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Abstract— This work is motivated by the recent advances
in Deep Neural Networks (DNNs) and their widespread
applications in human-machine interfaces. DNNs have been
recently used for detecting the intended hand gesture
through the processing of surface electromyogram (sEMG)
signals. Objective: Although DNNs have shown superior
accuracy compared to conventional methods when large
amounts of data are available for training, their performance
substantially decreases when data are limited. Collecting
large datasets for training may be feasible in research
laboratories, but it is not a practical approach for real-life
applications. The main objective of this work is to design
a modern DNN-based gesture detection model that relies
on minimal training data while providing high accuracy.
Methods: We propose the novel Few-Shot learning- Hand
Gesture Recognition (FS-HGR) architecture.Few-shot learn-
ing is a variant of domain adaptation with the goal of
inferring the required output based on just one or a few
training observations. The proposed FS-HGR generalizes
after seeing very few observations from each class by com-
bining temporal convolutions with attention mechanisms.
This allows the meta-learner to aggregate contextual infor-
mation from experience and to pinpoint specific pieces of
information within its available set of inputs. Data Source
& Summary of Results: The performance of FS-HGR was
tested on the second and fifth Ninapro databases, referred
to as the DB2 and DB5, respectively. The DB2 consists of
50 gestures (rest included) from 40 healthy subjects. The
Ninapro DB5 contains data from 10 healthy participants
performing a total of 53 different gestures (rest included).
The proposed approach for the Ninapro DB2 led to 85.94%
classification accuracy on new repetitions with few-shot
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observation (5-way 5-shot), 81.29% accuracy on new sub-
jects with few-shot observation (5-way 5-shot), and 73.36%
accuracy on new gestures with few-shot observation (5-way
5-shot). Moreover, the proposed approach for the Ninapro
DB5 led to 64.65% classification accuracy on new subjects
with few-shot observation (5-way 5-shot).

Index Terms— Myoelectric control, electromyogram
(EMG), meta-learning, few-shot learning (FSL).

I. INTRODUCTION

THE recent advances in Machine Learning (ML) and
Deep Neural Networks (DNNs) coupled with innovations

in rehabilitation technologies have resulted in a surge of
significant interest in the development of advanced myoelec-
tric prosthesis control systems. Hand motion recognition via
surface Electromyogram (sEMG) signals [1], [2] is considered
as a central approach in the literature. Conventional ML tech-
niques, such as Linear Discriminant Analysis (LDA) [3]–[5]
and Support Vector Machines (SVMs) [3], [4], [6], have been
used for detecting the intended hand gesture through process-
ing of sEMG signals. Although classical pattern-recognition-
based myoelectric control has been widely studied in academic
settings over the last decades, the advanced methodologies
have not been used in many commercial examples. This is
due to a noticeable gap [7], [8] between real-world chal-
lenges and existing methodologies. Among the reasons for this
gap are:
(i) Training Time: The first problem is the extended training

time required by the end-user to mitigate the differences
between the desired and performed movements. Such a
training process, which is time consuming, tedious and
unpleasant, can take up to several days in practice.

(ii) Variability in the Characteristics of sEMG Signals:
The second issue is the variability in nature of the sEMG
signals. This variability is caused by (a) Time-dependent
and stochastic nature of the neural drive to muscles;
(b) Dependency of the neural drive to the dynamic and
kinematics of tasks, and; (c) Variability in neural control
strategies between different users and the changes caused
by amputations. In addition, sEMG recording could vary
based on electrode location. Given such variations, there-
fore, the probability distributions of sEMG signals may be
different over time. Consequently, models trained based
on some specific observations may not consistently and
directly be reused over time. This would require retraining
and recalibration, which cannot be done often in real-life
applications.
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Recently, DNNs have been designed and used by our
team [9]–[12] and other research groups [13]–[19], for
myocontrol, achieving superior classification performance than
conventional approaches. For example, in [19], which is
among the first DNN-based methods developed for the analysis
of sEMG data, it was shown that results of a DNN with a
very simple architecture are comparable to the average result
of classical methods. More specifically, the average classi-
fication accuracy obtained using a simple CNN architecture
on Ninapro DB2 was reported as 60.27 ± 7.7%. The average
classification accuracy obtained using all the classical methods
on this dataset is 60.28 ± 6.51%. The best classical classifica-
tion method (Random Forests (RF) with all features) obtained
an average classification accuracy of 75.27 ± 7.89%. It is
worth noting that the DNN performance depends on several
factors such as pre-processing and the designed architecture.
The optimization of parameters is, therefore, fundamental
for the performance. Consequently, there have been several
efforts to design advanced DNN architectures. For instance,
the average classification accuracy obtained based on recent
works [17], [18] is 82.95%, which shows their superior
performance compared to classical methods. However, DNNs
need large training data to achieve high performance. This may
be feasible in laboratory conditions but poses constraints in the
practical use of prostheses in real-life applications. There is
an unmet need for the design of a modern gesture detection
technique that relies on minimal training data while achieving
high performance.

In this paper we introduce, for the first time, the concept of
few-shot training for myoelectric systems. Few-shot learning
minimizes the need for recalibration and would allow the
user to retrain the ML core of control, by only few basic
exercises instead of extensive recalibration procedures. For this
purpose, here we propose an innovative “Few-Shot learning-
Hand Gesture Recognition”, referred to as the FS-HGR. The
proposed meta-learning FS-HGR architecture takes advantage
of domain knowledge and requires a small amount of training
data (when compared with traditional counterparts) to decode
new gestures of the same or new users. The paper makes the
following contributions:

• A class of architectures is introduced for sEMG meta-
learning, where the meta-learner, via adaptation, quickly
incorporates and refers to the experience based on just
few training observations.

