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Abstract— Alcohol Use Disorder (AUD) is a chronic
relapsing brain disease characterized by excessive alcohol
use, loss of control over alcohol intake, and negative emo-
tional states under no alcohol consumption. The key factor
in successful treatment of AUD is the accurate diagnosis
for better medical and therapy management. Conventionally,
for individuals to be diagnosed with AUD, certain criteria as
outlined in the Diagnostic and Statistical Manual of Mental
Disorders (DSM) should be met. However, this process
is subjective in nature and could be misleading due to
memory problems and dishonesty of some AUD patients.
In this paper, an assessment scheme for objective diag-
nosis of AUD is proposed. For this purpose, EEG record-
ing of 31 healthy controls and 31 AUD patients are used
for the calculation of effective connectivity (EC) between
the various regions of the brain Default Mode Network
(DMN). The EC is estimated using partial directed coher-
ence (PDC) which are then used as input to a 3D Convo-
lutional Neural Network (CNN) for binary classification of
AUD cases. Using 5-fold cross validation, the classification
of AUD vs. HC effective connectivity matrices using the
proposed 3D-CNN gives an accuracy of 87.85 ± 4.64 %. For
further validation, 32 and 30 subjects are randomly selected
for training and testing, respectively, giving 100% correct
classification of all the testing subjects.

Index Terms— 3D Convolutional neural networks, alcohol
use disorder, alcoholism, default mode network, brain effec-
tive connectivity, deep learning, multivariate autoregressive
models, partial directed coherence.

I. INTRODUCTION

ACCORDING to the reports published by the
LANCET [1] and NATURE [2], about 5% of global
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burden of diseases is attributed to excessive alcohol
consumption and corresponds to 6% of total deaths that occur
annually. Besides, it has been established in [3], that the
adverse effects of alcohol far exceed those due to illicit drugs.
An alcohol-addict may be regarded as a heavy drinker who
consumes ethanol >100 g/day for males and >60 g/day for
females [4]. In European countries, this population accounts
for 0.8% of people aged between 15 to 65 years old, with
around half diagnosed with liver cirrhosis and shorten life
expectancy by 25 to 31 years [2]. Long-term excessive
drinking can be damaging to human brain as it can diminish
the brain’s gray and white matter [5]. Similarly, in short-term,
alcohol may debilitate many brain functionalities which may
result in issues like memory loss and confabulation, black
out, recklessness, enfeebled decision making, diminished
perspicacity, visuo-spatial enervation, Wernicke–Korsakoff
syndromes and attention deficiency [6].

Grant et.al analyzed data collected by national epi-
demiologic survey on alcohol and related conditions III
(NESARC-III) and found that only 19.8% of AUD patients opt
for some treatment in their lifetime [7]. Additionally, the time
between filing a diagnostic criterion and receiving a proper
treatment is also very long. This lag may be attributed to the
improper diagnosis, lack of availability of effective treatment
as well as patient’s acceptance. Although some behavioral
treatments and therapies for alcoholism are available but their
success rate is still moderate and largely depends on timely
diagnosis of AUD which is a very challenging task [8].
The American Psychiatric Association (APA) issued the 5th
edition of the Diagnostic and Statistical Manual of Mental
Disorders (DSM–5) in May 2013, which replaced the earlier
criteria of identifying alcohol dependence of a person as
described in DSM-4 and combined alcohol abuse and alcohol
dependence in only one category of alcohol use disorder
(AUD). A person can be diagnosed as an AUD patient (AUD-
P) if meeting any two of the 11 criteria as described in
DSM-5 during the same 12-month period. These criteria are
based on the amount, frequency and control of alcohol con-
sumption, continued intake even after having adverse effects
on health as well as social relations along with withdrawal
symptoms [9].

Generally, the evaluation of AUD is performed using ques-
tionnaires such as AUDIT (Alcohol Use Disorder Identi-
fication Test) [10], CAGE (Cutting down, Annoyance by
criticism, Guilty feeling, and Eye-openers questions) [11] etc.
However, due to the subjectivity of these techniques, it may
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not provide factual indication of an individual’s condition.
For example, many AUD patients are less truthful, some are
unable to precisely define a measure of their alcohol consump-
tion while others are in a state of denial [12]–[14]. Hence,
there is a possibility of misjudged assessments when using
questionnaire-based techniques in assessing accurate measure
of alcohol consumption. Given the fact that the conventional
screening methods for AUD-P are subjective and manual, there
is a need for more objective methods for automatic screening
of AUD [15]–[17].

