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Abstract— Brain computer interface (BCI) is a novel
communication method that does not rely on the normal
neural pathway between the brain and muscle of human.
It can transform mental activities into relevant commands
to control external equipment and establish direct com-
munication pathway. Among different paradigms, steady-
state visual evoked potential (SSVEP) is widely used due
to its certain periodicity and stability of control. However,
electroencephalogram (EEG) of SSVEP is extremely weak
and companied with multi-scale and strong noise. Existing
algorithms for classification are based on the principle
of template matching and spatial filtering, which cannot
obtain satisfied performance of feature extraction under
the multi-scale noise. Especially for the subjects produce
weak response for external stimuli in EEG representation,
i.e., BCI-Illiteracy subject, traditional algorithms are difficult
to recognize the internal patterns of brain. To address this
issue, a novel method based on Chaos theory is proposed
to extract feature of SSVEP. The rule of this method is
applying the peculiarity of nonlinear dynamics system to
detect feature of SSVEP by judging the state changes of
chaotic systems after adding weak EEG. To evaluate the
validity of proposed method, this research recruit 32 sub-
jects to participate the experiment. All subjects are divided
into two groups according to the preliminary classification
accuracy (mean acc >70% or <70%) by canonical corre-
lation analysis and we define the accuracy above 70% as
group A (normal subjects), below 70% as group B (BCI-
Illiteracy). Then, the classification accuracy and information
transmission rate of two groups are verified using Chaotic
theory. Experimental results show that all classification
methods using in our study achieve good performance for
normal subjects while chaos obtain excellent performance
and significant improvements than traditional methods for
BCI-Illiteracy.
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I. INTRODUCTION

W ITH the development of information technology, weak
signal detection has been widely used, involving many

fields such as signal detection for early fault, seismic wave
and bioelectrical information [1], [2].

Brain-computer interface (BCI) is an artificially constructed
communication pathway between human brain and external
environment, i.e., the potential activity of brain can be acquired
and decoded into commands to control external devices using
BCIs [3]. According to different signal acquisition methods,
BCI can be divided into invasive and non- invasive. Among
them, non- invasive BCIs are widely used to control the exter-
nal devices by recording scalp EEG due to its convenient oper-
ation [4]. VEP is the response of the brain to external visual
stimuli. Studies [5] have shown that when human subject to
periodic visual stimuli, an electrical activity component corre-
sponding to the stimulation frequency will be generated in the
visual cortex region of the brain, that is, steady-state visual
evoked potential (SSVEP). Compared with other paradigms,
SSVEPs have more stable and significant feature representa-
tions and higher information transmission rate (ITR), as well
as simpler system and experimental operation [6]. Commonly,
the system framework of non- invasive BCI based on EEG
consists of three parts: data acquisition, signal processing
and external device control. Among them, signal processing
is the key of the whole system. However, the evoked EEG
amplitude is generally in the microvolt level and often sub-
merged in multi-scale and strong noise, which puts forward
higher requirements for the feature extraction for SSVEP [7].
At present, the mainstreams of SSVEP feature extraction
algorithms are mostly based on spatial filtering, canonical
correlation analysis (CCA) [8], minimum energy combination
(MEC) [9] and common spatial pattern (CSP) [10]. In these
methods, CCA has been widely used due to its high efficiency
and simplicity [11]. To improve the performance of this bench-
mark method, there are various improved CCA algorithms
were proposed. In 2014, Wang et al [12] proposed extended
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CCA (ECCA) using pre-trained strategy, which collected data
across subjects/target frequencies as templates and performed
feature fusion to extract features. In 2015, Chen [13] et al pro-
posed the filter bank CCA (FBCCA), which further improved
the recognition accuracy and information transmission rate by
conducting band-pass filtering of different sub-bands and com-
bining with ECCA. In 2017, Naskanishi [14] et al proposed the
task-related component analysis (TRCA), which decomposed
the raw EEG signals into useful components and noise parts
and carried out ECCA analysis for the useful components.
Most of these algorithms are based on the principle of spatial
filtering and template matching. They can achieve satisfied
results in the certain range, but there still are several challenges
for SSVEP feature recognition.

