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Abstract— How to encode as many targets as possible
with a limited-frequency resource is a difficult problem in
the practical use of a steady-state visual evoked poten-
tial (SSVEP) based brain-computer interface (BCI) speller.
To solve this problem, this study developed a novel method
called dual-frequency biased coding (DFBC) to tag targets
in a SSVEP-based 48-character virtual speller, in which
each target is encoded with a permutation sequence con-
sisting of two permuted flickering periods that flash at
different frequencies.The proposed paradigm was validated
by 11 participants in an offline experiment and 7 partic-
ipants in an online experiment. Three occipital channels
(O1, Oz, and O2) were used to obtain the SSVEP signals
for identifying the targets. Based on the coding charac-
teristics of the DFBC method, the proposed approach has
the ability of self-correction and thus achieves an accuracy
of 76.6% and 79.3% for offline and online experiments,
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respectively, which outperforms the traditional multiple
frequencies sequential coding (MFSC) method. This study
demonstrates that DFBC is an efficient method for coding
a high number of SSVEP targets with a small number of
available frequencies.

Index Terms— Brain-computer interface, steady-state
visual evoked potential, EEG, speller.

I. INTRODUCTION

BRAIN-computer interfaces (BCIs) provide a direct com-
munication pathway between the brain and the external

environment by translating the brain activity patterns of a user
into commands for an interactive application [1]. BCIs are
used in a wide range of areas such as wheelchair operation
[2], [3], text spelling [4], [5], robotic device control [6], [7],
unmanned aerial vehicle remote control [8], and game play [9].
Among them, the BCI aided spelling application allows the
user to select the desired characters and feeds them back on
a screen or other output device; this intuitive and easy-to-use
approach allows end-users to be more independent and rebuild
their social lives to a considerable extent [5], [10], [11].

The vast majority of BCI spelling systems use the electroen-
cephalograph (EEG) approach, which includes P300, motor
imagery, and steady-state visual evoked potential (SSVEP) [5],
[12]. SSVEPs are brain electrical signals evoked by visual
stimuli that flash at specific frequencies. This neural response
consists of oscillatory activity of the base frequency and
harmonics of the visual stimulus and is mainly concentrated
in the visual cortex, which is located in the occipital region of
the brain [13]. Tagging visual stimuli by different frequencies,
phases, temporal or spatial patterns of visual flicker and
classifying the respective features from SSVEPs enables a BCI
system to identify the command selected by the user. SSVEP
is widely used in BCI spelling because of its advantages of
ease of use, little or no required training, multi-command
output, and high signal-to-noise ratio (SNR) together with a
high information transmission rate (ITR) [14], [15].

The coding method plays an important role in SSVEP-based
BCI system design and implementation. An efficient target
encoding method can improve the visual evoked potentials
and the SNR, thereby increasing the discriminability of dif-
ferent targets. Traditional SSVEP-based BCI spelling system
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coding methods can be categorized as frequency-division mul-
tiple access (FDMA), time-division multiple access (TDMA),
space-division multiple access (SDMA), code-division mul-
tiple access (CDMA), and hybrid multiple access (HMA)
methods [16], [17].

FDMA is the most intuitive coding method for SSVEP
studies, in which each target is flashed at a different frequency,
generating periodic evoked responses with the same funda-
mental frequency and harmonics as the flickered stimulus.
Chen et al. proposed a high-ITR 45-target BCI speller with
a narrow frequency band range from 7.0 to 15.8 Hz using
the FDMA method [12]. However, since only the 4-50 Hz
bandwidth has an amplitude and SNR of SSVEP that are large
enough to be distinguished [18], [19]. In addition, a suffi-
ciently large frequency interval between SSVEP frequencies is
required to ensure better classification accuracy [20]. Because
of these constraints, the frequency resources available for
FDMA method are limited.

In the TDMA coding method, the flash sequences of
different targets are independent. In Lin et al.’s study [21],
the temporal information was used to encode the SSVEP
stimuli. Half of the stimuli flashed first and stopped first,
whereas the remaining half of the stimuli flashed after a
predefined delay period and stopped later. Such time-frequency
joint coding method performs significantly better than the
traditional FDMA method. However, because TDMA uses the
same frequency coding strategy as FDMA (see [12] and [21]),
TDMA has same frequency resource scarcity problem that
FDMA has.