• By proposing the FS-HGR framework, which utilizes
a combination of temporal convolutions and attention
mechanisms, we provide a novel venue for adopting
few-shot learning, to not only reduce the training time,
but also to eventually mitigate the significant challenge
of variability in the characteristics of sEMG signals.
In other words, the proposed FS-HGR framework allows
a myoelectric controller, that has been built based on
background data, to adapt to the changes in the stochastic
characteristics of sEMG signals using a small number of
new observations.

The paper is organized as follows: Section II provides
a brief overview of relevant literature. In Section III,
we present the dataset used in development of the proposed

FS-HGR framework together with the pre-processing step. The
proposed FS-HGR architecture is developed in Section IV.
Experimental results and different evaluation scenarios are pre-
sented in Section V. Finally, Section VI concludes the paper.

II. RELATED WORKS

A common strategy used for hand gesture recognition in
recent works is applying DNN with the focus on improv-
ing hand gestures classification performance on “never-seen-
before repetitions”. Along this line of research, several state-
of-the-art works [10]–[12], [14], [16]–[22] mainly used the
Ninapro database [23]–[25], which is a public dataset pro-
viding kinematic and sEMG signals from 52 finger, hand,
and wrist movements. The Ninapro database is similar to
data obtained in real-world conditions, and as such it allows
development of advanced DNN-based recognition frameworks.

The common approach in recent studies [10]–[12], [14],
[16]–[22], following the recommendations provided by the
Ninapro database, is to train DNN-based models on a training
set consisting of approximately 2/3 of the gesture trials
of each subject. The evaluation is then performed on the
remaining trials constituting the test set. Although existing
DNN techniques achieve promising performance on never-
seen-before repetitions, they fail to function properly if the
repetition is not extensively explored [26]–[28]. For example,
in [29], the authors reported the average accuracy over the
10 participants of the Ninapro DB5 for one to four training
repetitions (one repetition is equal to 5 seconds of data). The
accuracy decreases and the model fails to function properly
if the repetition is not extensively explored. For example,
for one to four training repetitions the accuracies are equal
to 49.41 ± 5.82; 60.12 ± 4.79; 65.16 ± 4.46, and; 68.98 ±
4.46, respectively. Thus, for a new user or a new gesture,
a significant amount of training should be conducted and the
whole learning process should be redone, assuming a small
variation between the new class and the previous classes.
If the aforementioned change is more than minimal, there may
be the need to recalibrate the whole process for all classes.
In addition, existing DNN-based methodologies require large
training datasets and perform poorly on tasks with only a few
observations being available for training purposes.

In [30], the authors proposed a domain adaptation method
that maps both the original and target data into a common
domain, while keeping the topology of the input data
probability distributions. For this purpose, the authors used a
local dataset, where the sEMG data was acquired by repetitive
gripping tasks while data was collected from 8 subjects.
In addition to the above, Transfer Learning (TL) was also
used to adopt a pre-trained model and leverage the knowledge
acquired from multiple subjects and speed up the training
process for the new users. In [29], [31], the authors proposed
a TL-based algorithm adopting CNN to transfer knowledge
across multiple subjects for sEMG-based hand gesture
recognition. The authors in [29], [31], applied the Myo
armband to collect sEMG signals and used the fifth Ninapro
database, which contains data from 10 intact-limb subjects.
The pre-training for each participant was done employing
the training sets of the remaining nine participants and the
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average accuracy was obtained over the 10 participants of the
Ninapro DB5 [6]. Finally, [32], [33] applied deep learning
along with domain adaptation techniques for inter-session
classification to improve the robustness for the long-term uses.
Due to the variability of the signal space, the generalizability
of existing techniques is questionable and it is not clear how
they would perform in real-life scenarios when the training
data is limited. It is not clear how these models would perform
on scenarios with larger number of subjects and postures. For
example, in [32], 7 subjects participated in the experiment and
7 movements were classified. As another example, in [33],
the authors separately used three datasets to train and evaluate
their model based on High-density surface electromyogram
(HD-sEMG) signals. The first dataset referred to as the
CSL-HDEMG consists of 5 subjects performing 27 gestures.
The second and third datasets referred to as CapgMyo DB-b
and DB-c, respectively, consist of 23 subjects performing 8
gestures for DB-b and 12 gestures for DB-c. In summary,
the number of subjects and movements in previous studies
were relatively small - particularly in comparison with the
Ninapro database, therefore, making it difficult to explore the
generalizability of the existing techniques and has motivated
us to focus on this relatively large-scale sEMG database.

In summary, there is an urgent need to develop adaptive
learning methods with the focus on designing a classifier
which can be adopted for new subjects based on only a few
observations through a fast learning approach. This is a chal-
lenging task since many factors, such as electrode location and
muscle fiber lengthening/shortening, can affect the collected
sEMG signals. Moreover, the differences between users and
the changes caused by amputations result in discrepancies
between different conditions [2], [8]. To the best of our knowl-
edge, this is the first time that Few-shot Learning is adopted
in the literature to classify 49 hand gestures on new subjects
using a small (one to five) number of training observations.

III. MATERIAL AND METHODS

A. Database
The proposed FS-HGR architecture was evaluated on the

Ninapro [23]–[25] benchmark database, which is a publicly
available dataset for hand gesture recognition tasks. Ninapro
is a widely used benchmark for evaluation of different models
developed using sparse multichannel sEMG signals.

In this work, the second Ninapro database [23] referred
to as the DB2 was utilized. Delsys Trigno Wireless EMG
system with 12 wireless electrodes (channels) was used in
the DB2 dataset to collect electrical activities of muscles at a
rate of 2 kHz. The dataset consists of signals collected from
28 men and 12 women with age 29.9±3.9 years, among whom
34 are right-handed and 6 are left-handed. The DB2 consists
of 50 gestures including wrist, hand, grasping, and functional
movements along with force patterns from 40 healthy (intact-
limb) subjects. The subjects repeated each movement 6 times,
each time lasted for 5 seconds followed by 3 seconds of rest.
More detail on the Ninapro database are described in [23].