Firstly, EEG signal has weak amplitude and retains strong
nonlinear and non-stationary. Additionally, useful compo-
nent of signal is often coupled with multi-scale noise sig-
nal. Excessive noise suppression will cause attenuation of
useful signal, while ignoring the influence of noise makes
it difficult to recognize patterns. How to effectively sup-
press noise to achieve optimal identification is still to be
explored [15].

Secondly, due to the differences in physiological structure
and state, there are significant differences for the feature
representations of EEG signals across subjects/sessions [16].
Traditional methods use pre-training data to train the model,
which increases the calibration time and reduces the efficiency
of BCI. However, training-free method would lead to low
accuracy.

Thirdly, numerous studies have shown that even after a
long time of training, some users still cannot control a
specific BCI system. One of the possible reasons is that
features are extremely weak and overwhelmed by irrelevant
components. Therefore, improving the performance of the
classification model is conducive to solving the problem of
BCI-Illiteracy [17].

In recent years, weak signal detection technology has been
widely used in bioelectrical signal processing fields. Chaotic
detection (Chaos) is a signal detection method based on
nonlinear-chaos theory, which mainly uses the feature of the
nonlinear dynamics system to detect weak signals [18]. During
the calculation, a chaotic system is firstly constructed by
nonlinear equation, then judge the state changes after adding
the collected signal into the chaotic system. The existence of
weak feature is determined by whether this system changes
from chaotic state to large-scale periodic state. The principle
of chaos is to establish the mapping relationship between fre-
quency feature of EEG and dynamics state of chaotic system,
while this correspondence is unique [19]. Therefore, Chaos has
huge potential in suppressing noise during feature extraction
for EEG. To solve the limitations of feature extraction for
SSVEP in current studies, we proposed a novel framework
to recognize the target patterns, which modeled the signal as
the external driving force and put it into nonlinear oscillation
system, then performed EEG pattern recognition by judging
the state change of the system. By experimental verification
and conclusion, the main contributions of this paper are as
follows:

Firstly, to address the issues of feature extraction for SSVEP
under the multi-scale and strong noise, a feature detection
method based on Chaos theory is proposed. By associating
the state transformation of chaotic system with the specific
features existence of EEG signals, the target frequency of
SSVEP signals can be accurately recognized under different
levels of noise.

Secondly, in view of the limitations of the traditional
methods for state discrimination of chaotic system, this study
proposes a fast state detection method for chaotic system based
on spectrum difference, which is named spectrum symmetry of
chaotic system (SSCS). We apply it to the frequency detection
of SSVEP and obtain high classification accuracy and ITR,
which creates a novel methodology to feature extraction for
SSVEP.

Thirdly, we apply the proposed method for BCI-Illiteracy
subjects in SSVEP task. Experimental results proved that
it can significantly improve the identification accuracy of
BCI-Illiteracy and realize the effective detection of these
subjects.

II. METHODOLOGY

A. Principle of SSVEP Detection Based on Chaotic
Theory

Chaos theory focus on the research for the complex and
unpredictable trajectory of chaotic motion in definite nonlinear
system, which is always confined to a finite area but along
with complex and unrepeated behaviors. Meanwhile, noise
immunity is one of the main characteristics of chaotic motion,
which is also the theoretical basis of weak signal detection.
In recent years, the Van der Pol equation and Duffing equation
have been used to construct chaotic systems for weak signal
detection and achieve good results [20], [21]. In this study,
the chaotic system based on Duffing equation was used to
establish feature extraction model in SSVEP-BCI task.

The Duffing equation describes a typical nonlinear vibration
system and can be used to simulate many nonlinear vibration
phenomena, such as ship lateral shaking, structural vibration or
chemical bond damage. The differential equation is generally
expressed as:

ẍ = ϕ (x) ẋ + f (x) = E(t) (1)

where ẍ is accelerated velocity, ẋ is velocity and x is dis-
placement. ϕ (x) represents damping force, f (x) represents
restoring force and E(t) is driving force.

