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Assessment of Upper-Extremity Joint Angles
Using Harmony Exoskeleton

Ana C. De Oliveira , James S. Sulzer , and Ashish D. Deshpande

Abstract— The biomechanical complexity of the human
shoulder, while critical for functionality, poses a challenge
for objective assessment during sensorimotor rehabilita-
tion. With built-in sensing capabilities, robotic exoskeletons
have the potential to serve as tools for both intervention
and assessment. The bilateral upper-extremity Harmony
exoskeleton is capable of full shoulder articulation, forearm
flexion-extension, and wrist pronation-supination motions.
The goal of this paper is to characterize Harmony’s anatom-
ical joint angle tracking accuracy towards its use as an
assessment tool. We evaluated the agreement between
anatomical joint angles estimated from the robot’s sen-
sor data and optical motion capture markers attached to
the human user. In 9 healthy participants we examined
6 upper-extremity joint angles, including shoulder girdle
angles, across 4 different motions, varying active/passive
motion of the user and physical constraint of the trunk.
We observed mostly good to excellent levels of agreement
between measurement systems with CMCip > 0.65 for shoul-
der and distal joints, magnitudes of average discrepancies
varying from 0.43◦ to 16.03◦ and width of LoAs ranging
between 9.44◦ and 41.91◦. Slopes were between 1.03 and
1.43 with r > 0.9 for shoulder and distal joints. Regression
analysis suggested that discrepancies observed between
measured robot and human motions were primarily due to
relative motion associated with soft tissue deformation. The
results suggest that the Harmony exoskeleton is capable
of providing accurate measurements of arm and shoulder
joint kinematics. These findings may lead to robot-assisted
assessment and intervention of one of the most complex
joint structures in the human body.

Index Terms— Rehabilitation robotics, exoskeletons,
kinematics, assessment.

I. INTRODUCTION

STROKE is the leading cause of long-term disability in the
United States [1] and in the past few decades a number of

interventions have been adopted for rehabilitation of patients
with upper-extremity motor impairments [2]. Monitoring
changes in the upper-extremity kinematics is critical for deter-
mining the most effective interventions for a particular patient
and condition [3], [4]. Conventional methods for assessment
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of function and impairment are inherently subjective [5]–[7].
More objective methods for kinematics assessment such as
goniometers and inclinometers are limited to certain joints,
suffer from inaccuracy [8], and are time consuming. Motion
capture (mocap) systems are generally accurate and reliable,
but their use is time consuming, costly, and impractical,
primarily limiting them to research labs. Robotic exoskeletons
have emerged as a potential alternative intervention for upper-
extremity rehabilitation [9]–[12]. Due to their built-in sensing
capabilities that provide high-resolution, robust, and consistent
measurements of kinematic and kinetic quantities, exoskele-
tons create an exciting possibility for assessing movement
behavior simultaneously with delivering therapy.

The critical yet intricate shoulder complex has been a
challenge to objectively assess and manipulate for therapists.
The shoulder is composed of several joints including a floating
joint of the scapula, connected to the clavicle and humerus
through soft tissue. Altogether the shoulder could be modeled
as being composed of five degrees-of-freedom (DoFs). The
coordination between the scapula and humerus, known as the
scapulohumeral rhythm (SHR) [13], is often impaired in shoul-
der dysfunction [14], [15]. A few attempts have been made
to actively assist shoulder movements with robotic devices
to treat impairments [16]–[21]. However, all these systems
introduce some form of simplification around the patient’s
shoulder complex. To ensure accuracy of measured anatomical
parameters it must be assumed that robotic exoskeletons
i) are sufficient and capable of tracking the user’s movements
and inferring anatomical joint angles and ii) do not interfere
with the user’s natural movements in a significant way. The
simplification of the robot structure may induce unintended
reaction forces and over-constrain motions. Further, the com-
pliance of the physical interface between the human and
robot [22] can result in intractable relative movements between
user and robot. Thus, to be an effective assessment tool,
a robotic exoskeleton must be capable of accommodating
motions at the level of complexity of the joint while limiting
the interface compliance to avoid excessive relative motions.