B. Pre-processing Step
Following the pre-processing procedure established in pre-

vious studies [16], [19], [22], [23], we used a 1st order

low-pass Butterworth filter to smooth the electrical activities
of muscles. Moreover, we applied μ-law transformation to
magnify the output of sensors with small magnitude (in a
logarithmic fashion), while keeping the scale of those sensors
having larger values over time. This transformation approach
has been used traditionally in speech and communication
domains for quantization purposes. We propose to use it for
scaling the sEMG signals as a pre-processing approach. The
μ-law transformation was performed based on the following
formulation

F(xt ) = sign(xt )
ln

(
1 + μ|xt |

)
ln

(
1 + μ

) , (1)

where t ≥ 1 is the time index; xt denotes the input to be
scaled, and the parameter μ defines the new range. Here
μ = 2, 048 was utilized, i.e., the scaled data points were
distributed between 0 and 2, 048. Afterwards, we fed the
scaled sEMG signals to Minmax normalization. In our previ-
ous work [11], we empirically observed that the normalization
of the scaled sEMG signals is better than non-scaled sEMG
signals. For example, the results obtained without scaling for
a window of length 50 ms was 71.49%, while normalization
of scaled sEMG signals has improved the results to 81.71%.
In this work, we noticed a similar trend and as such continued
using normalization of scaled sEMG signals. This completes
a brief introduction of the utilized dataset and the introduced
pre-processing step. Next, we develop the proposed Meta
Learning-based FS-HGR framework.

IV. THE FS-HGR FRAMEWORK

Meta-learning can be formalized as a sequence-to-sequence
learning problem. The bottleneck is in the meta-learner’s
ability to internalize and refer to experience. To address this
shortcoming for the gesture recognition task based on sparse
multichannel sEMG, inspired by [26], we proposed a class of
model architectures by combining temporal convolutions with
attention mechanisms to enable the meta-learner to aggregate
contextual information from experience. This integrated archi-
tecture allows the meta-learner to pinpoint specific pieces of
information within its available set of inputs. Our main goal
is to construct and train a hand gesture recognition model that
can achieve rapid adaptation. Next, we first elaborate on the
meta-learning concept.

A. The Meta-Learning Problem

A supervised learning task starts with a given dataset D =
{(X i , yi )}M

i=1, consisting of M observations, where the i
th

observation is denoted by X i , for (1 ≤ i ≤ M), with its
associated label denoted by yi . The main objective is to learn
a (possibly non-linear) function f (·) defined based on its
underlying parameters θ that maps each observation X i to its
corresponding label, yi = f (X i ; θ). In a supervised learning
approach, the dataset is divided into: (a) The training data
Dtrain used for learning the parameters θ of the model; (b) The
validation data Dval utilized for tuning the hyper-parameters
of the model, and; (c) The test data Dtest for model
evaluation.
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Fig. 1. 5-way 1-shot classification: Each task Tj , represented in a purple box, is associated with a support-set Dsupport and a query-set Dquery .
Here, for constructing Dsupport , first, 5 classes are selected from the Dmeta-train, and then one observation from each of these 5 classes are
selected (each class is represented with a different colour and is associated with a label 1-5). Dquery consists of 1 observation selected from one of
those 5 classes. The Dmeta-test is represented in the same approach, covering a different set of datasets, which do not include any classes presented
in any of the datasets in Dmeta-train. Finally, Dmeta-val is defined in the same way to determine the hyper-parameters of the model.

In this context, we focused on meta-supervised learning,
where the goal is generalization across tasks rather than
across data points. Therefore, instead of using the afore-
mentioned conventional data subsets (Items (a)–(c) above),
we have a meta-set denoted by D , which in turn splits
into meta-train Dmeta−train , meta-validation Dmeta−val , and
meta-test Dmeta−test sub-datasets. Furthermore, one needs to
construct different tasks (as shown in Fig. 1) within each meta-
dataset. Task T j ∈ D is episodic and is defined by two
components, a support-set Dsupport

j and a query-set Dquery
j ,

i.e., T j = (Dsupport
j ,Dquery

j ).
Within the context of meta-learning, our focus is specifically

on few-shot learning (typically referred to as k-shot learning
with k being a small integer), which is briefly described
next. In a N-way k-shot classification, our goal is training
on Dmeta−train , where the input is the support-set Dsupport

j
and, a query instance Xquery

j ∈ Dquery
j . To be more precise,

Dsupport
j = {(X i , yi )}k×N

i=1 , where N classes are selected from
the meta-train set, and then k observations are selected from
each of these classes. To make predictions about a new test
data point, Xquery

j ∈ Dquery
j , we produce a mapping function

f (·) that takes as input Dsupport
j and Xquery

j to produce
the label ŷquery

j = f (Dsupport , Xquery
j ; θ). Hyper-parameter

selection is performed by using Dmeta−val . Generalization
performance of the meta-learner is then evaluated on the
Dmeta−test [27].

Fig. 1 shows a N = 5-way k = 1-shot classification
task, where inside each purple box is a separate dataset
T j consisting of the support-set Dsupport

j (on the Left-Hand
Side (LHS) of the dashed line) and the query-set Dquery

j
(on the Right-Hand Side (RHS) of the dashed line). In the
illustrative example of Fig. 1, we are considering a 5-way
1-shot classification task where for each dataset, we have one
observation from each of the 5 classes (each given a label 1
to 5) in the support-set and 1 observation for evaluation from
the query-set of that specific task. For training the model
Dmeta−train is used, where each Task T j is drawn from p (T )
distribution, while during the test procedure Dmeta−test is
used, which consists of unseen tasks randomly sampled from
a different distribution (i.e., T̃ j ∼ p (T̃ )), where p (T̃ ) is
similar in nature to p (T ). As shown in Fig. 1, task T̃ j is
associated with a dataset D̃ j splitting into two parts, i.e., the
support-set D̃support

j and the query-set D̃query
j (Fig. 1). For

each task, we measure performance on the D̃query
j based on

the knowledge of its cosponsoring D̃support
j .