In SDMA, targets appear at different locations in the
visual field. Yan et al. suggested that spatial information
could be used as an alternative coding approach. In their
study, each target was composed of two flickers flashed at
different frequencies, which were placed on the right and left
visual fields [22]. This arrangement ensured that the bilateral
flicker stimuli could be projected onto the contralateral visual
regions and generate visual evoked potentials. By combining
spatial and frequency information, this coding method can
increase the number of coding targets. Another study found
that visual stimuli at different spatial locations induced distinct
differences in SSVEP power topography [23]. Such kinds
of SDMA-coded BCI systems have stringent restrictions on
stimulus size, spacing, and number as well as the relative
position between stimuli and is therefore not commonly used
in BCI system design.

In CDMA, each target has its own codeword consisting of
binary digits. Kimura et al. proposed a new approach, in which
ten targets were translated into different codewords that cor-
respond to flickering patterns with distinct frequencies [24].
Similarly, in Shyu et al.’s study, they encoded six targets using
a permutation of four frequencies [25]. However, because it
is limited by the number of codewords, this method is not
suitable for a speller system with a large number of targets.

The HMA method is a hybrid of multiple accesses and
has been recently used to improve system performance. For
instance, to overcome the frequency resource constraints
faced by the traditional FDMA approach, Chen et al. [4]
added phase information into FDMA and proposed the joint

frequency-phase modulation (JFPM) method to achieve 40-
target classification within a flicker duration of 0.5 s, which
considerably improved the ITR of the system (from 2.52 bps
in the same group’s early study [26] to 4.45 bps). However,
the phase information needs to be obtained from the indi-
vidual calibration collected for training canonical correlation
analysis (CCA) based spatial filters, so the JFPM method has
limitations in practical applications. Yin et al. subsequently
introduced the row/column approach to encode rows and
columns with traditional FDMA. Thus, the target could be
detected by determining the row and column coordinates [27].
Essentially, this row/column coding method is a hybrid cod-
ing approach that combines SDMA and FDMA. A space-
frequency hybrid coding method was introduced to generate
binocular visual stimulation [28], i.e., each of the eyes was
individually stimulated by stimuli with identical flickering
frequencies but different phases. However, this method needs
a specially designed binocular head mounted display, which
may limit its range of application. A multi-phase cycle hybrid
coding method was proposed by Tong and Zhu [29] in which
each target was coded by multi-phase codewords and a specific
flickering frequency. Similarly, a novel HMA method was
proposed by Zhao et al. [30] in which multi-bit temporal
codewords were linearly combined with three frequencies to
generate trinary frequency shift keying modulated SSVEP
stimuli. However, these two methods need a relatively long
coding cycle for coding a large number of targets. Recently,
Tang et al. combined a spatial pattern coding method and
FDMA to form a novel hybrid coding method in which each
target is composed of five fan-shaped flickers in a circle,
while each flicker is modulated by different frequencies [31].
Simultaneously, a 5-bit binary code was implemented by
turning each flicker on or off. However, an additional training
process was needed for calibrating the classifier of each
target. Liang et al., [32] proposed a novel dual-frequency and
phase modulation method, in which each SSVEP stimulus was
presented in the form of a checkerboard that consists of small
squares flicking at different frequencies and phases. In the
study by Yan et al., the authors proposed a light-flashing and
motion hybrid coding method, where the stimulus consisted of
a circular light-flashing pattern and a rotational motion pattern;
both patterns were modulated with different frequencies [33].
Compared with the traditional FDMA method of using one
frequency for a target, these two methods can reduce the
number of frequencies to a certain extent; they still need to use
a large number of frequencies. Moreover, the number of spatial
filters is not reduced. Some studies have also proposed using
the multiple frequencies sequential coding (MFSC) method,
in which each target is coded by the permutation of several
frequencies from an available frequency set. Each cycle of the
target presentation is divided into several epochs, and during
each epoch, the SSVEP stimuli flicker at a certain frequency;
the different permutations of frequencies in the epochs will
lead to different encodings for multiple targets [25], [34].
By adding the time factor and using the permutations of
frequencies in the coding scheme, MFSC can code many
more targets with limited frequency resources than can the
traditional FDMA method. For this reason, fewer spatial filters
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are needed. Conversely, MFSC increases the duration of the
SSVEP stimuli presentation cycle, which may decrease the
ITR of a BCI system. In addition, the target recognition needs
to recognize the flickering frequency in each epoch, so the
final accuracy is a concatenation of the accuracies of all
the individual epochs, which may increase the system error.
In general, the above studies have shown that the HMA method
performs better than a single mode for multiple access.