We have developed an exoskeleton for bilateral upper-
extremity rehabilitation called Harmony (Fig. 1) [23]. The
shoulder mechanism in Harmony has been designed to actively
support the full mobility of the shoulder in all 5 DoFs allowing
natural movements [24]. However, the accuracy of Harmony
in assessment of the user’s joint kinematics has not been
evaluated. In this paper we carry out a quantitative comparison
of kinematic assessment with Harmony exoskeleton and an
optical mocap system. We focus on anatomical joint-space
parameters important for assessment of shoulder movements.
This work may lead to clinically relevant assessments in
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Fig. 1. Experimental protocol illustration. Marker placement is shown in (a), where the markers grouped in rigid-bodies were highlighted in green
(rigid bodies not highlighted were not used in this study). Different trunk-restraint methods adopted in the active conditions of the experimental
protocol are shown in (a) and (b). Active-abdominal condition is represented in (a), where the trunk is constrained with a belt wrapped around the
abdomen, and active-bilateral condition is represented in (b), where the trunk is constrained with a bilateral attachment to the robot. The kinematic
model used to represent anatomical parameters of the human arm is depicted in (c). Acronyms Lc, Lua, Lf, and Lh represent the lengths of clavicle,
upper-arm, forearm, and hand, respectively. In the picture, the participant was positioned in the calibration pose, with σ, SE, SP, SAE, and FPS at
0◦ (SPE singular) and EF at 90◦.

TABLE I
DEFINITION OF ISB COORDINATE FRAMES

post-stroke patients that often exhibit disrupted inter-joint
coordination [25].

II. MATERIALS AND METHODS

A. Modeling

To extract anatomical joint angles, we defined coordinate
systems located at the center-of-rotation (CoR) of each joint,
following the recommendations from the International Society
of Biomechanics (ISB) [26]. Based on Harmony’s active
DoFs we analyzed the following six anatomical joint angles:
shoulder elevation-depression, shoulder protraction-retraction,
shoulder angle of elevation, shoulder plane of elevation, elbow
flexion, and forearm pronation-supination. We show the trans-
formations used to define the ISB coordinate systems as a
function of the anatomical joint angles in Table I and illustrate
it in Fig. 1c. The symbols HA, R(k,α), and T(k,a) represent
a coordinate system A in the inertial frame, a rotation of α
around the k-axis, and a translation of a in k, respectively.
The quantity σ is the angle between the z-axis of Hs and the
axis-of-rotation of the elbow joint represented in the inertial
frame.

We adopted an optical mocap system with passive markers
as the benchmark sensing modality. We grouped markers
into rigid bodies that allow tracking of position and orien-
tation (Fig. 1). We adjusted markers and camera placement
to overcome constraints and limitations of the environment,
particularly the occlusions and limited access to specific body

segments introduced by the robot (Fig. 1a). We anticipated to
observe relative movement of the human limb with respect to
the robot and to quantify this movement we placed a rigid
body on the robot’s upper-arm linkage. Since the elbow and
hand could not be directly tracked due to occlusion constraints,
we chose to track the upper-arm and the interface attached to
the hand, assuming that there is no significant relative move-
ment with respect to the hand. This is a reasonable assumption,
given that the custom-made interface used in the experiments
constrains the hand and wrist in three locations, limiting the
relative motion at the wrist joint. To calculate the desired joint
angles, we must track axis of rotation (AoR) of both the elbow
and forearm. To obtain these parameters from the available
rigid bodies, we adopted a least-squares algorithm [27] that
uses data captured during isolated elbow flexion-extension and
forearm pronation-supination movements. It gives a relation-
ship between the humerus rigid body and elbow AoR, and
between the hand rigid body and forearm AoR.

To define coordinate systems from mocap data representing
the kinematic model of the human arm, we used a priori
information about the user’s configuration to define the CoR
of each joint. This information consists of a known calibration
pose and the measured user’s arm segments between the bony
landmarks: manubrium, acromion process, lateral epicondyle,
and ulnar styloid process. The coordinate systems, angles,
and calibration pose are depicted in Fig. 1c. We averaged
rigid body data captured over a 10 second window during the
calibration pose, and used it to calculate rigid transformations
from the tracked rigid bodies to the defined ISB coordinate
systems. Hchest was defined by the chest rigid body, and shoul-
der, elbow, and forearm CoRs were defined by the acromion,
humerus, and hand rigid bodies. These rigid transformations
were then further applied to estimate anatomical joint angles
from tracked rigid bodies for any arbitrary movement.

Harmony exoskeleton is equipped with position encoders
attached axially to each of the robot’s 14 DoFs (seven on
each side). The robot’s structure was modeled as a kinematic
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TABLE II
DENAVIT-HARTENBERG PARAMETERS REPRESENTING HARMONY

chain with nine DoFs, seven active and two dummy joints to
accommodate the 4-bar-mechanism structure of the shoulder
and to adjust the end-point frame. This kinematic chain can
be represented using the Denavit-Hartenberg parameters in
Table II [23], [28]. Symbols θ∗

i represents a variable angle for
a joint i . The coordinate system of each joint can be obtained
from measured joint angles using forward kinematics [28].
Because the coordinate systems resulting from this model
differ from the ISB recommendation in Fig. 1c, we defined
a second model based on the same principles used for the
mocap data to obtain a comparable structure. During the
calibration pose, we averaged angles measured by the robot
sensors over the same 10 second window and calculated rigid
transformations from the robot’s kinematic chain coordinate
systems to the ISB coordinate systems. Hchest was defined by
the robot’s inertial frame, and shoulder, elbow, and forearm
CoRs were defined by the coordinate systems attached to
joints 4, 5, 6′, and 7. These transformations were then further
applied to estimate anatomical joint angles from the robot’s
sensor data for any arbitrary movement.