B. Description of the FS-HGRModel

In few-shot classification, the goal is to reduce the prediction
error on data observations with unknown labels given a
small training set. Inspired by [26], the proposed FS-HGR
network receives as input a sequence of observation-label pairs
Dsupport

j = {(X i , yi )}k×N
i=1 , followed by Dquery

j , which consists
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Fig. 2. For each task Tj , the set of observations and labels are
concatenated together and sequentially fed to the model. The final
observation is concatenated with a null label instead of True label. The
network is supposed to predict the missing label of final observation
based the previous labels that it has seen. In N-way k-shot classification,
N shows the number of classes which are selected from whole set of
labels, and k shows the observations that are sampled from each of
those N classes.

Algorithm 1 The Training Procedure
Input: Dmeta−train , and; mapping function f (·) with para-

meters θ .
Require. p (T ): distribution over tasks
1: while not done do
2: Sample batch of tasks T j ∼ p (T )
3: for all T j do
4: Split T j into Dsupport

j and Dquery
j

5: Predict the missing label of final observation of T j :
ŷquery = f (Dsupport

j ,Dquery
j ; θ)

6: end for
7: Update θ using �T j ∼p (T )LT j (ŷquery, yquery)
8: end while

of an unlabelled observation. The meta-learning model pre-
dicts the label of the final observation based on the previ-
ous labels that it has seen. During the training phase, first,
we select N classes, with k observations per Dsupport

j (in terms
of our running illustrative example, for each task, we have
k = 1 observation from each of the underlying N = 5 classes).
For constructing the Dquery

j , we select an extra observation
from one of those selected classes. Afterwards, each set of
the observations and labels are concatenated together (the final
observation is concatenated with a null label instead of the
ground truth label as it is used for evaluation purposes), and
then all (N × k + 1) are sequentially fed to the network.
Finally, the loss L j is computed between the predicted and
ground truth label of the (N × k + 1)th observation. During
such a training mechanism, the network learns how to encode
the first N × k observations to make a prediction about the
final observation [26]. The training procedure is described in
Algorithm 1 and the schematic of the model is shown in Fig. 2.

C. The Building Modules of the FS-HGR Framework
After completion of the pre-processing step, sEMG signals

acquired from NS number of sensors are segmented by a win-
dow of length of W = 200 ms selected to satisfy the acceptable

delay time [34], i.e., the window length W is required to be
under 300 ms. With a larger window of 300 ms, the results
would likely improve. However, the use of shorter windows
(e.g., 200 ms or 260 ms) provides an extra time (100 ms and
40 ms, respectively) to perform the pre-processing and classi-
fication tasks, which allows staying within the target 300 ms.
A second reason for using a window of duration 200 ms
is to perform a fair comparison with prior works [17]–[22]
reported in Table I. Finally, sliding window with steps of
50 ms is considered for segmentation of the sEMG signals.
By using overlapping, there are more observations for training
the underlying architecture. In [18], [21], a sliding window
with steps of 100 ms was considered for segmentation of
the sEMG signals. On the other hands, in [17], [20] a sliding
window with steps of 10 ms was used. In all these previous
studies, the window size was 200 ms. The larger the overlap-
ping size, the more training data are available, i.e., the more
augmentation. However, extended augmentation increases the
training time. In our work, for providing a fair comparison and
to keep a reasonable training time, we considered a sliding
window with steps of 50 ms, which is approximately between
the values considered in the prior works.

1) The Embedding Module: To develop the FS-HGR for
few-shot learning, we aimed to first extract a 128-dimensional
feature vector from each observation with size of (W =
200 × NS = 12). The “Embedding Module” is, therefore,
used to extract a 128-dimensional feature vector, which is
then provided as input to the proceeding modules within the
proposed architecture.

Adopting a proper Embedding Module has a significant
effect on the results. For validating our claim, therefore,
we utilized four different Embedding Modules:
(i) The first Embedding Module, referred to as the FC

Embedding, consists of three Fully Connected (FC) layers
to output a 128-dimensional feature vector from each
observation. The first FC layer in the FC Embedding
Module is used to increase the input dimensional to
(W × 128). Subsequently, the second (which is fol-
lowed by ReLU activation function) and third FC lay-
ers with output size of 100 and 1, respectively, are
adopted to reduce the sequence length of each observation
to (1 × 128) (Fig. 3(a));

(ii) LSTM Embedding: Fig. 3(b) illustrates the second
Embedding Module, referred to as the LSTM Embedding,
which utilizes a Long Short-Term Memory (LSTM) layer
as its first block followed by two FC layers. The LSTM
layer takes the observation with input size 12 and converts
it to an output with 128 features. Then, the two FC layers
are adopted to reduce the observation’s sequence length
to 1;

(iii) T-Block Embedding I: This third Embedding Module
utilizes the TemporalBlock Module (which will be
described in next sub-section) consisting of f = 128
1D-Convolutions with kernel size kS = 2, and dilation
factor d = 1 as its first block. The TemporalBlock Module
is followed by two FC layers to decrease the input’s
sequence length to 1 as shown in Fig. 3(c), and;
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Fig. 3. The Embedding Module, which converts an input with size
(W×NS), W stands the window length and NS shows the number of sen-
sors (input features), to a 128-dimensional feature vector. (a) FC Embed-
ding Module, which uses three FC layers to outputs a 128-dimensional
feature vector. (b) LSTM Embedding Module, which adopts a LSTM
layer followed by two FC layers. (c) T-Block Embedding Module, which
consists of a Temporal Block with number of filters f = 128, kernel size
kS = 2, and dilation factor d, followed by two FC layers.