Based on this mathematical model, many engineering prob-
lems can be further reduced to the Lennar equation as shown
below:

ẍ + g (x) ẋ + f (x) = E(t) (2)

Duffing presents the standard Duffing equation based on
equation 2 to describe the spring effect, the mechanical prob-
lem is shown below:

ẍ + kẋ + ax + bx3 = γ cos (ωt) (3)

where k is damping coefficient, ax +bx3 is nonlinear restoring
force, a and b are linear stiffness of the spring and nonlinear
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Fig. 1. A bifurcation diagram of dynamics system from chaotic state
to large-scale periodic state. It is solved by differential equations for
chaotic system and describe the relationship between the time series
and displacement state of system in different states.

Fig. 2. A phase transition diagram of dynamics system from chaotic
state to large-scale periodic state. It represents the dynamic relationship
between velocity variable and displacement variable.

stiffness of the spring respectively. γ cos (ωt) is driving force
and γ is amplitude.

As a kind of nonlinear dynamics system, chaotic system
has various dynamics characteristics and multiple parameter
combination. Among them, various driving force will cause
different dynamics characteristics of chaotic system, which can
be reflected by the bifurcation diagram. Among all the state of
a chaotic system, the change from chaotic state to large-scale
periodic state has mutability and uniqueness (Fig.1), which
forms the basis of weak signal chaos detection.

In practical application, when weak signals with the same
frequency as driving force are introduced into the critical
chaotic system, the state of system will change due to the
disturbance to internal periodic driving force of the system
(Fig 2).

EEG based on SSVEP has stable feature of periodic fre-
quency, so it can be introduced into the chaotic system as an
external disturbance. Based on this principle, the target fre-
quency detection of SSVEP can be realized by discriminating
the change of chaotic system state after adding EEG to chaotic
system.

The expression of Chaos model of weak periodic signal can
be written as follows:

ẍ + kẋ − ax + bx3 = γ cos (ωt) + S(ωt) (4)

where S (t) represents the EEG with specific frequency. With
the increase of γ value, the output state of the system will
show the alternation of chaotic state, critical state and large-
scale periodic state. To address this issue, scale transformation

method was adopted to detect signals of random frequency.
If we define t = Rτ , the displacement, accelerated velocity
and velocity are redefined as:

x(t) = x(Rτ ) = xτ (τ ) (5)

ẋ (t) = dx(t)

dt
= 1

R

dxτ (τ )

dτ
= 1

R
ẋτ (τ ) (6)

ẍ (t) = 1

R2

d2xτ (τ )

dτ 2 = 1

R2 ẍτ (τ ) (7)

Put the above formula into Formula 3, and the Duffing
oscillator equation can be expressed by the following equation:

1

R2 ẍ(Rτ ) + kẋ(Rτ ) − ax(Rτ ) + bx3(Rτ ) = γ cos (ωτ) (8)

The dynamics equation of duffing oscillator can be
expressed as:

Ry = ẋ

ẏ = R(−ky + ax − bx3 + γ cos (ωτ)) (9)

As a feature extraction model for weak signal, there are
two necessary conditions must be met: a definite critical
point for phase transition, the retentivity of chaotic state
interval. The key factor to satisfy these conditions is the
parameters selection of oscillator equation. In the previous
study [23], we discussed the influence of these parameters on
the performance of the detection model. Therefore, we use the
conclusions in the previous study and set the Duffing equation
in the following form:

ẍ + 0.5ẋ − 0.6x + 0.1x3 = γ cos (ωt) + S(ωt) (10)