The adopted calibration pose was defined beforehand and
programmed into Harmony. During the calibration procedure,
the robot drove a participant’s arm to the calibration pose and
locked its position. The robot’s configuration for calibration
was manually defined by physically aligning the upper-arm
and forearm linkages perpendicular and parallel to the ground,
respectively, using a level measuring tool. We positioned the
remaining joints such that the end-effector pointed approxi-
mately forward with respect to the robot’s inertial frame.

B. Experimental Protocol

The goal of the experiments was to quantify discrepan-
cies between joint angles estimated by robot’s sensors and
mocap data during four single DoF movements: shoulder
flexion-extension, shoulder horizontal abduction-adduction,
elbow flexion-extension, and forearm axial rotation. These
movements were used to evaluate shoulder angle of eleva-
tion, shoulder plane of elevation, elbow flexion, and fore-
arm pronation-supination, respectively. Shoulder-girdle angles
in Harmony are a result of the SHR assistance and not
actively driven by the user. Therefore, shoulder elevation-
depression and protraction-retraction were evaluated from
shoulder flexion-extension and horizontal abduction-adduction
respectively, where the angles’ ranges of motion (ROM) were
significant.

Patients with motor impairments, particularly stroke
patients, exhibit compensation for arm impairment by rock-

ing or swinging their trunk [29]. To encourage arm motion
some form of trunk restraint must be used. With Harmony
two possible solutions exist for restraining the trunk: either
using an abdominal harness that allows for free arm move-
ment or attaching both of the patient’s arms to the bilateral
robot. To study assessment performance under all possible
methods of movement execution and trunk restraint, each
movement was performed under three different conditions:
(i) passive: the robot drives the movement while user is
passive (eight repetitions), (ii) active-abdominal: user drives
the movement with trunk constrained by an abdominal belt
that attaches to the robot’s structure (seven repetitions), and
(iii) active-bilateral: user drives the movement; there is no
abdominal constraint but the left arm is attached to the robot
in a stationary position (seven repetitions). The two active
conditions are illustrated in Figs. 1a and 1b. A baseline control
implemented in Harmony [23] compensates for its dynamics
to ensure transparency for the user (i.e., require minimal forces
to move the robot) in the active conditions, and an impedance
controller enables full assistance in the passive condition.

In the active conditions participants received visual feedback
of their current joint angle and target at all times. To avoid
biasing the results, real-time feedback was acquired with the
Oculus Touch Controller (Oculus VR, Menlo Park, CA, USA)
attached to the hand interface. To ensure consistency of task
execution across participants, we controlled movement speed
using visual cues by making consecutive targets active or inac-
tive, and auditory cues consisting of beeps from a metronome
following the desired speed. We adjusted the metronome to
match the speed in which the robot executed the motion in
the passive condition. Since we wanted to replicate the same
ROM in all experimental conditions, we first programmed the
joint trajectories in the robot for the passive condition. In this
process, we ensured movements did not result in collisions
and occlusions of the rigid bodies with body parts, limited
movements to be within the robot’s ranges, and ensured the
Oculus Touch Controller was within the field of view of its
tracking system. Since the robot’s DoFs in the shoulder do not
exactly match an anatomical shoulder’s DoFs, the joint trajec-
tories for the single DoF movements were determined with a
teach-and-play methodology. The ranges of motion defined for
each movement and joint were: In shoulder flexion-extension,
shoulder angle of elevation varied from −40◦ to −90◦ in
the 90◦ shoulder plane of elevation, with elbow flexion and
forearm pronation-supination in 0◦. In shoulder horizontal
abduction-adduction, shoulder plane of elevation varied from
60◦ to 100◦ in the −90◦ shoulder angle of elevation, with
elbow flexion and forearm pronation-supination in 0◦. In elbow
flexion-extension, elbow flexion varied from 50◦ to 120◦, with
shoulder angle of elevation, shoulder plane of elevation, and
forearm pronation-supination in 0◦. In forearm axial rotation,
forearm pronation-supination varied from −45◦ to 45◦, with
shoulder angle of elevation and shoulder plane of elevation in
0◦, and elbow flexion in 90◦.

We instructed participants to start from the indicated initial
position, moving to the opposite extreme and back to the
start for as many times as required, following the visual and
auditory cues and attempting to achieve a movement as smooth
as possible. All of the movements were executed with the right
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arm, and participants practiced all movements outside of the
robot to get familiarized with the speed and range. During
data acquisition, they performed eight back-to-back repetitions
in the passive condition and seven in both active conditions
(active-abdominal, and active-bilateral).