It is established that excessive alcohol consumption tends
to alter human brain’s structure and functions. For instance,
alcohol acts on multiple ionotropic and metabotropic receptors
of inhibitory GABA and excitatory glutamate neurotransmit-
ters [18]. Apart from this, it also affects dopamine which
is considered to be a vital neurotransmitter that regulates
human’s pleasure experience [18]. Although, alcohol addiction
could be at least in part due to this imbalance between
inhibitory and excitatory system along with damage of neu-
ronal synapses [15], [19], the actual underlying mechanism is
still unknown [2].

Neuroimaging modalities such as electroencephalogra-
phy (EEG) records the synchronous activities of neurons over
the cortical area of the brain. The recorded data can be used for
development of objective diagnosis of various brain diseases
and disorders, specifically, AUD [15]. Recently, machine
learning techniques including but not limited to support vector
machines (SVMs) and neural network (NN) are used for
diagnosis of AUD either directly from EEG signals or from its
extracted features such as wavelet transform includes power
spectrum of Haar-mother wavelet coefficients [20], energy
of coefficients obtained from wavelet packet decomposition
(WPD) [21], [22], power spectrum of five different frequency
bands (delta, theta, alpha, beta and gamma) [23] etc. Notably,
results of the study in [23], showed increase in power of theta
and delta rhythms in AUD patients, while there is decrease
in power of alpha rhythms normal EEG signal.

A classification algorithm based on machine learning tech-
niques using quantitative electroencephalography features,
such as absolute power and relative power was proposed
in [24] for automatic diagnosis of AUD. In [25], autocor-
relation reflection coefficients have been used as features to
discriminate between EEG recorded from AUD-P and healthy
subjects. Another scheme to categorize AUD-P and normal
EEG signals, on the basis of features extracted from EEG
visual evoked potential and trained on a neural network, was
proposed in [26]. In [27], Palaniappan proposed a method
that uses low, mid and high gamma bands of EEG signals
to distinguish chronic AUD-P EEG signals from non-chronic
AUD-P signals. The later trend of EEG based classification
was using features including signals relative energy [22],
entropy [28], and time–frequency images.

Recently, AUD clinical symptoms have been linked with
various EEG features such as synchronization likelihood
(SL), inter-hemispheric coherence and phase delays [29].
Based on these features, functional influence among different
brain regions were used in [15], [30], [31] to find differ-
ences between AUD-P and healthy control (HC) subjects.

A significant difference has been observed in the neu-
ronal synchronization amongst AUD-P and healthy controls.
However, contradictory findings have also been reported
in terms of inter-hemisperic coherence where significant
reduction in EEG power, phase synchronization and coher-
ence in AUD-P as compared with HC were observed [32].
In contrast, Michael et al. in [33] reported an increase in
inter-hemispheric coherence. Currently, different classification
techniques are being used to automatically diagnose alco-
holism. W. Mumtaz et al. used machine learning on quanti-
tative electroencephalography (QEEG) features for automatic
classification of AUD-P disorders [24]. N Sriraam in [34],
proposed a neural network based on spectral entropy of EEG
signals to identify AUD-P. A detailed review on EEG based
diagnosis of alcoholism is available in [35], [36]. For the detec-
tion of alcoholism, usage of deep learning techniques is not
widely available in literature. In 2019, a combination of long
short-term memory (LSTM) and SVM is used for training over
EEG peak visualization method (PVM) from alcoholic and
healthy control data [37]. Here, LSTM first extract the features
and then trained on SVM producing 90.97% classification
accuracy. Recently, a simple LSTM network is used for the
classification of alcoholic and non-alcoholic subjects using raw
EEG signal [38]. The authors claimed that they are the first to
use a deep learning model for the detection of alcoholism and
achieved a classification accuracy of 93%. However, regardless
of selected features and classification techniques, none of the
proposed methods have achieved perfect diagnosis of AUD.

Furthermore, various studies in [29], [39]–[41] have shown
significant variation in different features obtained from
resting-state EEG of AUD and healthy subjects. Analysis of
resting-state EEG may be helpful in monitoring different brain
disorders [42] as it may be correlated with maintenance and
stability of brain’s functional organization [43], [44]. In terms
of connectivity, there are several key resting-state networks
including the default mode network (DMN) and networks
of different components related to sensory, motor, executive
control, visual components, frontal, parietal, auditory, temporal
and parietal. Amongst these networks, DMN is the highly
active network [43] as compared to others which makes
DMN as the key contributor in maintaining brain’s functional
organization.

This paper presents a new biomarker that can potentially be
used to indicate the physiological changes occurring in human
brain due to excessive alcohol consumption. These variations
are observed as a result of exchanged causal effects between
different DMN regions. The causal effect of one region on
another is defined as brain effective connectivity. The effective
connections from all over the DMN regions are fed into a
3D Convolutional Neural Network (CNN) for classification of
AUD-P vs. HC subjects.