Despite the existence of various HMA studies, little research
has been reported on hybrid coding methods combining fre-
quency information and time information. Therefore, in this
study, we propose a dual-frequency biased coding (DFBC)
method to extend the traditional MFSC method, in which
each cycle of the target presentation is divided into two biased
flickering periods, and each period flashes at different frequen-
cies. The different permutations of the temporal arrangement
of periods and the frequencies in each period correspond to
different codewords for multiple targets. This coding strategy
will have better coding efficiency and fault tolerance than
traditional MFSC methods.

II. MATERIALS AND METHODS

A. Participants

In this study, 11 participants (mean age = 22.0±1.5 years)
voluntarily participated in the offline experiment. Then the
online experiments were carried out separately with a three
month interval. Since four of the 11 participants who partici-
pated in the offline experiment were not available, the remain-
ing 7 participants (mean age = 21.5 ± 1.3 years) participated
in the online experiments. All participants had normal or
corrected-to-normal vision and were confirmed to be right
handed using the Edinburgh Handedness Inventory. They were
free of any neurological or ophthalmological disorders. All the
participants had no previous experience of BCI experiments
and did not receive any pretraining before the experiment in
order to simulate an actual BCI application to the greatest
extent. All the participants had been informed about and con-
sented to the experimental contexts. All participants provided
written informed consent in accordance with the Declaration
of Helsinki [35] before the experiment, which was approved by
the Ethics Committee of Affiliated Zhongda Hospital, South-
east University (2016ZDSYLL002.0 and 2016ZDSYLL002-
Y01). Each participant received 200 RMB for participating
after the experiment.

B. EEG Recording and Preprocessing

EEG data were collected with the EGI 400 Geodesic EEG
System (GES 400, EGI Inc., USA), using a whole head
32-channel HydroCel Geodesic Sensor Net referenced to Cz
(fixed by the EGI system) according to the international
10-20 system at a sampling frequency of 1,000 Hz. The
NetstationT M software package (EGI) were used for data
recording and the impedances of all the channels were kept
below 50 k� [36]. In this study, to simplify the BCI system
as much as possible, only three electrodes over the occipital
region (O1, Oz, and O2) were used as input signals. The
EEG data were first band-passed filtered with a 6-36 Hz

IIR filter using the cheb1ord function in MATLAB R2017b
(Mathworks, USA). Next, zero-phase digital filtering was
performed using MATLAB’s f ilt f i lt function.

To account for the latency delay in the visual evoked
potentials [37], similar to the study by Chen et al. [4],
we extracted the lagging data segments 130-2,130 ms
(0-2,000 ms corresponds the SSVEP stimuli presentation
stage) as the SSVEP response to process.

C. System Configuration

The experiment was carried out in a normal room without
electromagnetic shielding. SSVEP stimuli were presented on
a 27-inch LED screen (Dell S2719DGF) with a resolution of
2, 560 × 1, 440 pixels and a refresh rate of 144 Hz. Each
participant was seated in a comfortable chair that was 60.0 cm
away from the display (H: 60.7 cm, 53.7◦ in visual angle;
V: 34.2 cm, 31.8◦ in visual angle). The horizontal line of sight
of the participants fell in the center of the keyboard.

For this study, a 48-target BCI virtual speller graphical
user interface (GUI, 48-character keyboard) using the pro-
posed DFBC approach (Fig.1.a) was designed. As shown in
Fig.1.a, the GUI is a 4 × 12 matrix containing 48 characters
in a QWERTY layout, including 26 letters of the English
alphabet, 10 digits, and 12 other symbols (i.e., space, comma,
period, backspace, escape, at sign, pound sign, percent sign,
hyphen, apostrophe, question mark, and quotation mark).
In this study, a circular stimulus was used instead of the
traditional square stimulus to maximize the spacing between
stimuli, thus reducing the influence of adjacent stimuli. The
diameter of the circular stimulus was 4.0 cm (3.8◦) and the
distance between horizontal adjacent stimuli was set as 0.5 cm
(0.5◦). To increase the distance between adjacent stimuli as
much as possible in a limited space, in this study, we used a
staggered layout instead of the traditional aligned layout. The
staggered layout has distances of 4.4 cm (4.2◦) and 5.0 cm
(4.8◦) between the horizontal and vertical adjacent stimuli,
respectively. Fig. 1.a and Fig. 1.b show screenshots of the
GUIs for the offline and online experiments, respectively. The
virtual keyboard was set in the center of screen. All the settings
of the offline and online experiments were the same except for
the following: there was a text box (H: 2.0 cm, 1.9◦ in visual
angle; V: 28.3 cm, 26.5◦ in visual angle) above the virtual
keyboard in the online GUI to display the characters that the
participant selected.