Harmony’s interfaces are detachable, which facilitates con-
sistent arm and shoulder locations with respect to the robot
across dons and doffs. To also maximize consistency across
participants we attached the hand and upper-arm interfaces
outside of the robot before the experiment started. The hand
interface requires a specific hand placement to grip the hand
thenar and hypothenar eminences along with the wrist, which
reduces its placement variability. The upper-arm interface was
attached with its lower edge 7.15 cm away from the lateral
epicondyle, which is the distance between the robot’s elbow
joint axis and the lower edge of the interface’s cuff. Upper-
arm circumference varies across subjects, and to accommodate
this variability the cuff was secured in place with a fabric strap
and Velcro. To control its tightness, we used a force sensitive
resistor (FlexiForce™) embedded to the cuff’s structure, and
we adjusted the tightness pulling the strap to reach 0.3N.

C. Participants

The target population for this study was right-handed
able-bodied individuals that had no known shoulder injury
and whose body dimensions were within the limits of
the Harmony exoskeleton. Nine participants (6M/3F, age
27.8 ± 5.9 [20, 39] years, Lc = 20.3 ± 1 [18.5, 21.5] cm, Lua

= 31.7 ± 0.8 [30, 33] cm, and L f = 26.3 ± 1.63 [24, 28.5]
cm), were enrolled and performed the experimental proto-
col. The experimental procedure was approved by the Internal
Review Board organized by the Office of Research Support in
The University of Texas at Austin under the protocol number
2013-05-0126 approved on July 18 2019, and the participants
provided written informed consent that was reviewed by the
board.

D. Data Acquisition and Analysis

We tracked mocap data with the Optitrack Prime 17W sys-
tem (NaturalPoint Inc., Corvallis, OR, USA) using 10 cameras
with a sampling rate of 120 fps, and manually checked for
labeling errors and missed data-points. We securely attached
rigid bodies to the participants’ skin with tape on the sternum
(right below the jugular notch), acromion, and above the biceps
brachii (Fig. 1a). We also fixed one rigid body to the hand
interface and another to the robot’s upper-arm linkage. There
were no observations of rigid bodies missing all of their
markers for more than a few milliseconds, and we performed
interpolation using cubic splines followed by a pattern-based
interpolation algorithm as necessary. We used a fourth-order
low pass Butterworth filter with a cut-off frequency of 2 Hz
to filter tracked positions of all markers before solving for the
rigid bodies. We tracked robot joint angles with built-in high-
resolution magnetic rotary encoders (Contelec AG Inc.) with a
sampling rate of 100 Hz, and filtered the data using a fourth-
order low-pass Butterworth filter with a cut-off frequency of
10 Hz. Different cut-off frequencies were selected to obtain

similar noise properties. We synchronized mocap and robot
sensor data via threshold velocity of the measured joint in
each motion, matching the initial time of the two data sets
when the velocity magnitude exceeded 5 deg/s.

We distinguished repetitions with peak identification using
mocap data to determine the initial time instant and duration
of each repetition. We trimmed the time-series datasets and
normalized their times between 0 and 100% of both mocap
and robot data. To obtain AoR of the elbow and forearm,
we adopted a least-squares algorithm [27] that uses data
captured during isolated elbow flexion-extension and forearm
pronation-supination movements. For that purpose we used
the first two repetitions in the passive condition of these two
movements, which were excluded from the agreement analysis
in the passive condition. Furthermore, we also excluded from
the analysis the last repetition in the passive condition to
eliminate transitioning effects. Regarding the active conditions,
we excluded the first and last repetitions from the analysis to
eliminate transitioning effects.