The rest of this paper is structured as follows: Section II
describes the resting-state network specifically, the DMN
component in detail and highlights various regions involved
in DMN and their mapping to EEG electrodes. Subsequently
Section III defines the principles of effective connectivity.
Section IV covers the description of Partial Directed Coher-
ence(PDC) algorithm for estimation of EC. It further describes
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Fig. 1. DMN regions’ activation in axial and sagittal view (reproduced
from [45]).

TABLE I
BRODMANN AREAS REPRESENTING DMN REGIONS AND

CORRESPONDING EEG ELECTRODES

the experimental and data acquisition set-up along with the
code implementation. Section V presents the results and dis-
cussion. Finally, section VI concludes the paper.

II. DEFAULT MODE NETWORK

Amongst the Resting-State Networks (RSNs), Default Mode
Network (DMN) is often selected for various research works
on neurological disorders [46]–[50]. The DMN is identifiable
in three regions: (1) precuneus/posterior cingulate, (2) lateral
parietal cortex (LPC), and (3) mesial prefrontal cortex (MPC)
as shown in Fig. 1. The Brodmann areas for DMN regions
along with the nearest electrodes for EEG recording [51], [52]
are shown in Table I.

It has been observed that DMN is largely active during
resting-state and relatively deactivated during attention-driven
tasks such as those requiring frequent use of working memory
and visuo-spatial abilities [47], [53]. This means that the
activation process of the DMN regions tends to be nega-
tively correlated with regions of elevated activation during
tasks [54]–[56]. However, recent studies have also found
that DMN exhibits an increased activation when performing
particular tasks. For example, Hampson et al. in [57] have
shown functional connections between precuneus and the
mesial frontal gyrus during resting-state as well as during an

active-working memory task. This suggests that DMN is not
completely inactive during tasks rather it presumably regulates
the performance of active tasks [57]. Consequently, a signif-
icant relationship between DMN connectivity and behavior
suggests that the study of functional or effective connectivity
among the DMN regions might be a valuable tool for investi-
gating their deviation from normal conditions. Clinically, this
means that if the effective or functional connectivity between
DMN regions is used as a biomarker for a particular cognitive
disability, diagnosis of different neurological disorders may
be performed based on the existence and strength of this
connectivity.

Studies related to connectivity between the DMN com-
ponents have demonstrated that there is strong correlation
activation between precuneus or posterior cingulate with the
MPC and the lateral parietal region [46], [58]. The precuneus
or posterior cingulate plays an essential role since it is directly
related to other nodes in the network. Accordingly, it is
presumed that precuneus also regulates intrinsic connectivity
across these regions. This might be due to the fact that it
is amongst the most intensively interconnected regions in
the brain [59], [60]. Study by Bukner et al. in [46], has
supported this interpretation which viewed the precuneus as
an essential component for introspective processes as well as
for awareness.

III. EFFECTIVE CONNECTIVITY

Brain networks are formed when neurons from different
brain regions interact dynamically by regulating and synchro-
nizing their rhythms with one another [61]. The analysis of this
interaction is possible either through functional- or effective
connectivity techniques. Even though functional connectiv-
ity (FC) is capable of determining significant connections effi-
ciently by using cross correlation and mutual information [62],
yet, it does not have the ability to identify the direction of
influence. This implies that for two brain regions A and B,
FC can only provide connections between them, however,
any amount of information sent from A to B or vice versa
cannot be determined. Moreover, it also incurs third-party
effects, i.e. if a region C is affecting region A and B while
there is no information transfer happening between A and B
themselves, then FC would not only display it as a connection
between C & A and C & B but would also show connection
between A & B.

Nevertheless, these constraints in FC can be overcome by
considering causal interactions between brain regions in lieu of
cross-correlation. Such an interaction is referred to as effective
connectivity (EC) [63]. It determines the causal influence that
one brain region exerts over another as well as provides
the direction of influence [64]. Granger causality (GC) is
the conventional technique for calculating EC. It states that:
A signal (Sig-1) is said to cause another signal (Sig-2) if
the latter can be successfully predicted from past values of
Sig-1 better than the prediction of Sig-2 from its own past
values alone [64]. GC was initially used for prediction of
causality of bivariate signals in time domain. However, in [65]
Gweke extended its application in frequency domain wherein
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he demonstrated how various EEG frequency bands interacted
and analysis of coupling between these bands was also made
possible. This work holds utmost bio-medical significance and
later, GC was altered to fit multivariate signal analysis [65],
[66] as well. Presently, directed transfer function (DTF) [67]
and PDC [68] techniques are two frequently used variants of
GC. In this study, EC has been estimated using PDC since
it can efficiently determine connectivity between two brain
regions as well as eliminates the third-party effect. PDC is
described in the Section IV-A.