B. A Fast-Quantitative Identification Method for Chaotic
System State Based on Spectral Difference

During Chaos for weak signal, the state discrimination of
chaotic system is a very important step. At present, the typical
discriminant methods of chaotic systems include intuitive
method and quantitative method. Among them, the intuitive
method determines whether the state changes by analyzing the
rule of phase plane diagram for chaotic system [24]. As shown
in the previous section, this method is simple and do not
require complex calculations, but it is a subjective criterion and
cannot be applied to automated detection processes. Another
method is quantitative calculation, which calculates the char-
acteristic variables of the chaotic system and determines the
change of chaotic state. The typical quantitative index con-
tains Lyapunov exponents, Fractal dimension and Kolmogorov
entropy [25]–[27]. Quantitative calculation can guarantee the
accuracy of discrimination, but it takes a long-calculation time
and enough data length of detected sample. To solve these
limitations, this study proposes a fast-quantitative identifica-
tion method for chaotic system state based on symmetry of
spectrum of system variables. The specific research ideas are
as follows:

During the calculation for oscillator equitation, one iteration
of the equation yields a set of analytic solutions. By recording
the whole process of iteration, we can draw phase trajectory
using velocity and displacement from each step (Figure 3a).
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Fig. 3. (a) Phase trajectory in chaotic state (b) Displacement-iteration
time waveform in chaotic state (c) Frequency Spectrum for displacement-
iteration.

Fig. 4. (a) Phase trajectory in periodic state (b) Displacement-
iteration time waveform in periodic state (c) Frequency Spectrum for
displacement-iteration time waveform.

Moreover, by taking the displacement obtained from each
step as the dependent variable of iteration time, we can
plot one-dimensional time series waveform (Figure 3b). While
the difference of time waveform inevitably leads to the dif-
ference of frequency spectrum (Figure 3c), which contain
the discriminant information between different system state.
Therefore, the problem of state discrimination can be trans-
formed into the problem of identifying the frequency feature
for displacement-iteration time waveform. To visually display
the spectral differences between time series between chaotic
states and large-scale periodic states, the phase trajectories,
time waveforms and corresponding spectrum of two states are
shown in Figure 3 and Figure 4.

The displacement-time (x-t) waveform of dynamics system
in chaotic state is irregular, which essentially is complex
aperiodic signals (Fig 3b).

While waveform in large-scale periodic state is a stable
periodic signal (Fig 4b). Therefore, it is easy to conclude
that that the frequency spectrums of the two signals show
asymmetry and symmetry respectively (Fig 3c, Fig 4c).

Under the influence of noise, the phase trajectories of
large-scale periodic state become rough, which results in
the fluctuation of spectrum and thus brings calculation error
(Fig 5). However, we find that the data on both sides of main
peak of spectrum in chaotic state show asymmetry, while
it shows symmetry in periodic state whether suffering from
noise. Therefore, the quantitative discrimination method can
be designed based on the phenomenon of symmetry difference.

In this study, we propose a novel quantitative state dis-
crimination method based on the symmetry information of
spectrum, which is named as spectrum symmetry of chaotic
system (SSCS). The calculation is shown as follows:

Firstly, calculate equation (10) using 4-order Runge-Kutta
method. Then, transform the time-series wave of x−t and ẋ−t

Fig. 5. (a) Phase trajectory in periodic state with Gaussian noise (b)
(c) Same as above waveform in chaotic state (c) Frequency Spectrum
for displacement-iteration time waveform.

into frequency domain using fast Fourier transform (FFT).

Y =
∫ ∞

−∞
x (t) e− jωt dt (11)

Next, calculate the value of SSCS

SSC S =
∑M−1

i=1 Yi∑2M−1
j=M+1 Y j

(12)

where Y is FFT value of spectrum and M is the abscissa value
corresponding to the main peak.

Target-external signal can cause mutation for state in the
chaotic system. However, if the phase of driving force is
opposite to the external signal, the effect of mutation will
become weaker or disappear. To avoid the error of identifi-
cation, we search suitable phase interval using fixed step after
calculation by SSCS.