We used Bland-Altman plots [30] to qualitatively evaluate
the angle agreement between robot and mocap. These plots
indicate an average error along with limits of agreement
(LoA). The LoA indicate a region within which one should
expect the discrepancy to fall. If a linear trend is present in
these plots, it indicates a relationship between discrepancy
and joint angle, in which case the LoA becomes conserva-
tive. We used a repeated measures correlation (rmcorr) [31]
analysis to estimate linear models relating robot and mocap
angles with subject-specific intercepts. We adopted LoA and
overall slope from the rmcorr analysis as primary outcomes
to indicate agreement between the robot and mocap. The
slope represents proportional bias and a one-to-one relation
indicates perfect agreement between mocap and robot data.
Slopes parallel to the one-to-one indicate accurate propor-
tional association with a systematic bias, such that negative
intercepts imply underestimation by the robot when compared
with mocap, whereas positive intercepts imply overestima-
tion. We adopted the coefficient of multiple correlation inter-
protocol (C MCip ) [32] proposed by Ferrari et al. [33] as a
metric of reproducibility to quantify the degree of agreement
between the two sensing modalities. The C MCip quantifies
the similarity between two waveforms between zero and one
by taking into account shape differences, systematic bias,
correlation, and ROM. We used all five repetitions of each
movement and condition to calculate intra-subject C MCip .
Since values across participants do not follow a normal dis-
tribution due to ceiling effects, we calculated the median and
interquartile range (IRQ). We interpreted values as excellent
(0.95 < CMC < 1), very good (0.85 < CMC < 0.95), good
(0.75 < CMC < 0.85), moderate (0.65 < CMC < 0.75),
and poor (0 < CMC < 0.65) [34]. It is common to obtain
complex C MCip values for curves with limited ROM and
high dispersion and we interpreted these results as dissimilar-
ity [33]. The correlation coefficient (r ) derived from the rmcorr
analysis and root mean square of the difference (RMSD) were
used as supplementary outcomes. The coefficient r evalu-
ates the strength of the association between measurements
from mocap and the robot and represents the reliability of
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the calculated slope. We interpreted correlation as excellent
(r > 0.9), good (0.7 < r < 0.9), moderate (0.5 < r < 0.7),
low (0.3 < r < 0.5), and negligible (r < 0.3) [35]. The
RMSD represents the overall discrepancy between the two
sensing modalities over the entire movement duration and is
a metric traditionally reported in method agreement analysis.
We also calculated the minimal detectable change (MDC) as
a representation of within-subject measurement sensitivity in
each movement and condition. The MDC is given by 1.96 ×
SEM ×√

2 [36] and was derived from mocap data in all five
repetitions. SEM is the standard error of measurement given
by the root mean of the within-subjects variances, averaged
across time. We also evaluated intra-subject repeatability in
each condition using the coefficient of multiple correlation
within-protocol proposed by Ferrari et al. [33] from mocap
and robot data, referred to as C MCm and C MCr , respectively.
They were calculated and interpreted similarly to the C MCip

but only using datasets of their respective sensing modality.
High intra-subject repeatability from mocap data suggests that
MDC values are likely associated with measurement- rather
than performance-variability. The MDC is a baseline to assess
if differences between the two measurement modalities fall
within an acceptable range. RMSD values lower than the
MDC indicate an acceptable discrepancy, since it suggests
the inability of the benchmark system to capture the observed
differences. To minimize effects of within-subject movement
variability, we averaged the five repetitions to obtain one
dataset instance of a specific movement and condition for these
analyses, with the exception of the MDC and CMC metrics.

To generate Bland-Altman plots and perform rmcorr analy-
sis, data points must be independent of each other. However,
time-series datasets do not meet this criterion. To minimize
biases introduced by the time-dependency among data points
and have a dataset distribution as close to the Gaussian distrib-
ution as possible, we resampled both mocap and robot data to
obtain 20 data points in each dataset equally spaced in time,
totaling 180 data points for each movement and condition.
We then visually inspected the datasets as represented in
histograms to check for normality, and no significant skewness
was observed in any movement or condition. Because of the
time-dependency of the samples, the LoA of the Bland-Altman
plots were calculated using the standard 95% confidence
interval and the non-parametric method described in [37].

To calculate relative movement between the robot and
human, we extracted time-series translations and rotations
between the robot’s and humerus’s rigid bodies and the
translations between the robot’s and acromion’s rigid bodies
in 3D relative to the robot’s rigid body frame. To cap-
ture the changes in the humerus configuration, we used the
humerus’s rigid body to obtain the orientation of the coordinate
system attached to the shoulder, and only the position of
the acromion’s rigid body was applied in the estimation of
anatomical joint angles. Therefore, we did not extract relative
rotations of the acromion for relative movement analysis.
Furthermore, we also calculated movements of the trunk with
respect to the calibration pose, as represented by translations
and rotations of the rigid body placed on the chest in 3D
relative to the chest’s rigid body frame in the calibration pose.

Therefore, we obtained a total of 15 variables to represent rela-
tive movement between human and robot: relative translations
in 3D of humerus, chest, and acromion, and relative rotations
in 3D of humerus and chest.

III. RESULTS

Table III summarizes the results for the metrics adopted
to indicate agreement between angles measured by the robot
and mocap. The width of LoAs ranged between 9.44◦ and
41.91◦ with magnitudes of average discrepancies varying from
0.43◦ to 16.03◦. The slopes for each joint ranged between
0.47 and 1.65. The RMSD ranged between 2.10◦(0.70◦) and
15.94◦(2.62◦). The greatest agreement was in the forearm
pronation-supination, which demonstrated narrowest LoAs,
all within the range [−10◦, 6◦], slopes closest to one, all
under 1.05, and excellent degrees of agreement indicated by
C MCip values. The greatest discrepancy was in the shoulder
protraction-retraction, which demonstrated slopes most distant
from one with the lowest correlation coefficients and waveform
dissimilarities indicated by complex C MCip values. The low-
est movement variability was observed in the shoulder girdle
angles as indicated by MDC values, all under 3.15◦ and as low
as 1.64◦. The largest movement variability was in the forearm
pronation-supination with MDC values up to 13.29◦.