IV. MATERIALS AND METHODS

A. Partial Directed Coherence (PDC)

The general pipeline to automatically classify and diagnose
AUD using EC of EEG signals via 3D CNN is shown in
Fig. 2. Firstly, signals from 19 electrodes undergo the cleaning
process via automatic artefact removal which is described in
Section IV-E. Subsequently, ST continuous segments of length
2-sec are extracted for each subject to calculate PDC. It is
important to mention here that the brain is highly dynamic in
nature, and, therefore, it is critical to decide appropriate length
of the EEG segments to ensure reliable calculation of multi-
variate autoregressive model (MVAR) modelling parameters.
Usually, to ensure the stationarity of an EEG signal, segments
of length less than 4-sec are used [69], [70]. In this study,
PDC is estimated using different durations such as 2, 3, 4,
5 and 6 seconds to observe the effect of signal length on
AUD diagnosis, however a continuous 2-sec segments were
selected for the calculation of one PDC matrix due to the
fact that it gives large number of samples for the training
and testing of 3D-CNN. Subsequently, for each subject, ST

connectivity matrices of 19 channels were obtained. This PDC
computation will give a 19×19×64 connectivity matrix at the
output which will then be reduced to 6× 6× 64 connectivity
matrix by DMN extraction. The concept of PDC, and the
methodology adopted to compute EC as well as the training
and testing of 3D-CNN for classification of AUD-P vs. HC are
explained in the subsequent sections. MATLAB [71] is used
as the programming environment in this study.

PDC is a frequency domain EC technique which is based
on the MVAR modelling and partial coherence. Consider a set
of κ simultaneously observed time series

Y (t) = [y1(t), y2(t), . . . , yκ(t)]T , (1)

denoted by an autoregressive model of order ρ as given in (2)

y(t) =
ρ�
τ=1

Aτy(t − τ )+ ε(t). (2)

where � (t) = �
�1 (t) · · · �κ (t)

�T is zero-mean multivariate
gaussian white process and Aτ is a κ × κ-coefficient matrix
At time lag τ given by

Aτ =
⎡
⎢⎣

a11 (τ ) · · · a1κ (τ )
...

. . .
...

aκ1 (τ ) · · · aκκ (τ )

⎤
⎥⎦ , (3)

Algorithm 1 DMN Connectivity Extraction
ψDM N ← [0]6×6×64
ψAL L ← [P DC]19×19×64
E L ECAL L ← 19− electrode all combinations
E L ECDM N ← Electrodes �→ DM N regions
for all Rows(R) of ψAL L do

for all Columns(C) of ψAL L do
if E L ECAL L (RC) ∈ E L ECDM N then
ψDM N (R1,C1)← ψAL L (R,C)
R1← R1+ 1
C1← C1+ 1

else
next i teration

end if
end for

end for

The MVAR coefficient aμν represents the effect of
time-series signal yν(t − τ ) on yμ(t).

If A( f ) is the frequency domain equivalent of coefficient
matrix Aτ , then the Fourier transform of aμν(τ ) can be
obtained as,

aμν( f ) =
ρ�
τ=1

aμν (τ ) e
−i

�
2π
ρ

�
τ f

(4)

where ν is the source and μ is the sink. Thus, the direction of
the influence is μ← ν. Ā( f ) can be obtained by subtracting
A( f ) from κ-dimensional identity matrix I , then the PDC,
denoted by ψμν( f ), from electrode ν to electrode μ, is

ψμν ( f ) = āμν ( f )
ā H
ν ( f ) āν ( f )

, (5)

where āμν ( f ) denotes the μνth elements of matrix, and Ā( f ),
and (.)H represent the conjugate transpose. The strength of
causal influence of electrodes ν over μ is is given by ψμν( f )
at frequency f in a normalized range of 0 to 1. The basic
MATLAB code for the calculation of PDC is available at [72].