(iv) T-Block Embedding II: This embedding is similar in
nature to the one described above in Item (iii), however,
here the goal is to examine the effect of increasing the
size of the receptive field. As such, the fourth Embedding
Module utilizes two TemporalBlock Modules with d = 1
and d = 2. It is noteworthy to mention that the first FC
layer in both LSTM and T-Block Embedding modules are
followed by ReLU activation function.

2) The TemporalBlock Module: Inspired by [10], [12], [26],
[35], [36], the proposed FS-HGR few-shot learning architec-
ture utilizes Dilated Causal 1D-Convolutions over the tempo-
ral dimension. The proposed architecture, therefore, provides
several advantages over Recurrent Neural Networks (RNNs)
such as low memory requirement and faster training. In addi-
tion, and unlike conventional CNNs, by incorporation of
dilated causal convolutions, we increased the receptive field
of the network and as such benefit from the time-series nature
of the input.

As shown in Fig. 4(a), each TemporalBlock consists of
two dilated causal 1D-convolutions, each with dilation fac-
tor d, kernel size kS , and f number of filters. To learn the
complex structure of the underlying data, each dilated causal
1D-convolutions is followed by a ReLU activation function.
Finally, by concatenating the results and the input, the training
speed can be considerably improved. This module takes an
input with size (Cin×l) and output a tensor with size (Cout×l).
Here, l denotes the sequence length and is equal to (N ×k+1).

3) The TemporalConvNet Module: The benefit that comes
with the designed “TemporalConvNet” module is that its
training procedure is much faster and efficient compared to
LSTM or Gated Recurrent Unit (GRU) architectures. In other
words, through this approach one complete sequence can be
processed through only one forward pass, while in RNN-based
models this, typically, needs several passes due to tempo-
rally linear hidden state dependency. The TemporalConvNet

module consists of a series of TemporalBlock modules with
exponentially growing dilation factors d. More specifically,
as shown in Fig. 4(b), for an input with sequence length
l = (N×k+1), the TemporalConvNet consists of Z = ⌈

log2 l
⌉

number of TemporalBlock modules. The dilation factors d for
the TemporalBlock modules are equal to [1, 2, 4, . . . , 2Z−1],
respectively.

4) The Attention Module: The final constituent module
within the proposed FS-HGR architecture is referred to as the
“Attention Module,” included with the objective of pinpointing
a specific type of information within the available (possibly
significantly large) context [37]. Attention mechanism has
been recently utilized [13] within the context of sEMG-based
hand gesture recognition, where the experiments showed atten-
tion’s capability to learn a time-domain representation of mul-
tichannel sEMG data. By integrating the TemporalConvNet,
described above, and the Attention Module, essentially we
provided the FS-HGR architecture with the capability to access
the past experience without any limitations on the size of
experience that can be used effectively. Furthermore, in the
FS-HGR framework we used the Attention Module at different
stages to provide the model with the ability to learn how
to identify and select pieces of useful information and its
appropriate representation from its experience.

As shown in Fig.4(c), to get queries, keys, and values, three
linear transformations are applied to the input. The attention
mechanism then compares queries to each of the key values
with a dot-product, scaled by

√
dk , which results compatibility

scores. To obtain attention distribution over the values, softmax
function is applied to the scores. Then, we computed the
weighted average of the values, weighted by the attention
distribution. In practice, the keys, values, and queries are
packed together into matrices K , V , and Q, respectively. The
matrix of outputs is obtained as follows:

Attention( Q, K , V ) = softmax(
Q K T

√
dk

)V , (2)

where dk stands for length of the key vector in matrix K .
Then, the results and inputs are concatenated together. This
completes description of the modules incorporated to construct
the proposed FS-HGR framework.

D. The Architecture

The overall structure of the proposed FS-HGR architecture
consists of four Attention modules, where the first three
ones are followed by a TemporalConvNet module. The final
Attention module is followed by a FC layer to produce
the label of the final observation in each task T j . More
specifically, after feeding each observation with size (W × NS)
to an Embedding Module, we obtained a 128-dimensional
feature vector (Fig. 3). Then, for constructing each task T j

with sequence length l (Fig. 2), the set of observations (each
observation is converted to a 128-dimensional feature vector)
and labels are concatenated. The final observation in the
sequence is concatenated with a null label instead of a True
label. The network is supposed to predict the missing label
of the final observation based on the previous labels that it
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Fig. 4. (a) The TemporalBlock Module, which consists of f Dilated Causal 1D-Convolutions with dilation factor d and kernel size kS. This module
converts an input with Cin features to an output with Cout features. The sequence length of the input l is equal to (N × k + 1), which N shows
the number of classes and k denotes the number of observations of each class. (b) The TemporalConvNet Module, which consists of a series
of TemporalBlock modules (green ones). The kernel size of each TemporalBlock Module is equal to 2; however, their dilation factor d increases
exponentially. (c) The Attention Module, which consists of three FC layers with output size dk, dk, and dv, respectively, to produce matrix Q,
K , and V . (d) The Architecture, consisting of three TemporalConvNet modules (yellow ones), and four Attention modules (purple ones). Here,
128 denotes the number of filters f in Dilated 1D-Convolutions. The architecture is supposed to predict the missing label of the (N × k + 1)th

observation in each task Tj .

has seen. In summary, to perform the hand gesture recognition
task, the FS-HGR framework is constructed based on different
modules as shown in Fig. 4(d).