The Bland-Altman plots generated for each joint and con-
dition are shown in Fig. 2. In each of the six figures, each
column represents one condition. We depicted the average joint
angle trajectory over normalized time and standard deviation
calculated across all participants, estimated by both mocap
and robot sensor data. We show values of C MCr and C MCm

for each condition in the bottom of these figures, indicating
mostly excellent intra-subject repeatability for the DoFs tar-
geted by the experimental tasks (shoulder plane and angle of
elevation, elbow flexion, and forearm pronation-supination) in
both sensing modalities. Right below the trajectory, we present
the overall (red) and participant-specific slopes as well as
the 20 samples per participant used in the analysis. The
slopes represented in Table III reflect the visual illustration
of the overall slopes shown by the red lines. The one-to-
one slope (black dotted line) indicates perfect agreement. The
bottom-most figures represent the Bland-Altman plots, with
the average discrepancy observed across all participants and
the standard and non-parametric LoAs.

Overall, elbow flexion and forearm pronation-supination
presented excellent degree of agreement as indicated by
C MCip values. LoAs for elbow flexion and forearm pronation-
supination indicate discrepancies falling within a range of
approximately ± 10◦, excluding the active-bilateral condition.
Slopes are between 1 and 1.1 in all conditions and RMSD
values fall under 6.04◦(1.83◦). Strong agreement of forearm
pronation-supination and elbow flexion can also be observed
in the time-series data (top rows of Fig. 2) where we can see
substantial overlap between the curves.

Results for the shoulder joint angles (shoulder angle and
plane of elevation) generally present good to excellent degrees
of agreement between robot and mocap estimations, as indi-
cated by the C MCip values. LoAs are larger compared to
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TABLE III
QUANTITATIVE RESULTS FOR THE METRICS USED TO EVALUATE AGREEMENT

distal DoFs, but slope values are generally comparable to
forearm pronation-supination and elbow flexion (Table III) and
Bland-Altman plots (Fig. 2). However, we observed greater
discrepancies in the passive condition of shoulder angle of
elevation, which shows instances with moderate degree of
agreement, as indicated by the C MCip IQR. This is also
reflected in terms of a wider LoA and slope distant from one as
well as the time-series data. The shoulder girdle angles showed
high discrepancies, with complex C MCip values suggest-
ing waveforms dissimilarity, and also demonstrated by large
LoAs, slopes far from one, and high dispersion of time-series
data.

The observed discrepancies particularly in the shoulder
angles, motivated a post-hoc analysis to investigate the asso-
ciation of the discrepancies with relative movements between
the robot and user. To evaluate the contribution of this relative
movement to the observed discrepancies, we fit a linear
model considering these discrepancies as an output and the
extracted 3D relative translations and rotations of the humerus,
acromion, and chest as inputs or predictors. Since we do
not have prior knowledge of the inter-correlation between the
inputs and their association with the output, we adopted a step-
wise regression framework to obtain a model that minimizes
errors and redundancies. In this framework, predictors are
iteratively evaluated and, starting from zero, added to the
model if they significantly contribute to the output’s variability
indicated by the R2. We chose to only add elements that
increase the R2 by at least 0.001. Even though we placed
markers following a protocol, placement differences across
participants are unavoidable. Furthermore, the reactive forces
that lead to relative movements change for different motions
and conditions, particularly between passive and active per-
formances. Therefore, we ran the step-wise regression for

each participant, motion, and condition, and we present the
evolution of the R2 of each resulting model as a function of
the predictors in Fig. 3. This result shows that almost 100%
of the output variability is related to the inputs variability.