B. Effective Connectivity in Default Mode Network

Based on Brodmann areas (BA) as shown in Table I, six
electrodes namely,Pz, Fz, F3, F4, P3, and P4, that constitutes
DMN are selected in order to extract 6 × 6 × 64-DMN
connectivity from 19×19×64-PDC matrices. This procedure
of extraction is shown in Algorithm 1. The algorithm takes
PDC based EC information for 19 channels as the input and
undergoes DMN extraction. This step reduces the size of
the 19 × 19 × 64-connectivity matrix to 6 × 6 × 64. The
reduction is performed to remove all the indirect causal effects
of non-DMN regions over DMN regions. The third dimension
of the EC matrix represents 64-frequency bins equally dividing
the frequency range of 0-40 Hz. Thus, each slice of the 3D
matrix represents the connectivity between the electrodes at
a certain frequency bin. It is noteworthy to mention here
that the presence of various artefacts in EEG signals affects
the availability of 2-sec continuous segments. Consequently,
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Fig. 2. General pipeline for classification of AUD-P vs. HC using DMN EC.

Fig. 3. 3D-CNN architecture for feature extraction and classification of PDC matrices for AUD-P vs. HC. Channel dimensions are represented in
grey colour and 3D dimensions are in black. S = Stride, Conv = Convolution, 3D GAP = 3D global average pooling layer.

the total number of PDC matrices ST varies from subject to
subject.

C. Convolutional Neural Network

As explained in section IV-B, the structure of the matrix
suggests that major information lies in spatial domain instead
of time domain since the subject is in resting-state and the
features should be spatially extracted. Considering CNN is
designed to exploit spatial correlation of a signal, and given
PDC matrices contain information in the 3rd dimension as
well, the use of 3D-CNN architecture allows the full utilization
of the available features in PDC matrices. Figure 3 depicts the
general architecture of our proposed 3D-CNN which includes
3 convolutional layers with batch normalization (BN), a global
average pooling (GAP), a dropout and one fully connected
layer. The Rectified linear unit (ReLU) layer is placed after
each convolution layer as a nonlinear activation function [73].
In the end, binary softmax regression is used with a fully
connected layer for classification.

As shown in Fig. 3, 3 convolution layers (CL) use 15 filters
each, with dimensions of 1× 3× 4, 3× 2× 10 and 1× 1× 4,
respectively. Each CL is followed by a batch normalization
layer (BNL) to reduce the internal covariance shift. This
reduction leads to an improved training speed and lessens

chances of over fitting of the data. The output of BNL is then
mapped to positive real numbers by using ReLU layer which
is used to activate or deactivate a node based on mapped value.
The network architecture along with its configuration and other
trainable parameters of the proposed network are summarized
in Table II.

Mini-batch size of 64 and ADAM optimizer were used for
training of the proposed CNN network. Training parameters
of the proposed network are used at their default values as
follows; The gradient factor is 0.9, squared gradient decay
factor is 0.999, denominator offset for ADAM optimizer is
1× 10−8, gradient threshold is 1 while initial learning rate is
1×10−3, learn rate drop factor and period is set to 0.4 and 5,
respectively. To avoid overfitting the CNN, a constant weight
value of 1×10−5 for L2 regularization and 20% dropout layer
was selected. Lastly, the softmax layer uses cross-entropy (CE)
loss function to classify each input to one of the C mutually
exclusive classes. For N number of samples CE loss function
is given as,

lossC E = −
N�

i=1

C�
j=1

xi j ln yi j , (6)

where xi j indicates the i th sample belongs to the j th class,
and yi j is the output for sample i for class j , i.e., the value



KHAN et al.: EC IN DMN FOR ALCOHOLISM DIAGNOSIS 801

TABLE II
PROPOSED 3D-CNN NETWORK ARCHITECTURE, CONFIGURATION AND TRAINABLE PARAMETERS

from the softmax function. In CE loss function, the probability
of each prediction is compared with the actual class desired
output and a penalty term is added based on the difference
between two values. This will act as a model weights tuner
during training with the goal to minimize this loss for better
training. Training is performed by utilizing a GPU (Nvidia
Quadro K620) for 100 epochs. The total training time is only
about 9.75 min. The proposed 3D-CNN framework can also
be used for other neuroscience applications due to its high
accuracy and fast training time.

D. Study Participants

In this study the EEG data used comprises 31 AUD-P
and 31 HC subjects. The experimental design is approved
by the ethic committee of University Malaya, Malaysia. The
AUD-P are right-handed 25 Males and 6 Females with average
age of 55.2 years and standard deviation of 12.8. Similarly,
the control subjects are age-matched (48 ± 10.3), right-handed
20 Males and 11 Females. The AUD-P subjects are the ones
meeting the DSM-IV criteria for alcohol dependence and
alcohol abuse. All subjects are required to sign consent forms.
Exclusion criteria are either those who are under 18 years of
age, addicted to other substances than alcohol, have medical
and psychiatric problems, are allergic to diazepam, or have
refused to sign consent form.