D. Offline Experiment Design

To verify the performance of the proposed DFBC method,
we performed a contrastive study of the DFBC and MFSC [34]
coding strategy. Each trial started with a 1 s cue stage, during
which a small red square was presented below one SSVEP
stimulus to indicate the next target stimulus. Participants
were instructed to shift their gaze to the indicated target
stimulus and prepare for the forthcoming presentation stage.
The SSVEP stimuli presentation stage lasted 2 s, during
which participants kept their gaze on the target stimulus.
The presentation stage was followed by a 1 s resting stage,
in which participants remained in a relaxed state. The whole
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Fig. 1. GUI of the proposed SSVEP-based speller system for the (a) offline experiment, and (b) online experiment, respectively.

experiment consisted of a total of 480 trials and was divided
into five sessions, each of which consisted of 96 trials. During
each session, each character of the 48-character keyboard was
displayed as the target and coded once using MFSC and
once using DFBC, where the encoding order was randomly
balanced across these two conditions. There was a 90 s break
between sessions. All the attributes of the SSVEP stimuli cor-
responding to these two conditions were equal, including the
layout, number, position, and color of the characters; duration
and procedure of stimulus presentation; and the number of
the trials for each condition. The only difference in the two
conditions is the coding strategy of the SSVEP stimuli.

E. Online Experiment Design

Each trial of the online experiment started with a 3 s cue,
in which the target word that the participants needed to spell in
the current trial was displayed on the center of a black screen.
Next, a spelling stage followed, during which the GUI was
displayed and the participant was instructed to spell the target
word character by character. The participant selected each
character during one 3 s stimulus phase. This phase began with
a short beep, and the virtual keyboard did not flash. Then, after
a 1 s interval, the keyboard flickered for 2 s. The participant
was instructed to gaze at the target character during this 2 s.
At the end of each stimulus phase, the correctly detected
character or a red box indicating an error was displayed in
the text box for 1 s. The participant was asked to re-enter
the erroneously entered character until the whole word was
correctly spelled. Twenty common four-letter words were used
as the target words in the online experiment. Each word was
detected using DFBC or MFSC once, presented in random
order.

F. Stimulus Design

Figure 2 shows the coding principle of the proposed DFBC
method. For one target to be coded, There are M (M ≥ 4)
coding epochs in one coding cycle, which are divided into
short and long flickering periods. The short flickering period
(S P) occupies one epoch and the long flickering period (L P)
occupies the remaining M − 1 epochs. Because the S P can

occur anywhere in the M epochs, the L P can be a continuous
time segment or two time segments separated by the S P .
In one coding cycle, there are two different frequencies
selected from the available frequency set, which contains
N (N ≥ 2) frequencies { f1, f2, . . . , fN }, and these two
frequencies will be assigned to the S P and L P , respectively.
Thus, as shown in Fig. 2, the number of words that can be
coded is calculated as C = C2

N × 2 × M , where C2
N is the

number of combinations of two different frequencies selected
from N frequencies. Two frequencies could be assigned to
the S P and L P with two combinations, while the number
of permutations for the temporal placement of the S P and
L P equals M .

In the current study, we adopted four epochs (M = 4) in
one coding cycle while the available frequency set consisted
of four frequencies (N = 4), and each target is coded by
two frequencies from the available frequency set. As shown in
Fig. 3, every two frequencies can generate eight permutations
as codewords. Figure 3 indicates that target can be coded
by both the temporal pattern composed of short and long
flickering periods (e.g., Target 1 by fi - f j - f j - f j and Target 2
by f j - fi - f j - f j ), and the frequency allocation scheme for short
and long flickering periods (e.g., Target 1 by fi - f j - f j - f j and
Target 5 by f j - fi - fi - fi ). In the current study, we set M = 4
and N = 4, therefore, C = C2

N × 2 × M = C2
4 × 2 × 4 = 48

targets can be coded, which meets the number of coding targets
required by the virtual keyboard in this study. The coding
scheme based on the DFBC method with four epochs and four
frequencies for 48-character keyboard is shown in Fig.4.a.