Mocap markers are placed on deformable skin resulting in
a source of error [38]. For instance, the humerus’s rigid body
was placed between the deltoid and biceps, and contraction
of these muscles likely resulted in soft-tissue deformations
in the upper-arm. These types of deformations could explain
the association between relative movement of the humerus
and discrepancies in elbow flexion and forearm pronation-
supination. The shoulder joint and humerus are part of the
same kinematic link; therefore, distance variations between the
acromion’s and humerus’s rigid body imply relative translation
between two components of the same kinematic link. This
translation could be caused by deformations of the rigid bod-
ies, weak adhesion to the skin, or soft-tissue deformation, all
common challenges encountered in mocap marker placement.
We will use the term artifacts to describe all the possible
causes for the relative translation between the acromion’s
and humerus’s rigid bodies. To evaluate the contribution of
these artifacts to the total relative movement, we ran a linear
regression to fit a model that takes distance variation between
the acromion’s and humerus’s rigid bodies as covariates and
distance variation between the humerus’s and robot’s rigid
bodies as the dependent variable. After visually inspecting
the data, we concluded that this relationship can be fit to a
quadratic curve. We obtained a model for each movement and
condition, and the resulting fit (R2) of each case are depicted
in Fig. 4. Since body features and marker placement vary
across participants, the amount of artifacts, and consequently,
the effect on the total relative movement, is expected to vary
across participants.
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Fig. 2. Relative agreement between robot and mocap using time-series, linear correlation, and Bland-Altman plots. The time series curve averaged
across all participants is shown on the top row of each figure, with the shaded area representing the standard deviation. Intra-subject repeatability
is represented by the median and interquartile range of CMCr and CMCm. The linear correlation is represented in the middle row of each figure.
The overall slope is shown in red, and perfect agreement is shown in black for comparison. The Bland-Altman plots are shown in the bottom row of
each figure. The average error is represented by a solid purple line, and the zero error is represented by a black dotted line for comparison. LoA
and non-parametric LoA are represented by dotted lines. The dots in the middle and bottom rows represent data points, and each color refers to a
different participant (nine total).
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Fig. 3. Association between relative movement and angle discrepancies represented by variance accounted for (R2). Results for shoulder elevation-
depression, protraction-retraction, shoulder plane and angle of elevation, elbow flexion, and forearm pronation-supination are shown in (a)-(f),
respectively. Shaded areas separate relative movement in the humerus (red), chest (blue), and shoulder (green). Curves represent the change in R2

with the addition of each predictor in the linear model. Curves are associated with a single participant and each color refers to a different participant
(nine total), and each row represents one condition. The condition “1” represents a linear function consisting of just a constant value.

IV. DISCUSSION

We characterized agreement between kinematic estimations
using robot sensor and mocap data and we found excellent
degree of agreement (C MCip > 0.95) between robot and
mocap estimations of forearm pronation-supination and elbow
flexion. We found good to excellent degrees of agreement
(C MCip > 0.85) in the shoulder angle and plane of eleva-
tion estimations, with the exception of the passive condition
in shoulder angle of elevation that exhibited instances of
moderate degree of agreement (0.65 < C MCip < 0.75).
Finally, results fail to show agreement in the shoulder
elevation-depression and protraction-retraction estimations,
which exhibited complex C MCip values likely associated with
the limited ROM and high dispersion. We did not observe clear
differences between the two types of trunk restraint used in
the experiments (active-abdominal and active-bilateral cases).

We found excellent positive correlation (r > 0.9) between
Harmony’s estimation of upper-extremity motions to mocap
estimations for most cases, suggesting good reliability of the
calculated slope values. Values of C MCm and C MCr for the
four DoFs targeted by the experimental tasks indicate excellent
(>0.95) intra-subject repeatability. This suggests that MDC
values are likely associated with measurement- rather than
performance- variability. C MCr also exhibits very good to
excellent (>0.85) repeatability for shoulder girdle angles.

During the experiments the participant’s arm is attached to
the robot at upper-arm and forearm, resulting in a reliable force
transmission to the elbow and wrist. Therefore, we expected

a high degree of agreement in elbow flexion and forearm
pronation-supination. That was indicated by C MCip values
and confirmed by average discrepancies and RMSD values,
all falling under the MDCs, narrower LoAs with a total range
of approximately 15◦, and slopes close to one as shown in
Table III. However, we observed higher discrepancies in elbow
flexion estimation in the active-bilateral condition (depicted in
Fig. 2e). The Bland-Altman plot reveals a constant discrep-
ancy offset that varies across participants, and this resulted
in larger LoA and RMSD values. Although LoAs are larger
than MDCs in most cases, these limits are conservative in the
presence of a linear trend between discrepancy and average
angle, which could be confirmed in most cases in Fig. 2.

Given the complexity of the shoulder joint and the indirect
force transmission, we expected a lower degree of agreement
between robot and mocap in shoulder angle and plane of
elevation. Systematic biases are consistently present in both
of these angles as shown in Figs. 2c and 2d. This resulted in
LoAs and RMSD values that are both larger than the move-
ment variability represented by the MDCs. In this case, LoAs
are highly influenced by the different biases demonstrated
by each subject as observed in Fig. 2. On the other hand,
slopes were close to one with excellent positive correlation
(r > 0.9). Therefore we concluded that while the shoulder
angles estimated by the robot demonstrate low accuracy in
absolute terms, the accurate proportional association indicates
the ability to capture differential quantities such as velocity.
This suggests that although the robot’s responsiveness is com-
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Fig. 4. Association between artifacts and relative movement of the
humerus represented by R2. Each bar represents one participant in a
specific condition and each color refers to a different participant (nine
total).

parable to mocap’s for shoulder angles, estimated angles might
not accurately match absolute values of mocap’s estimations.