E. EEG Data Acquisition, Pre-Processing and Artefact
Removal

Data acquisition for all AUD-P and 15 HC subjects was
performed at University Malaya Medical Center (UMMC) and
Bingkor Clinic in Kota Kinabalu, Sabah, Malaysia. The data
of the remaining 16 HC was recorded at Universiti Teknologi
PETRONAS, Malaysia. The recorded EEG was obtained for a
duration of 5 minutes under eye-close resting-state condition
conducted during morning time in a soundproof room. During
the data collection subjects were requested to stay calm and
not to move any of their limbs. Two different EEG recording
devices, BrainMaster Discovery 24E EEG and the Enobio
system, were used in this study with 19 electrodes covering
the scalp include FP1, FP2, F3, F4, C3, C4, P3, P4, O1, O2,
F7, F8, T3, T4, T5, T6, FZ, CZ, and PZ following the standard
10–20 electrode placement [74]. BrainMaster Discovery uses
256 Hz sampling rate with linked ear as a reference and
amplitude in microvolts while Enobio uses 500 Hz sampling
rate with mastoid as reference and amplitude in nanovolts.
Therefore, in order to normalize the data, EEG recording
from the Enobio system was downsampled at 256 Hz and its
amplitude was converted to microvolts. Re-referencing of EEG
data to Cz was performed for both the devices. A bandpass
filter (0.1–70 Hz) and a 50-Hz notch filter were also applied.

The automatic artefact removal was achieved via the
EEGLAB software [75], which employs the artifact subspace
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Fig. 4. Artefact cleaning in EEGlab, showing (a) artefact cleaning parameters and (b) automatic marking of the artefact.

reconstruction (ASR) method to serve the purpose. This
built-in plugin detects and removes artefacts resulting from
muscle movements, blinking of eyes and other sensory
motions by comparing it with artefact free reference data as
described in [76]. For cleaning of artefacts, default values
provided by EEGLab in the plugin were used. For illustration,
Fig. 4 (a) shows a snippet of the toolbox with options for
various types of artefacts removal.

Since, our data was already filtered and the bad channels
rejection was not needed, these 2 processes were not selected.
This gave us marking of bad EEG data as shown in Fig. 4 (b).
The data was then analyzed manually in order to check if there
were any further remaining artefacts and the boundaries of that
portion(s) (if any) were marked. Since, connectivity estimation
is susceptible to pre-processing, the data was removed rather
than corrected. Based on the boundaries and duration of the
artefact, only the data in between was selected. EEG data of
a minimum length equal to 2-sec were used after removal
of artefacts marked by ASR for calculation of PDC. The
data used in this study has been acquired from CISIR’s data-
repository. It will be made available for use upon reasonable
request from the corresponding author after signing a formal
data sharing and usage agreement.

F. Classification Algorithm Using CNN

In order to check the generalization and robustness of the
proposed network, 5-fold cross-validation (CV) was performed
based on 62 subjects such that all PDC samples from each
subject are tested at least once with none of its samples
presented in training. The average accuracy for each fold
iteration is calculated for 10 trials. After k-fold validation
and confirmation of generalization, from a total of 31 AUD
subjects, 16 were randomly selected for the training phase
whereas the remaining 15 were used for testing. Similarly,
the 31 HC subjects were also divided into training and
testing sets. Accordingly, a total of 4188 (AUD-P = 1959 &
HC = 2229) PDC connectivity matrices were obtained for
training and 4111 (AUD-P = 1919 & HC = 2192) matrices
for testing.Then, as shown in the Fig. 3, all 3D-PDC training

matrices were fed to CNN that resulted in a trained network
which can classify the unseen test PDC matrices

G. Statistical Analysis

The statistical significance of differences in connectivity
between AUD-P and HC was obtained using multivariate
analysis of variance (MANOVA) in which a significance level
of 0.05 was selected for pairwise comparison. Adjustment
for multiple comparison was performed using Bonferroni
correction [77].

H. Performance Evaluation

The performance evaluation of the PDC connectivity to
distinctly classify AUD-P and HC subjects depends on the
performance of the proposed 3D-CNN. If TP is True Positive,
TN is True Negative, FP is False Positive, and FN is False
Negative, then the Accuracy (ACC) of the classifier is,

ACC (%) = TP + TN

TP + TN + FP + FN
× 100. (7)

I. Classification Using Different Brain Rhythms

Neuronal activity in the specific frequency ranges of the
brain are associated with different behaviors, states as well
as alertness [78]. These frequency ranges are termed as brain
rhythms and commonly divided into 5 bands known as delta
(δ), theta (θ ), alpha (α), beta (β) and gamma (γ ). As the PDC
matrix contains connectivity over different frequency bands,
only the connectivity related to a particular frequency band
was used as input to the 3D-CNN network to observe the
significance effect of each band in the diagnosis of AUD.