Previous studies have shown that both the SSVEP amplitude
and SNR have a global peak around 13-15 Hz [18], [38].
Therefore, we used four frequencies, i.e., 10, 12, 14 and 16 Hz
in the low frequency band, as the available frequency set in
the current study.

Because the DFBC method is an extension of the traditional
MFSC method, to evaluate the performance of the DFBC,
we compared its classification accuracy with that of the
traditional MFSC in this study. The details of the recognition
algorithm used by MFSC can be found in Zhang et al.’s
study [34]. According to Zhang et al., MFSC can code N M

targets, where, the definition of M and N are the same in our
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Fig. 2. Coding principle of the DFBC method. One coding cycle is divided into M epochs. Two different frequencies are selected from the available
frequency set and assigned to SP and LP, respectively. The number of permutations for the temporal distribution of SP and LP equal M. Thus,
the number that can be coded is C2

N × 2 × M.

Fig. 3. Coding scheme of DFBC when there are four epochs in one
coding cycle. In each coding cycle, the yellow bar indicates the flickering
period with the first frequency (fi), the blue bar indicates the flickering
period (LP) with the second frequency (fj). Two frequencies fi and fj
can encode eight targets using different frequency-temporal patterns
generated by the SP and LP.

study. In this study, MFSC uses the same available frequency
set as DFBC, i.e., N = 4 to provide enough coding targets for
a 48-target BCI speller. In addition, M is set as three for MFSC

method. The coding approach based on the MFSC method is
shown in Fig.4.b.

Chen et al.’s study showed that the classification perfor-
mance of square-wave SSVEP stimuli was notably higher than
that of sine-wave SSVEP stimuli [38]. Thus, in this study,
we used square-wave SSVEP stimuli for both the DFBC and
MFSC methods by adjusting the luminance of the target in
each epoch according to the following equation:

S( f, k) = 1

2
{1 + square

[
2π f (k/ fre f )

]} (1)

where, S is the luminance of the SSVEP target, f is the
flickering frequency of the target in each epoch, which follows
the coding principle described earlier in this section, k is the
frame index, square() indicates a square waveform, and fre f

is the refresh rate of the screen.

G. SSVEP Recognition

Because the SSVEP stimuli are encoded by the temporal
arrangement of flickering periods and the frequencies in each
period, the recognition algorithm accordingly consists of the
following two steps.

Step 1: Flickering frequency sequence recognition
Determine the flickering frequency of each epoch ( fk)

using frequency recognition algorithm and then combine the
detected frequency of each epoch in chronological order
to obtain the flickering frequency sequence f1- f2 . . . fM of
the coding cycle. Obtain the temporal pattern of the coding
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Fig. 4. Coding scheme for a 48-character keyboard based on the DFBC and MFSC methods. (a). DFBC, using four epochs and four frequencies
to code the SSVEP stimuli. (b) MFSC, using three epochs and the same four frequencies to code the SSVEP stimuli.

cycle based on the flickering frequency sequence f1- f2 . . . fM

detected in this step.
Step 2: Target stimulus identification
Compare the flickering frequency sequence obtained by Step

1 with the predetermined sequence of each target stimulus. The
stimulus with the identical frequency sequence is considered
to be the target stimulus.

The filter bank canonical correlation analysis (FBCCA)
[26] is a powerful classification algorithm for the detec-
tion of SSVEP. FBCCA decomposes SSVEPs into multiple
sub-band components and then performs separate standard
CCAs on each of the sub-band components so that inde-
pendent information embedded in the harmonic components
can be extracted more efficiently. FBCCA has been shown to
have better performance than the standard CCA, individual
template-based CCA (ITCCA), multi-set CCA (MsetCCA),
and L1-regularized multi-way CCA (L1-MCCA) [26], [39].
Some of the latest supervised methods, such as extended CCA
(ECCA) [4] and task-related component analysis (TRCA) [40],
were reported to have better performance than FBCCA. How-
ever, the additional calibration or training required by super-
vised methods may increase the complexity and inconvenience
of BCI in practice. Therefore, in this study, FBCCA, which
requires no training, was used for the SSVEP recognition for
both the DFBC and MFSC methods. Based on the spectrum
analysis of the preliminary experiment, it was found that only
the fundamental frequency and first harmonic of the SSVEP
frequencies have significant peaks. Therefore, two sub-band
filters were used for FBCCA (8–18 Hz and 18–34 Hz for the
fundamental frequency and first harmonic, respectively) in this
study.