V. EXPERIMENTS AND RESULTS

In this section, we describe a comprehensive set of
experiments to analyse and evaluate the proposed FS-HGR
framework. At stated previously, in few-shot classification,
we would like to classify inputs in N classes when we have just
k observations per class. More specifically, for N-way k-shot
classification, to construct each Task T j = (Dsupport

j ,Dquery
j ),

for (1 ≤ j ≤ NTasks), first, we randomly select N classes
from the total number of N available classes in the meta-set
(N<<N ). Then, we select k observations from each of those
selected N classes. These k observations together constitute the
support-set Dsupport

j . An additional observation is randomly
selected to form the query-set Dquery

j . In the experiments,
there are a total of N = 49 classes in the meta-set, each
class corresponding to a specific hand gesture. For example,
consider the N = 10-way k = 5-shot classification scenario.
To construct each Task, we randomly select N = 10 out
of the N = 49 available classes and then from each class
randomly select k = 5 observations to form the support-set
(Dsupport

j ) for the j th Task. Additionally, one extra observation
is randomly selected from one of the N = 10 classes to form
the query-set (Dquery

j ) for the j th Task. In the N = 10-way
k = 5-shot classification scenario, therefore, each task consists

of N × k + 1 = 51 number of observations selected ran-
domly. In a training experiment, we consider 10, 000 iterations
per epochs. Therefore, with a batch-size of 64, we create
640, 000 tasks per epoch. We consider 25 epochs for training.
As a final note, within the few-shot learning context, it is
common to report the results based on different values of N
and k. In the experiments, we followed the common practice
of using N = 5 and N = 10 together with k = 1 and
k = 5. By increasing the number of classes (N) in each
Task T j , the classification accuracy will decrease. At the same
time, by increasing the number of observations per class (k),
the classification accuracy is expected to improve as there are
more observations from each of the underlying N classes.

In the following, we present three evaluation scenarios.
In all experiments, Adam optimizer was used for training
purposes with learning rate of 0.0001. Different models
were trained with a mini-batch size of 64 except in 10-way
5-shot classification where mini-batch size of 32 was used.
For measuring the classification performance, the loss L j was
computed between the predicted and ground truth label of
(N × k + 1)th observation in each task T j . The average loss
was computed using Cross-entropy loss. Finally, the average
accuracy is reported on the (N × k + 1)th observation.

Experiment 1: Classification on New-Repetitions With
Few-Shot Observation: The first experiment shows that our
proposed network is applicable when we had new repetitions
with few-shot observation on the target. We evaluated our
proposed architecture when Dmeta−train consisted of the 2/3
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TABLE I
EXPERIMENT 1: 5-WAY, 1-SHOT, 5-SHOT, AND 10-SHOT

CLASSIFICATION ACCURACIES ON new repetitions with few-shot
observation. THE CLASSIFICATION ON NEW REPETITIONS WITH

FEW-SHOT OBSERVATION ARE PERFORMED BY USING

META-SUPERVISED LEARNING APPROACH. THIS TABLE ALSO SHOWS

A COMPARISON BETWEEN OUR METHODOLOGY (META-SUPERVISED)
LEARNING AND PREVIOUS WORKS WHERE SUPERVISED LEARNING

METHODOLOGY, i.e., DNN AND CLASSICAL ML METHODS ARE USED

TABLE II
TRAIN AND TEST TIME FOR ONE TASK Tj USING 5-WAY 1-SHOT,

5-WAY 5-SHOT, AND 5-WAY 10-SHOT FOR EXPERIMENT 1

of the gesture trials of each subject (following [19], repeti-
tions 1, 3, 4, and 6 repetitions were used for training purposes),
and Dmeta−test consisted of the remaining repetitions. Table I
shows our results when using few-shot classification as well as
previous works which used supervised learning. From Table I,
it can be observed that the proposed FS-HGR architecture
outperformed existing methodologies when evaluated based on
the same setting, i.e., 89.70% best accuracy with the FS-HGR
compared to 83.70% best accuracy achieved by the state-of-
the-art.

Reference [19], used different classifiers such as K-Nearest
Neighbors (K-NN), SVM, RF, and LDA. The average classi-
fication accuracy obtained using all the classical methods on
the DB2 dataset is 60.28±6.51%. They show that the highest
average classification accuracy is 75.27±7.89%, obtained with
RF. Reference [21] showed that the average accuracy of SVM
on all movement types is 77.44%. Finally, in Reference [6],
the best accuracy is reported with RF classifier, which is
72.25 ± 7.13%. It can be seen from Table I that DNN-based
methods provide improved performance.

The average of training and testing times for one Task
T j using 1-shot, 5-shot, and 10-shot for Experiment 1 are
summarized in Table II. It is noteworthy to say that the time
of processing depends on the hardware. In this work, we used
a “NVIDIA’s GeForce GTX 1080 Ti Graphic Cards”.

Experiments 2: Classification on New-Subject With
Few-Shot Observation: In this scenario, like the previous
experiment, the second Ninapro database DB2 was utilized.
It consists of 49 gestures plus rest from 40 intact-limb subjects.

TABLE III
EXPERIMENT 2(a): 5-WAY AND 10-WAY, 1-SHOT AND 5-SHOT

CLASSIFICATION ACCURACIES BASED ON new subjects with few-shot
observation. IN THIS EXPERIMENT, WE ADOPTED FOUR DIFFERENT

EMBEDDING MODULES: (i) FC EMBEDDING; (ii) LSTM EMBEDDING;
(iii) T-BLOCK EMBEDDING I, AND; (iv) T-BLOCK EMBEDDING II

TABLE IV
COMPARISON OF 5-WAY, 1-SHOT AND 5-SHOT CLASSIFICATION

ACCURACIES BETWEEN THE EXPERIMENT 2(a) AND 2(b) BASED

ON new subjects with few-shot observation

In this experiment, to validate our claim that the proposed
FS-HGR architecture can classify hand gestures of new sub-
jects just by training with a few observations, we split the
DB2 database into Dmeta−train , Dmeta−val , and Dmeta−test

such that the subjects in these meta-sets are completely differ-
ent (i.e., there is no overlap between the meta-sets). In other
words, Dmeta−train consists of the first 27 subjects, while
Dmeta−val includes the sEMG signals from the 28th subject to
32ed subject (5 subjects). Finally, we evaluated our model on
the remaining subjects, i.e., Dmeta−test consists of the final 8
subjects in the DB2 database.