In the experimental part, we will analyze the parameters
selection of chaotic system and discuss the verification results
of feature extraction for EEG-SSVEP.

C. Feature Extraction for SSVEP Based on Chaotic
Detection Technology

When human receive a visual stimulus such as flicker or
flashing at a fixed frequency, the potential activity of the
cerebral cortex is modulated to produce a continuous response
related to the stimulus frequency (same or multiples). This
response has a periodic rhythm similar to the external visual
stimuli, that is, SSVEP [6]. The feature representation of
SSVEP is that the power spectrum of EEG can produce the
same spectrum peak or harmonic as the stimulus frequency.
By detecting the frequency corresponding to the spectral peak,
the intention of the subject can be recognized. However, this
raw EEG is generally weak, which is easily submerged by
multi-scale noise and difficult to extract. According to the
above research, Chaos method has the advantages of high
sensitivity for weak signal and noise immunity, so it is suitable
for the identification of target frequency for SSVEP. In our
study, the framework of Chaos for SSVEP is as Figure 6.

There is a prerequisite for the detection, that is, input signal
should transform into one-dimensional vector before input into
system. However, EEG are often collected in the form of multi-
channels. To make full use of the advantages of multi-channel
EEG signals and meet the requirements of the chaotic calcula-
tion, we adopt the common average reference [28] to conduct
dimension reduction processing for multi-channel EEG signals
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Fig. 6. Detection Framework for SSVEP based on Chaos.

during preprocessing. The definition is as following:

V C AR
i = Vi − i

n

n∑
j=1

Vj (13)

where V C AR
i is potential difference between electrode i and

reference electrode, n is the number of channels. In our
experiment, we select Oz channel as target channel.

In the application of EEG-BCIs, research show that 20%
subjects cannot expertly control BCI systems with an accu-
racy less than 70% even they have received long time
training [29], [30]. The phenomenon of BCI-Illiteracy may
result from two main reasons. One reason is that due to
the differences of physiological structure across individuals,
nerves to be detected are located in the sulci of the brain
or close to another large-group of neurons [31]. Therefore,
the specific potential activity cannot be detected on the scalp
for this kind of users. Another reason of BCI-Illiteracy is
that subjects produces too much muscle artifact or irrelated
potential activity in BCI tasks, while weak target features
are submerged by these multi-scale noise. Researchers have
explored extensive research to address this challenge, such as
optimizing signal processing algorithms [32], [33] or using
hybrid brain-machine interface paradigm [34] to enhance the
brain response of subjects.

In our study, we define BCI-Illiteracy into two types:
• BCI-Illiteracy-I: The brain is unable to respond to the

specific external stimuli and produce correspond feature
of EEG

• BCI-Illiteracy-II: The brain can produce a response for
specific external, but the representation of EEG is too
weak to detect.

From above study, the chaotic system is highly sensi-
tive to the signal with specific frequency, so we adopt
Chaos technology to extract feature in SSVEP task for the
BCI-Illiteracy-II.

D. Performance Evaluation

To evaluate the performance of SSVEP-BCIs based on
Chaos, classification accuracy and ITR are used testify the
performance. The mathematical definition of ITR is shown as
follows:
I T R =

{
log2 N + Plog2 P + (1 − P) × log2

1 − P

N − 1

}

×(60/T ) (14)

where N represents the number of instructions sets, P rep-
resents the classification accuracy, and T represents the data
length for analysis.

Meanwhile, the contrast of chaos and typical algorithms—
standard CCA, multivariate synchronization index (MSI) [35]
and FBCCA were adopted.

III. EXPERIMENT AND RESULTS

A. Participants

32 subjects (males: females = 1:1, mean age± SD,
23.7 ± 3.2 years) participated in this experiment. All the sub-
jects had normal or corrected normal visual acuity. This study
was approved by the ethics committee of the Xi’an Jiaotong
University. All subjects were informed of all procedures and
signed an informed consent agreement.