H. DFBC With Self-Correction

In the MFSC method, one coding cycle is divided into
multiple epochs, and the recognition of one cycle is based
on the frequency identification of each epoch, where the
identification accuracy of one cycle is the product of the
identification accuracy of the individual epoch. For this rea-
son, the accuracy of one certain epoch can determine the
final accuracy of the whole cycle. In the current study, our
proposed DFBC has the same essential nature as MFSC in

that it divides one cycle into multiple epochs. To reduce the
aforementioned decrease in accuracy due to the multiplication
of multiple epochs, according to the coding principle of the
DFBC method, we propose the use of a majority vote (MV) to
enable the DFBC method to self-correct misclassified epochs
as follows:

In our study, the four epochs in one cycle are divided
into S P and L P , which flickering at different frequencies
(here, we defined the frequencies corresponding to S P and
L P are fS P and fL P , respectively). According to the results
of FBCCA classification, one of the five following situations
must occur:

1) All epochs are classified as having the same frequency
(say fi ). Because there can be one and only one epoch
identified as the S P with fS P , there must be one epoch that has
been misclassified, i.e., it should have been identified as having
a frequency different from fi . Based on the classification
principle of FBCCA, the smaller the FBCCA coefficient is,
the higher the probability it has been misclassified. Thus,
according to the value of the coefficient of each epoch obtained
from the FBCCA, we find the epoch corresponding to the
smallest coefficient. For this epoch, we use the frequency
(say f j ) with the second largest coefficient as its identified
frequency ( fS P = f j ). The initially identified frequencies of
the remaining three epochs ( fL P = fi ) are not changed.

2) Three epochs are classified as having one frequency
(say fi ) and one epoch is classified as having another fre-
quency (say f j ). We use this identification as the output
( fL P = fi , fS P = f j ).

3) Two epochs are classified as one frequency (say fi )
and the other two epochs are classified as another frequency
(say f j ). Because there can be one and only one epoch
identified as the S P with fS P , the epoch with the smallest
coefficient has the highest probability of being misclassified.
Therefore, this epoch (assume it has been classified as hav-
ing f j ) should be re-identified as having another frequency
( f j → fi ). After this correction, three epochs are identified
as L P (in this case fL P = fi ) and the remaining epoch is
identified as S P (in this case fS P = f j ).

4) Two epochs are classified as one frequency (say fi ). One
of the remaining two epochs is classified as having a different
frequency (say f j ), and the other is classified as having
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TABLE I
CLASSIFICATION ACCURACY AND ITR OF THE MFSC AND DFBC
METHODS FOR EACH PARTICIPANT IN THE OFFLINE EXPERIMENT

yet another frequency (say fl ). The epoch with the smaller
coefficient has a higher probability of being misclassified,
so for these remaining two epochs, the one with the smaller
coefficient (assume it corresponds to fl ) is identified as having
the same frequency as the first two epochs ( fl → fi ). After
this correction, three epochs are identified as L P (in this case
fL P = fi ) and the remaining epoch is identified as S P (in this
case fS P = f j ).

5) All epochs are classified as having different frequencies.
Because this case is not in accordance with the coding strategy
and cannot be corrected, there is no output for a cycle in this
case.

After processing according to one of the above five possible
situations, the frequencies for both S P and L P can be
identified. Then, after comparison with the coding strategy
(i.e., frequency setting for the L P and S P correspond-
ing to each target), it is possible to identify the target at
which the participant is gazing. The coding principle of the
DFBC method provides a self-correction, described as the
above-mentioned MV method, which gives DFBC a chance
to self-correct some misclassified trials, thereby improving its
classification performance.