It is noteworthy to mention that the proposed network is
trained once and shared across all participants (which is differ-
ent from previous works that trained the model separately for
each participant). For constructing task T j , however, we can
feed data in two different approaches:

• Experiment 2(a): In the first approach, for constructing
Dsupport

j for each task T j , we selected all of the N classes
from a specific user, which was randomly selected from
the existing participants. This is the more realistic and
practical scenario.

• Experiment 2(b): In the second approach, for constructing
Dsupport

j , N classes were selected from different partici-
pants.

Table III shows few-shot classification accuracies for Exper-
iment 2(a) based on four different embedding modules. The
adaptive learning method of the proposed FS-HGR focuses
on transfer learning information between a source and a
target domain despite the existence of a distribution mismatch
between Dmeta−train and Dmeta−test . The results reported
in Table III show that the proposed mechanism achieves
acceptable results despite the fact that the sEMG signals are
user-dependent. Table IV shows a comparison of 5-way classi-
fication accuracies between Experiments 2(a) and 2(b). As was
it expected, Experiment 2(b) achieved better results, which
is due to the presence of variations among the probability
distribution of sEMG signals obtained from different subjects.
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TABLE V
5-WAY, 1-SHOT AND 5-SHOT CLASSIFICATION ACCURACIES BASED ON

new subjects with few-shot observation (EXPERIMENT 2(a)). IN THIS

EXPERIMENT, WE OBTAINED THE ACCURACY FOR EACH SUBJECT

IN THE TEST SET USING T-BLOCK EMBEDDING II. THE WILCOXON

SIGNED RANK TEST IS APPLIED TO COMPARE THE DIFFERENT

SHOTS (e.g., 1-SHOT AND 5-SHOT). NULL HYPOTHESIS IS

REJECTED WHEN H0 = 0 (p < 0.05)

TABLE VI
EXPERIMENT 3: 5-WAY, 1-SHOT, 5-SHOT, AND 10-SHOT

CLASSIFICATION ACCURACIES BASED ON new
gesture with few-shot observation

However, this is not a practical setting as in practice all of
the N classes in Dsupport

j comes from the same user (i.e.,
Experiment 2(a)).

It is worth mentioning that Experiment 2(a) is the more real-
istic and challenging one, while Experiment 2(b) is included
for completeness and comparison purposes. The rational
behind Experiment 2(a) is that a prosthesis hand will be
utilized by a user, therefore, the model should be able to distin-
guish different hand movements of this specific person. In this
sense, Experiment 2(a) is more realistic than Experiment 2(b).
In Experiment 2(a), for constructing Dsupport

j , we selected
all the N classes from a specific user, which was randomly
selected from the participants. However, in Experiment 2(b),
for constructing Dsupport

j , N classes were selected from differ-
ent participants, which implies that observations were obtained
from different distributions/people, so the model would more
easily discriminate these observations. For Experiment 2(a),
we have conducted a statistical hypothesis test to evaluate if
there is significant evidence to reject the hypothesis that lower
and higher shots have similar accuracies. We followed [29]
and used the Wilcoxon signed-rank test [38] considering each
participant as a separate dataset. Table V compares accuracy
for each subject in the test set in Experiment 2(a) for 5-way
1-shot and 5-way 5-shot. The difference in accuracy between
1 and 5 shots was considered statistically significant by the
Wilcoxon signed rank test as the (p < 0.05).

Experiment 3: Classification on New-Gestures With
Few-Shot Observations: In this scenario, the goal is evaluating
the capability of the proposed FS-HGR architecture when the
target consists of solely out-of-sample gestures (i.e., new ges-

tures with few-shot observation). Performing well in this task
allows the model to evaluate new observations, exactly one
per novel hand gesture class. In this experiment, the Ninapro
database DB2 was used. The DB2 dataset includes three sets
of exercises denoted by Exercise B , C , and D. Exercise B
includes 8 isometric and isotonic hand configurations and
9 basic movements of the wrist; Exercise C consists of
23 grasping and functional movements; and finally, Exercise D
consists of 9 force patterns. For training purposes, Dmeta−train

consisted of the first 34 gestures of each user, which is equal to
approximately 68% of the total gestures. Dmeta−val included 6
gestures or 12% of the total gestures. The remaining gestures
(9 gestures), were used in Dmeta−test for evaluation purposes.
Exercises B and C were, therefore, used for training and
validation, and Exercises D, with different gestures, were
used for test purposes. Table VI shows the efficiency of the
proposed model when we had out-of-sample gestures in the
target. The model predicted unknown class distributions in
scenarios where few observations from the target distribution
were available.

VI. CONCLUSION

We proposed a novel few-shot learning recognition approach
for the task of hand gesture recognition via sEMG signals.
The proposed FS-HGR framework could quickly generalize
after seeing very few observations from each class. This is
achieved by exploiting the knowledge gathered from previous
experiences to accelerate the learning process performed by
a new subject. The experience gained over several source
subjects is leveraged to reduce the training time of a new target
user. In this way the learning process does not start every time
from the beginning, and instead refines. The ability to learn
quickly based on a few observations is a key characteristic
of the proposed FS-HGR framework that distinguishes this
novel architecture from its previous counterparts. A second
contribution of the paper is its capability to address the
user-dependent nature of the sEMG signals. The proposed
FS-HGR framework transfers information between a source
and a target domain despite the existence of a distribution
mismatch among them. This would dramatically reduce the
number of required cumbersome training sessions leading
to a drastic reduction in functional prosthesis abandonment.
In the paper, we have shown that for a new user/gesture when
the distributions of sEMG signals is different from that of the
training data, the model can still classify the hand movements.
This is because the knowledge gained during the training phase
is leveraged for the new users/gestures. Other factors such as
time variability between days, and type of amputations affect
the distributions of sEMG signals. These factors were not
investigated in the proposed architecture while are relevant
to study in future research. A third factor that can affect
distributions of sEMG signals is misplacement or displacement
of sensors (electrode locations/shift), which is an open topic
of research that has not been addressed in this paper. This can
be applied to any existing research focusing on the processing
of sEMG. We believe that the proposed approach has the
potential to also address this problem, however, we have not
completed our experiments and thus cannot strongly mention
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Fig. 5. (a) Flowchart for preparation of a batch of tasks for Experiment 2. (b) Flowchart for training, validation, and test steps of Experiment 2. Each
purple box in (b) represents one or more repetitions of (a).