V. RESULT AND DISCUSSION

A. Statistical Significance of Effective
Connectivity of DMN

In the first part of this section the variations in the EC
values over the DMN electrodes between AUD-P and HC,
are established using signal lengths of 2, 3, 4, 5 and 6 and
5-fold cross validation of 3D-CNN is performed as shown in
Table III.
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Fig. 5. Average PDC connectivity of DMN electrodes with their standard deviation for 31 AUD-P and 31 HC subjects.

TABLE III
5-FOLD CV ACCURACY USING EC EXTRACTED

FROM DIFFERENT LENGTH OF DATA SEGMENT

Table III indicates that classification accuracies obtained
using different length of segments are comparable. This may
be due to the fact that subjects are in eye-close resting-state
which should not be changed drastically over the period of
time. However, 2-sec PDC is used for further analysis since
it gives the largest number of samples. Bayesian information
criterion [79] is used for the calculation of MVAR model
order. The average model for AUD-P and HC is found to be
3.02 ± 1.57 and 4.16 ± 0.57, respectively. Calculation of the
EC matrices over the six electrodes of the DMN is obtained
by averaging over the ST samples in each subject followed by
averaging over all subjects. This averaging process of the PDC
estimated EC matrices, is applied separately on AUD-P and
HC subjects. The mean strengths of each connection along
with the standard deviation within the DMN networks of
AUD-P and HC are shown in Fig. 5. From the plot in Fig. 5,
it can be seen that the causal effect of the DMN regions
on each other is more intense in HC than AUD-P over the

TABLE IV
SIGNIFICANT CONNECTIONS IN DMN AND THEIR p-VALUES

majority of the connections. This simply means that the flow
of information between the DMN regions and accordingly the
mutual influence among these regions is highly involved with
HC than AUD-P. In contrast, AUD-P indicates less causal
effect in DMN regions which means they are more separated
from each other and is in agreement with the findings in [80].

Statistical significance test via MANOVA is applied on the
EC of AUD-P vs. HC subjects with significance level set at
0.05. The test has indicated that there are 24 significance ECs
at p-values less than 0.05 as tabulated in Table IV. These
major differences in DMN effective connections between



804 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021

TABLE V
K-FOLD CV ACCURACY OF PROPOSED 3D-CNN

Fig. 6. Confusion matrix generated from 5-fold CV.

AUD-P and HC subjects, give the 3D-CNN the opportunity
to produce accurate classification of the AUD.

B. Classification of AUD-P Vs HC Using Effective
Connectivity of DMN

The generalization and robustness of the 3D-CNN for all
subjects are evaluated using a 5-fold CV. Results of this
evaluation are presented in Table V, in terms of averaged
accuracy± standard deviation for each fold and the best 5-fold
confusion matrix is shown in Fig. 6. As shown in Table V,
high average value of 5-fold accuracy as well as values of
each round accuracy confirm the generalization of the model
as well as the possibility of using EC within DMN regions as
a potential biomarker for the diagnosis of AUD.

The classification of AUD-P vs. HC using EC of DMN is
performed by using 3D-CNN architecture and taking advan-
tage of the 3D structure of the PDC matrices. The performance
in terms of accuracy is evaluated for each PDC matrix and
for each test subject. These results are presented in Table VI
for 15 AUD-P and 15 HC subjects. It should be noted that
the different number of PDC connectivity matrices, ST for all
subjects, is due to the variability in the number of continuous
two seconds segments of EEG recording.

TABLE VI
CLASSIFICATION PERFORMANCE OF 15 AUD-P (TEST

SUBJECTS 1 TO 15) AND 15 HC (TEST SUBJECTS 16 TO 30)

The classification accuracy based on samples of PDC varies
from the lowest value of 73.23% to a perfect score of 100%
with average values of 95.9% and 89.8% for AUD-P and
HC cases, respectively. The overall average accuracy for
classification of the AUD-P and HC PDC matrices is at 92.7%.
Detail for classification of the PDC matrices is available in the
confusion matrix as shown in Fig. 7.

Referring to Table VI, the performance is subject dependent
so there is variation in accuracy for different subjects mainly
because EEG signals are known to vary for different sub-
jects [81], [82]. In addition, minor variations in resting-state
EC of DMN are expected over the duration of recording
which are manifested in the form of mis-classification of
PDC matrices in 24 subjects. However, as shown in Table VI,



KHAN et al.: EC IN DMN FOR ALCOHOLISM DIAGNOSIS 805

Fig. 7. Confusion matrix for PDC matrices classification of 15 AUD-P
and 15 HC test subjects using 3D-CNN.