B. Data Acquisition

EEG were recorded using Neuracle NeuSen W system with
8 electrodes placed at POz, PO3, PO4, PO5, PO6, Oz, O1 and
O2 based on the rule of international 10/20 system. And
the reference electrode was placed at CPz and the ground at
AFz. EEG signal were sampled at 1000Hz and filtered by a
50Hz notch filter and filtered by a 0.1-100Hz bandpass filter.
Each subject participated in 3 sessions experiment and each
session contain 25 trials. The experimental process is shown
in Figure 7:
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Fig. 7. Experimental scheme.

Fig. 8. Motion stimuli in SSVEP experiment.

C. SSVEP Experiment

The frequency range of visual stimuli is 3Hz∼20Hz and the
interval is 0.5Hz. To ensure the consistency of frequency, the
system will automatically adjust the frequency of driving force
by indexing the label of stimulus frequency before detection.
As shown in Figure 8, we adopted the stimulation pattern
based on the motion of ring-shaped checkerboard proposed
in previous studies [36]. Compared with traditional SSVEP
patterns (light-flashing pattern), few harmonic responses were
elicited by ring-shaped checkerboard pattern and the frequency
energy of it was concentrative [37]. One stimulus appears on
the display screen at a time and is randomly selected within
frequency range.

D. Time-Frequency Analysis for EEG

Prior to the formal experiment, CCA was used to classify
the operation level for BCI of all subject(Group A:acc>70%,
Group B: acc<70%). After testing, 13 subjects were assigned
to group A and B respectively. To show the difference of
feature distribution in normal subjects and BCI-Illiteracy,
Short-time Fourier transform (STFT) was used to transform
EEG signal into time-frequency domain to visually display
the difference.

As shown in group A (Fig 9), the spectrums corresponding
to target frequency (6Hz) obtain high resolution and the irre-
lated component is relatively weak. However, the spectrums
from group B show that the target feature is extremely weak
and submerged by multi-scale and strong noise even after
pre-processing of EEG. Therefore, it is not difficult to infer
that the traditional decoding algorithm tends to show worse
performance of feature extraction for BCI-Illiteracy.

E. Parameter Selection of Chaotic System

As mentioned above, the transformation of the system from
chaotic state to large-scale periodic state is unique. By setting
the system to the critical state and introducing an external

Fig. 9. Power spectrum of EEG from Group A.

Fig. 10. Power spectrum of EEG from Group B.

signal into system, the existence of target frequency can be
detected by determining whether the system has changed the
state. To explore the specific value of the abrupt transition
under the equation 10, we applied the bifurcation graph
method of chaotic system to search this point (Figure 11).

As shown in Figure 11, when value of γ is between
1.980∼2.294, system is in chaotic state. While γ belong
to 2.295 to 3.000, system show in periodic state. It can
be concluded that phase transition critical point is 2.295.
Therefore, the equation for feature detection in our research
is defined as:
ẍ + 0.5ẋ − 0.6x + 0.1x3 = 2.295 cos (ωt) + E EG(ωt) (15)

Meanwhile, we set four variables x, ẋ,x − ẋ, x + ẋ to
calculate the value of SCCS in the chaotic state and periodic
state respectively.

From Table I, we can find that the value of SSCS for four
variables are greater than 2.0. Among them, x can obtain
the largest mean value and standard deviation, while ẋ is the
smallest.

From Table II, it is not difficult to find that all variables
are close to 1, which reveal the symmetry of the spectrum in
large-periodic states. Compare the results of Table I and II,
the rang of distribution of SSCS between different variables
are shown in Figure 12.
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TABLE I
THE VALUE OF SSCS IN CHAOTIC STATE

Fig. 11. Bifurcation diagram of equation 10.

TABLE II
THE VALUE OF SSCS IN LARGE-PERIODIC STATE

We define the difference value of SSCS between chaotic
state and large-periodic state for all variables as inter-class.
Among all variables, the displacement x can get the maximum

Fig. 12. The value distribution of different variables for large-scale
periodic state and chaotic state.