III. RESULTS

The classification accuracy of each participant for MFSC,
DFBC without self-correction and DFBC in the offline exper-
iments are respectively shown in Table I. The mean classi-
fication accuracy of DFBC is 76.6%, which is 4.6% higher
than that of the MFSC method. A statistical analysis found
that the classification accuracy of DFBC is significantly higher
than that of MFSC ( p < 0.001, one-tailed t-test). Moreover,
the classification accuracy of each participant for MFSC and
DFBC in the online experiments are respectively shown in
and Table II. The mean classification accuracy of DFBC is

TABLE II
CLASSIFICATION ACCURACY AND ITR OF THE MFSC AND DFBC
METHODS FOR EACH PARTICIPANT IN THE ONLINE EXPERIMENT

79.3%, which is also significantly higher than 71.9% of MFSC
(p < 0.01, one-tailed t-test).

According to the Table I, it is found that there were many
trials that were misclassified in DFBC without self-correction.
However, such misclassified trials can be corrected in DFBC
with the MV method. The results in Table I show that even
for the participants with the worst correction effect (35.0%
for S4 and 37.5% for S9), the accuracies are increased to
61.7% and 61.3%, respectively. Whereas the classification
accuracy is increased by 18.0% on average for all the partic-
ipants after self-correction. These results testify that the pro-
posed MV method for DFBC has excellent misclassification
self-correction ability.

Based on the definition of ITR by Wolpaw et al. [41],
the ITRs of the offline and online experiments were calculated
by the formula proposed in [42], and the ITRs are shown in
Table I and II, respectively. The ITR of DFBC is significantly
higher than MFSC and DFBC without self-correction in the
offline experiment, respectively (p < 0.01 and p < 0.001,
one-tailed t-test). Whereas the ITR of DFBC is significantly
higher than MFSC in the online experiment (p < 0.01,
one-tailed t-test).

The averaged classification time per trial (1200 repeated
calculation with Intel Core i7-3970X CPU @ 3.5 GHz and
64 GB RAM) for MFSC, DFBC without correction and DFBC
are respectively 8.7±2.2 ms, 9.6±2.4 ms and 10.0±2.7 ms in
the offline experiment; Moreover, these values are respectively
9.4 ± 2.3 ms, 10.5 ± 2.6 ms and 10.6 ± 2.9 ms in the online
experiment (see Fig.5). The paired-sample t-test results show
that these three methods are significantly different ( p < 0.001,
one-tailed t-test). Moreover, the online and offline experi-
ment results for all three methods are significantly different
(p < 0.001, one-tailed t-test).

IV. DISCUSSION

Regardless of the coding method, most of the current
SSVEP-based BCIs use a one-to-one correspondence between
stimulating frequency and stimuli. Hence, a BCI spelling
system based on a virtual keyboard requires a large number of
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Fig. 5. Averaged time of 1200 repeated classifications per trial in the
offline and online experiments for the MFSC, DFBC method with and
without self-correction, respectively.

frequencies. However, due to limitations in the monitor refresh
rate and visual neural response, the range of frequencies avail-
able for SSVEP is finite [11], [19], which may greatly limit
the number of SSVEP stimuli and preclude the application
of an SSVEP-based spelling system. For a traditional single
frequency encoding method [14], [15], [43], each SSVEP
stimuli occupies one frequency and the frequency interval
is very narrow, which may affect the recognition algorithm.
This bottleneck problem has become a common concern of
SSVEP-based BCI and is the research object of this study.

To address this problem, some studies have tried to modu-
late a single SSVEP stimulus with two frequencies to increase
the number of targets that can be coded [25], [34], [44].
However, because the number of permutations is small if only
a simple combination of two frequencies is used, the number
of targets that can be added by such dual-frequency coding
protocols is extremely limited. Kimura et al. adopted fre-
quency shift keying technology used in the field of digital
communication, where the BCI commands were first translated
into codewords consisting of binary digits (e.g., 001, 010).
Then, based on the binary codewords, two different frequen-
cies were allocated to the corresponding epoch (e.g., f1- f1- f2
for 001, f1- f2- f1 for 010) [24]. This frequency shift keying
method encoded BCI commands using binary codewords, but
the frequency information was not used in the coding strategy
(e.g., f1- f1- f2 and f3- f3- f4 are both translated to 001), which
reduces the number of encoding targets. Some studies have
also attempted to use multiple frequencies to increase the
number of targets that can be encoded. Zhang et al. proposed
the MFSC protocol, which used time and frequency infor-
mation to code the targets [34]. Under the MFSC protocol,
each cycle is divided into several epochs, and each epoch
flickers at a certain frequency. Such temporal and frequency
information constitutes the permutation sequence by which the
SSVEP target is coded. In the current study, we extended the
traditional MFSC method by displaying two frequencies at
unequal sequences. The unequal multiple frequency sequences
in our proposed DFBC method mean that temporal factors
become involved, which makes the proposed DFBC method
a frequency-temporal coding scheme. In addition, with the
pre-set spatial arrangements of the unequal multiple frequency

sequences, the restriction relationship among the epochs also
becomes a type of codeword, which allows the proposed
DFBC method to vastly increase the number of permutations
and thus enables it to code more targets with limited available
frequencies.