The post-hoc relative movement analysis revealed high
association between relative movement (as represented by
relative translations and rotations of the humerus, acromion,
and chest) and discrepancies, as shown in Fig. 3. An inter-
esting observation in Fig. 3 is that discrepancies in shoulder
elevation-depression, protraction-retraction, angle and plane
of elevation were associated with chest and humerus rela-
tive movement. Discrepancies in elbow flexion and forearm
pronation-supination were almost exclusively associated with
humerus relative movement. This was somewhat unexpected,
since participants were instructed to maintain a static trunk and
upper-arm posture during elbow flexion-extension and forearm
axial rotation.

We performed post-hoc analysis of the association between
artifacts and relative movements to investigate if the unex-
pected discrepancies could be associated with rigid body
deformation, soft-tissue deformation, or weak marker adhesion
to the skin. We found high association between our artifact
metric and relative motion in the shoulder flexion-extension
and horizontal abduction-adduction movements. We found a
lower association with elbow flexion-extension and forearm
axial rotation movements. This is consistent with previously
reported results in the literature indicating that soft tissue
artifact is one of the major problems in the use of mocap
for the study of upper-extremity motion [38].

The high association between relative movement and esti-
mation discrepancies suggest that we need to constrain the
user’s movement in the robot. However, this must be balanced
with other important factors such as comfort, allowance of
natural motion, safety, and ease of don-doff. Furthermore,
the association between artifacts and relative movement sug-
gests that even the benchmark sensing modality has limitations
and may not be considered as a “ground truth” when evaluating
accuracy of exoskeleton devices. The use of bone implants
would solve this impasse, but is a challenging method to
apply to in vivo human-subject experimental procedures to
investigate active movements. A possible compromise would
be the combination of the two measurement systems in a
Bayesian estimation method such as the Kalman Filter, which
uses prior knowledge of the system’s dynamics to estimate its
state and robust to the inherent measurement uncertainty [39].

Based on the reported results, Harmony is an accurate tool
to measure elbow flexion and forearm pronation-supination.
It is as sensitive as mocap for the measurement of changes in
shoulder angles, but it exhibits offsets that may be associated
with the limitations in the mocap system. Further studies are
needed to verify if the offsets are caused by untractable relative
movements or mocap artifacts. Finally, Harmony is capable
of providing estimations of shoulder girdle angles (shoulder
elevation-depression and protraction-retraction) which is a
novel feature of this rehabilitation robot. However, as com-
pared to mocap the accuracy of the kinematic estimations
is low and the variability is high, both of which might
be associated with undesirable relative movements. Further
research is necessary to investigate if this can be improved
with a better trunk constraint. Goniometers are traditionally
adopted to measure joint angles in clinical practice. Relia-
bility studies have reported MDC for goniometers varying
between 8.3◦ and 19.4◦ for forearm pronation-supination [40],
between 5.5◦ and 13.9◦ for elbow flexion [40], and between
3◦ and 14◦ for shoulder flexion [41]. The LoAs reported
in this study are comparable with goniometry MDC values
for distal joints, which suggests that Harmony’s measurement
discrepancy with respect to mocap for elbow and forearm
angles is within acceptable ranges for clinical practice. How-
ever, discrepancy for shoulder angles are larger than the
acceptable ranges. This can be attributed in the most part to
systematic differences that might be associated with limita-
tions of the adopted benchmark modality. In spite of large
shoulder angles discrepancy, Harmony offers the advantage
of continuously measuring multiple DoFs during dynamic
tasks.

The accuracy observed for Harmony cannot be generalized
for all upper-extremity exoskeletons, but the discrepancies
observed suggest that similar comparisons should be followed
to characterize their accuracy. Although some studies rely on
the robot’s anatomical measurements [42], such an analysis
is under-represented in the literature, and is mostly limited
to the forearm and wrist [43]. Attempts to predict established
clinical outcomes with anatomical joint angles [42] have found
low correlation with shoulder angles, which could be related
to low measurement accuracy.

V. CONCLUSION

The goal of this work was to characterize the Harmony
exoskeleton’s ability to accurately measure anatomical
joint angles, specifically shoulder girdle angles (elevation-
depression and protraction-retraction), shoulder angles (angle
and plane of elevation), elbow flexion, and forearm pronation-
supination. We evaluated the agreement between upper-
extremity joint angles estimated from the robot’s sensor
data and mocap data. The results confirm that the Harmony
exoskeleton is capable of providing accurate measurements
of arm and shoulder angles given a properly constrained
trunk and a well-adjusted, reasonably rigid interface. This
establishes the basis to use robotic exoskeletons not only as a
tool to deliver therapy, but also to reliably monitor progress,
potentially increasing treatment efficiency.
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