Fig. 13. ITR and accuracy in different data length of two groups.

inter-class. Therefore, x is adopted to be the discriminant index
of SSCS and the threshold is set as 2.0.

F. BCI Performance

During the detection, the data length affects the reliability
of the state change in chaotic system. For example, too short
length may not induce a phase change in the system even if it
met the requirement of threshold condition. To obtain the best
ITR, we compared classification results during different data
length (3s, 2.5s, 2s, and 1.5s) for two group.

Firstly, we analyzed the mean accuracy and ITR of 16 sub-
jects in group A (Fig 13 and Table IV). As shown in above,
almost all algorithms can achieve best ITR at the data length
of 1.5s. For normal subjects, ITR can be effectively improved
by shortening the length of data and Chaos tends to grow
faster compare with three other methods. Among all subjects,
S15 can obtain the highest ITR = 198.37bits/min.

Same analysis were carried out on group B. The experi-
mental results are shown in Figure 13 and Table V. Unlike
group A, ITR will decreases as the data gets shorter for all
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TABLE III
THE COMPUTING TIME AMONG DIFFERENT DATA LENGTH

methods except Chaos, and they obtain worse classification
performance in group B. However, Chaos remain the similar
results as group A and obtain excellent classification perfor-
mance than other methods. The ITR of Chaos achieved the
improvement of 114.68±10.88 compare with CCA under the
‘best’ data length. Paired t-tests were performed to compare
the accuracy between Chaos and other methods. The results
showed the accuracy rate of the Chaos was significantly higher
than that of CCA (p<0.001), MSI (p<0.001) and FBCCA
(p<0.001) under the data length from 1.5s to 3s. Among
all subjects, S11 can achieve the score of 187.34 that even
better than best subjects from group A. Moreover, we found
that Chaos has good generalization ability across subjects/data
lengths, which is suitable for the complex and variable envi-
ronment in various SSVEP-BCI system.

From the experimental results in two group, we found that
all methods show reliable performance for normal subjects,
while only Chaos obtain expected results for BCI-Illiteracy.
Note that Chaos can achieve best classification performance
under different data length and CCA obtained similar results
with MSI. However, we found that FBCCA haven’t obtained
expected results as described in previous studies [13]. One
possible explanation is that the principle of FBCCA is to
design spatial filter by weighting the main component and
harmonic component of signal. However, EEG response lacks
of harmonic components due to the spectral characteristics of
ring-shaped checkerboard pattern. Therefore, it is difficult to
obtain expected performance using FBCCA without harmonic
component.

To ensure the timeliness of the application for Chaos,
we compared the calculation time of all methods. (Table III).

From Table III, MSI can obtain fastest calculation time
while FBCCA takes longest time. Though Chaos consume
a longer calculate-time (six times higher than MSI), but the
time-consuming can meet the requirements of timeliness in
control of SSVEP-BCI.

G. Ability of Noise Suppression

One of the advantages of chaotic detection is its excellent
performance of noise suppression. To verify this conclusion,
we evaluate the accuracy of classification methods after adding
different intensity levels of Gaussian noise to the raw EEG
signal. In the experiment, we use the signal-noise rate (SNR)
as equation 14 to quantify the noise intensity:

SN R = Ps

Pn
(16)

Fig. 14. ITR and accuracy under different noise levels.

where Ps and Pn is power of raw EEG signal and noise.
To reduce the influence by other factors, we selected EEG
data with best performance (ITR) group A to quantitatively
evaluate the accuracy in different noise levels. We evaluate
the accuracy and ITR results of EEG after adding four levels
Gaussian noise.

As shown in Fig 14, with the decrease of SNR, the clas-
sification performance of all methods are reduced in various
degree. Among four methods, the classification results based
on chaos obtain best robustness and ability of noise suppres-
sion. Note that the performance of CCA, MSI and FBCCA
are easily disturbed by external noise and they only achieve
average accuracy less than 40% under the SNR = 0.25 even
for normal subjects with best data length. While detection
results using Chaos can obtain the accuracy of 79.50±4.64.
Therefore, even strong noise may bring negative influence for
classification performance, Chaos can provide reliable results
of pattern recognition in SSVEP task.