that. We consider this as a limitation for our current study
and a future research direction. As a final note, we would like
to mention that multi-channel EMG recording has become a
common trend and there are commercialized wearable sensors.
It is correct that the higher number of sensors results in higher
complexity of electronics, but thanks to recent advances in
the area of wearable sensors, this has been achieved and is
progressing.

APPENDIX

A. Flowchart of the FS-HGR Framework

We have included a flowchart (Fig. 5) for the proposed
method applied to Experiment 2. Experiments 1 and 3 are
similar in nature to Experiment 2. Fig. 5(a) shows the prepara-
tion of a batch of tasks for Experiment 2(a) and 2(b). Fig. 5(b)
shows the training, validation, and test steps.

B. Comparison with State-of-Art TL-based Model

Moreover, we have compared the proposed FS-HGR frame-
work with the TL technique of Reference [29] for cross-
user scenarios. To provide a fair comparison, we have used
the same public dataset utilized in [29], i.e., Ninapro DB5.
The Ninapro DB5 [6] was recorded with the Myo Armband,
and contains data from 10 healthy participants performing
a total of 53 movements (rest included) divided into three
exercise sets. The performance of their proposed TL-based

architecture is investigated based on the second exercise set of
DB5, which contains 18 (rest included) number of gestures.
More specifically, in their proposed approach, the pre-training
for each participant was performed by employing the training
sets of the remaining nine participants. Finally, the average
accuracy over the 10 participants was reported. Furthermore,
the data is first separated by applying sliding windows of
52 samples (260 ms) with an overlap of 235 ms. We followed
the same criteria and obtained the average accuracy over the
10 participants for cross-user model (Experiment 2(a)) for
5-way 5-shot and 5-way 10-shot classifications. In addition
to the results of Reference [29], we have included results
of cross-user models based on classical hand-crafted features
developed in References [6], [23], [39]–[41], coupled with
traditional classifiers (RF, and LDA). Results are reported in
Table VII. It is observed that the proposed FS-HGR method
outperforms classical and state-of-the-art TL-based models
over this cross-user scenario.

C. Discussions on the Training Time of the
FS-HGR Framework

Finally, it is worth noting that adoption of few-shot learning
within the FS-HGR framework has resulted in reduction in
the required training time for users. In previous studies, such
as [17]–[22], for each user’s gesture, 4 repetitions, each one
lasting 5 seconds, were required for calibrating (fine-tuning)
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TABLE VII
COMPARISON OF EXPERIMENT 2(A) ON NINAPRODB5 DATABASE BETWEEN CLASSICAL METHODS [6], [23], [39]–[41],

DNN METHODS [29], AND OUR PROPOSED FEW-SHOT LEARNING APPROACH (FS-HGR)

TABLE VIII
AVERAGE PREDICTION ACCURACY BY THE NETWORK FOR EACH CLASS FOR 5-WAY, 1-SHOT, 5-SHOT, AND 10-SHOT CLASSIFICATION

ACCURACIES ON new repetitions with few-shot observation. IN THIS EXPERIMENT, WE ADOPTED T-BLOCK EMBEDDING II

the model for a new user. Therefore, for a dataset consisting of
49 gestures, 49×4×5 = 980 seconds of data must be collected
to calibrate (fine-tune) the model for a new user. On the other
hand, traditional hand-crafted methods, such as the Canonical
Correlation Analysis (CCA)-based approach proposed in [42],
require 3-to-5 seconds of EMG data per movement class
(determined empirically) for calibration. While this calibra-
tion set is much smaller than the training set previously
used [17]–[22], it is developed for a smaller number of
subjects. In the proposed FS-HGR approach, however, the
model is tuned to a new user by seeing a small number of
observations (each of duration 200 ms). For a new user in
a N-way k-shot classification problem, we just need to see
k-shot from each gesture. Each shot is a window of size
200 ms. For example, in 5-way 1-shot scenario, the duration
of the required data from a new user for calibration (fine-
tuning) is 49×200 ms = 9.8 seconds (which is 980/9.8 = 100
times less than in previous methods). It is worth noting that
increasing the number of shots (while improving the accuracy)
increases the required number of training observations. For
Instance, in a 5-way 5-shot problem, the 5- shots (windows of
length 200 ms) come from one repetition, i.e., for each new
user only one repetition from each class, lasting 1 second, is
required. In other words, we do not need to collect data for the
same number of repetitions as in previous works. Therefore,
the total duration of the required data from a new user would
be 49 × 5 × 200 ms = 49 seconds, which is still much

lower than conventional deep learning-based approaches. In a
practical setting, the number of utilized shots can be adjusted
based on the required level of accuracy and training time,
which provides flexibility for practical use.

D. The Average Prediction Accuracy for Each Class

Moreover, Table VIII shows the average prediction accuracy
by the network for each class for 5-way, 1-shot, 5-shot,
and 10-shot classification accuracies on new repetitions with
few-shot observation for T-Block Embedding II.
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