TABLE VII
5-FOLD CV ACCURACY USING EC OF

DIFFERENT BRAIN RHYTHMS

the classification results obtained from the deep learning
network statistically demonstrate better tendency towards the
right decision over all the subjects. This can be visualized
through the significant gaps between the number of true
and wrong classifications within the same subject. Thus,
by using (7), all the testing subjects are classified with 100%
accuracy.

C. AUD Diagnosis and Brain Rhythms

In order to analyze the contribution of each band in the
diagnosis of AUD, the connectivities in the frequency bins
of specific brain rhythms are made as the only input to the
proposed 3D-CNN network and the classification accuracy
achieved via each band is shown in Table VII.

It can be seen in Table VII, delta, theta and alpha bands are
not giving good classification accuracies. Notably, moderate
classification accuracy is obtained using gamma band while
higher (>85%) classification accuracy is obtained using beta
band connectivities. This indicates that the resting-state of
AUD-P and HC differs significantly in beta and gamma band
as observed in various other studies [83]–[85]. To further
validate these findings, classification based on combination
of delta, theta and alpha as well as combination of beta

TABLE VIII
5-FOLD CV ACCURACY USING COMBINATION OF DIFFERENT BANDS

and gamma band connectivities are performed and is shown
in Table VIII.

Results in Table VIII show that the combination of beta and
gamma band connectivities gives high classification accuracy
of 87% for samples almost similar to the one obtained while
using all bands as demonstrated in Table VI. This suggests
that the major contribution in the diagnosis of AUD comes
from beta and gamma bands of EEG signals and the EC in
these bands can be a potential biomarker in AUD diagnosis.

Recently, machine as well as deep learning techniques have
been successfully used to diagnose various brain disorders.
Accordingly attempts have also been made to use extracted
features from EEG signals for classification of AUD-P and
HC. A comparison of the recently published studies based on
EEG as input signals to machine- and deep learning techniques
are given in Table IX.

It can be observed from Table IX that the detection of
alcoholism using EEG has mainly been achieved via machine
learning. Besides, a majority of these studies are based on
manual feature selection and reduction which itself is a
challenging task. Moreover, these methods cannot identify
deeply obscured characteristics of EEG signals. Considering
the shallow architecture of machine learning with at most
a single non-linear feature transformation layer [90], these
architectures mostly fail to identify abnormal data points that
are present under deep hidden layers [38]. On the other hand,
a recent study [38] proposed the use of LSTM network over
raw EEG data and introduced the concept of deep learning in
the detection of AUD.

In contrast to the aforementioned techniques, our proposed
scheme inputs EC to 3D-CNN which gives a classification
accuracy of 100% between AUD-P and HC subjects. More-
over, since the technique relies on determining the causal
effects between various DMN regions that are fundamentally
a resting-state network, therefore, it may be treated as a
biomarker for AUD. Furthermore, using the resting-state (RS)
to diagnose AUD may not only nullify the differences arising
from goal directed tasks due to differences in age, education,
gender, physical sloppiness, sensori stimuli disability, interest
in task and cognitive disability amongst subjects but would
also provide the actual on-going intrinsic activities inside the
brain. In particular, RS connectivities between different brain
regions could give an informative insight about the pathophys-
iology of AUD. Apart from these advantages, the proposed
AUD diagnosis algorithm inputs only 6 DMN electrodes to the
3D-CNN because of which it is computationally fast. Hence,
there is tremendous potential for our proposed technique to
be incorporated in clinical investigations of AUD with high
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TABLE IX
RECENT AUD DIAGNOSIS METHODS AND THEIR PERFORMANCE COMPARISON WITH THE PROPOSED TECHNIQUE

degree of reliability; thereby, eliminating subjective nature of
questionnaire-based diagnosis.

VI. CONCLUSION

In this paper, the effective connectivity between the DMN
regions during the resting-state are estimated using par-
tial directed coherence. The results indicate higher effective
connectivity values in the HC subjects than AUD-P for
connections between the DMN regions. This indicates more
involvement of DMN regions in mutual exchange of informa-
tion between its regions with HC than AUD-P. Utilizing these
major differences in DMN effective connectivity between
AUD-P and HC subjects, a deep convolutional neural network
is developed for AUD classification. The results show perfect
accuracy in identifying AUD-P and HC subjects. Furthermore,
it has also been observed that in terms of brain rhythms, beta
and gamma bands show significant contribution in AUD diag-
nosis. Although all the subjects have been correctly classified,
due to their limited number, the developed technique needs to
be trained and tested with a larger number of subjects before
finding its way in clinical tests.
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