and executive network during task performance [63]. Besides,
lateral PFC is one of the executive areas involved in the cog-
nitive control of emotion [39], [64]. During the task execution,
high across-network connectivity was commonly found due to
the integration among the disconnected executive networks.

Fig. 7. HRV analysis RMSSD and SDNN results among nurses and
students.

Lastly, S4 demonstrated high connectivity within PFC net-
work. As compared to S3, much less interconnection between
brain regions was observed. Yet, as the whole PFC might
include executive networks involved in cognitive control, fur-
ther investigation is required to discard it as a non-task-relevant
connectivity state.

B. Dynamic FC Properties

Occurrence probability indicates how frequent a connectiv-
ity presents along the recording period, while state transition
describes the stability of connectivity during the task perfor-
mance. The experiment results shows that all subjects tended
to remain their connectivity states rather than switching their
connectivity states during the task performance. Such phe-
nomenon presented the stability of transition among the sub-
jects. S3, which exhibited the dominant occurrence (40.36%)
and significant changes in both occurrence probability and
transition stability due to affective task, provided substantial
evidence as task-relevant connectivity state. This result is
consistent with previous studies [58], [65], which reported
increased stability or variability reduction in FC during the
engagement of task. Meanwhile, significant reduction occur-
rence probability and transition stability in S4 was observed.
In short, the comparisons of task effect implied a higher
susceptibility among the students to both emotional stimuli.

In addition, S1 with the high global connectivity did not
show any significant results in both properties among nurses
and students due to the emotional effect; on the other hand,
S2, which presented an intrinsic network organization, occu-
pied lowest chance of occurrence (overall mean = 12.57%)
and did not show any significant result among nurses and
students. Therefore, findings show that the connectivity states
S1 and S2 might not be suitable to indicate the task-associated
connectivity changes due to emotion.

When examined further, the dynamic FC properties provide
an insight about the cognitive development state of the nurses
and students. As aforementioned, the S1 is task-irrelevant
and is at relatively higher level. Such phenomenon might
be linked to neuronal noise, which presents during the fir-
ing activities of neuronal networks and intensifies during
self-organization to permit destabilization and stabilization
of neuronal networks [66]. The self-organization is typically
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characterized by the reduction of local network connectivity
and the manifestation of “chaos” in both global and regional
brain dynamics, akin to the network characteristics observed in
S1. We speculate that the higher level of such neuronal noise
for novices (students) is important to facilitate the formation
of more optimized task-relevant networks (such as S3 and S4)
displayed by the trained minds (nurses). This is evidently
with the dominance of S3 for the task by the nurses. Given
the largest group differences of occurrence and transition
stability in neutral task, this would indicate the different
states of cognitive development exhibited by the nurses and
students in coping with the emotional stimuli. In other words,
the state distribution of nurses might be more optimized than
the students’, and the state distribution of students transforms
and resembles more closely to that of nurses when under the
affective condition.

C. Network Characterization

Based on the experimental results, apparent increment of
effectiveness in information transmission within global and
local networks was observed in the dominant S3 during the
affective task. S3 also presented high semi-metricity, indicating
higher information sharing among the networks in affective
task. In other words, this result highlighted the increasing
preference of indirect interconnection among FC networks
rather than direct connectivity during affective task. Although
S2 possessed the highest Elocal and SM P , its presence along
the task is relatively low as compared to other connectivity
states so might not be justified to indicate the task-relevant
change. Meanwhile, S1, which was presumed as the global
signals, had the poorest information exchange in both global
and local network.

D. HRV Analysis

The significant decrements in RMSSD and SDNN explained
the physiological adaptive responses developed among stu-
dents, evident of the success of inducing negative emotion with
the affective stimuli. In contrast, the non-significant change
in autonomic nervous system activity strengthens the state
distribution of the students to the more optimized distribution
as displayed by the nurses.

E. Behavioral Performance

The non-significant changes in the behavioral performance
between the nurses and students indicate the same workload
undergone by the subject groups while dealing with the
decision-making task. Supported by the dynamic FC results,
the improved state distribution is likely to translate to the
average behavioral performance by the students to reach a
higher level, which could be due to the enhanced effort of the
compensatory strategies deduced by the attentional control the-
ory [67]. On the other hand, the nurses with the optimized con-
nectivity state distribution, exhibited neither improvement nor
impairment of average behavioral performance in both tasks.
Hence, this differentiate the emotional sensitivity between the
students and nurses.

F. Supervised Classification

According to the emotional state classification results,
we identified multiple S3 and S4 of the students to be the input
features that produced the highest classification performance
and significantly higher than that the nurses. This suggests
a higher differential effect of emotion among the students.
The second classification comparison shows that the selected
features of dynamic FC outperformed the HRV features in
terms of area under ROC, prediction accuracy, sensitivity and
specificity in recognizing affective stimulus. From the results,
we can confirm that task-relevant dynamic FC among students
affected under emotional change could be a better predictor
as compared to HRV.

Furthermore, it is known that HRV is affected by the
emotional state. However, it was not clear to us at the start of
this work whether the dynamic FC was a cause or an effect.
If the dynamic FC were an effect like HRV, the relationship
of classification performance between nurses and students in
the dynamic FC would be similar to that of HRV. In contrast,
if the dynamic FC were a cause, it would work for the emotion
management, i.e., suppressing the emotion and the relationship
in the dynamic FC would be different from that of HRV. From
Table I, the performance of emotional state classification by
both the dynamic FC and HRV for the students was higher
than that for the nurses; the performance of emotional state
classification by both the dynamic FC and HRV for the nurses
was almost 50%, i.e., the dynamic FC is not related with
the emotional states in the case of the nurses. These results
suggested that the dynamic FC did not originate from the
emotion management but a result of emotional state.

G. Limitation

The sample size of nurses was relatively small. Although
the result identified that nurses were less sensitive to emotional
change than students, the findings might need to be further
investigated by increasing the sample size of the nurses.
Besides, the age difference between students and nurses could
be a confounding factor. Correction factor to the measurements
might be required especially when considering nurses who
are more than 10 years age older than the students. The
implementation of ML also requires a large data set for feature
training purpose. The problem of over-fitting might still remain
despite our effort to reduce the risk of it.

V. CONCLUSION

This paper proposed a method for emotional sensitivity
detection using fNIRS based dynamic FC and machine learn-
ing (clustering and Random Forest algorithms). When assessed
with a group of nursing students and registered nurses for a
decision-making task, it was found that (1) students were more
susceptive to affective stimuli as expected, and (2) dynamic
FC provided more differential features than the conventional
anxiety measure – HRV in predicting emotional sensitivity.
Based on the latter, we proposed a new definition of emotion
where brain-based changes should also be considered, in addi-
tion to the physiological and behavioral changes in the body.
This work illustrated how neuroimaging might help assess
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the development of emotional sensitivity, and the proposed
method demonstrated that the occurrence probability and state
transition of dynamic FC as suitable emotional biomarkers.
Such biomarkers could be used as the indicators for the
development of emotional sensitivity related training required
for stressful occupations such as nurses.
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