IV. DISCUSSION

Previous research indicates [15] that noise suppression may
attenuate or damage useful information of EEG. And when
EEG cannot meet the requirement of stability, the suppression
of useful signal may cause more negative effects than ignore
of noise. While most of BCI-Illiteracy-II may not produce
stable EEG, that is why most algorithms fail to decode EEG
from these subjects with high accuracy and sensitivity. It has
been demonstrated in the above studies that frequency feature
detection based on Chaos theory achieve good performance
no matter in normal subjects or BCI-Illiteracy. The reason
why it differs from other algorithms is that Chaos apply
the mechanism of specific dynamical response to external
stimuli in chaotic system to weak signal detection, while
this dynamics response is unique. Therefore, the multi-scale
and strong noise cannot interfere with this model for pattern
recognition, i.e., noise immunity. As mentioned above, BCI-
Illiteracy-II can produce specific response to external stimuli,
which can be detected by Chaos though it is extremely weak.
Meanwhile, it’s worth noting that Chaos is a training -free
algorithms, which do not require any training data and allow
user immediately start operation for BCI system.

Quantitative detection for phase transition in chaotic sys-
tems is a key step to realize feature recognition for weak
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TABLE IV
CLASSIFICATION ACCURACY OF GROUP A (D = 1.5s)

TABLE V
CLASSIFICATION ACCURACY OF GROUP B (D = BEST DATA LENGTH)

signal. In previous studies, Lyapunov exponents is the most
commonly used for quantitative detection, which is calculated
by ratio of convergence and divergence of phase trajec-
tory [38]. However, it takes a large amount of computing
resources and time-consuming that is not suitable for the real-
time detection in SSVEP-BCI task. In our study, we propose
a novel method-SCCS to realize quantitative detection for
system state. The essence of it is the dynamic observation
of the solution of Duffing equations and dynamics feature
extraction for this nonlinear system, which makes full use of
the analytical results in the process of equation solution and
realize discrimination without other complicated operation.

Compared to the calibration-based method (TRCA or mul-
tiset CCA), Chaos is a training-free method but the set-
ting of parameters for dynamics system requires pre-search
with repeat experiments which takes a long time. Therefore,

it is valuable to develop a calibration-based chaos detection
method. Based on the framework of Chaos detection, we con-
sider it is a promising approach to extract the reproducibility
and generality components of dynamics response after adding
different EEG template signals and explore the best parameters
combination of variables during these response.

There is an important prior of Chaos for SSVEP detection,
that is, computer obtain the stimulus frequency in advance. The
stimulated pattern with different frequency in our experiment
is displayed in turns, whose label is easy to be indexed to
adjust internally frequency of system. However, the applica-
tion of Chaos for SSVEP-BCIs exists some limitations. For
example, the ‘freedom’ control of mobile robot and wheelchair
cannot be realized by Chaos-SSVEP because it depends on
the improvisational intentions of users that cannot be detected
by computer in advance. Therefore, we will explore the
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SSVEP-BCIs based on Chaotic detection in ‘freedom’ control
for various machines in the future research.

V. CONCLUSION

In this study, we proposed a novel feature detection algo-
rithm for SSVEP based on chaos theory. Compared with
tradition methods, this model transforms the problem of
target frequency detection into state discrimination of non-
linear dynamics system and has the advantages of noise
immunity and training-free. An experiment contains thirty-
two subjects and thirty-five stimuli frequency were used to
testify the performance of Chaos model. Results indicated
that proposed model obtain significantly improvement of ITR
and classification accuracy than traditional method, especially
for BCI-Illiteracy subjects. Therefore, we can conclude that
feature detection based on Chaos is more suitable for the scene
with multi-scale and strong noise and used by BCI-Illiteracy.
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