According to the MFSC coding strategy, the final identifi-
cation result of one cycle is based on the identification result
of each individual epoch in the cycle. By distinguishing the
frequency of each epoch, the permutations of the temporal
and frequency patterns of the cycle are determined, which
enables the cycle to be finally identified. For this reason,
MFSC is faced with a problem similar to the “Cannikin Law”
problem, i.e., if a certain epoch is misclassified, the whole
cycle will be wrongly identified. Conversely, in the proposed
DFBC method, most misclassified epochs can be self-corrected
using the proposed MV method. This error correction func-
tion of DFBC better alleviates the “Cannikin Law” problem
the MFSC method faces, which enables the DFBC method
to improve the classification performance and have a good
application prospect. Compared with MFSC takes 8.7 ms and
9.4 ms, and DFBC without self-correction takes 9.6 ms and
10.5 ms for the offline and online experiments, respectively,
DFBC with self-correction takes 10.0 ms and 10.6 ms, respec-
tively (see Fig.5). Although DFBC with self-correction yields
an increase in computing time with respect to MFSC, this
increase is negligible. Considering the reduction in misclas-
sification obtained by DFBC, which is more important in
BCI applications, this small increase in computational cost
is acceptable.

In DFBC, the permutations of the short and long flicking
periods as well as the flicking frequencies of each period
consist of different codewords. Such a coding strategy means
that all the epochs in the DFBC method are constrained
and correlated with each other (see Sections II.F and II.G).
Conversely, the epochs in the MFSC method are independent
and have no constraint relationships among them. Thus, once
an epoch has been misclassified in MFSC, it will not be able to
self-correct using the restrictions and correlation relationships
among the epochs. This is the reason why we believe that
although the DFBC method proposed in this study can be
regarded in many ways as an extension of MFSC, there are
essential differences between the two methods.

Suppose there are M epochs in one coding cycle and
N frequencies are available for flickering in these epochs,
Then, MFSC can encode N M targets whereas DFBC can
encode C2

N × 2 × M targets. Obviously, MFSC has more
codewords than DFBC. However, for a BCI speller in common
use, 40 to 50 characters are sufficient. For this kind of demand,
the coding cycle should be as short as possible and the number
of available frequencies is limited; hence, there are two
alternative combinations of epochs and frequencies for MFSC,
i.e., three epochs and four frequencies (yielding 64 targets) or
four epochs and three frequencies (yielding 81 targets). DFBC
also has two alternative combinations, i.e., four epochs and
four frequencies (yielding 48 targets) or four epochs and five
frequencies (yielding 80 targets). Therefore, for numbers of
targets in both the forties and eighties, MFSC needs a smaller
number of epochs than does DFBC. Moreover, suppose MFSC
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and DFBC have a coding cycle with the same duration. In this
case, MFSC will have a longer epoch than DFBC. Alterna-
tively, if the epochs have the same duration, then MFSC will
have a shorter coding cycle than DFBC. These two points
may help MFSC obtain a better classification performance than
DFBC theoretically. However, the final recognition accuracy of
one cycle with the MFSC method is the multiplication of the
recognition accuracies of each epoch. As the number of epochs
increases, the classification error of each epoch will multiply
continuously, and then the classification accuracy and the ITR
will be sharply reduced as a result. In contrast, DFBC can
avoid the “Cannikin Law” problem facing MFSC by using its
self-correcting ability, which MFSC does not have. For this
reason, although MFSC can code more targets than DFBC,
DFBC may obtain a higher accuracy (and a higher ITR as a
result), which gives the proposed method good potential for
application in multi-character BCI spellers.

V. CONCLUSION AND FUTURE WORK

This study developed a 48-character virtual speller
based on the proposed DFBC method, which combines
the frequency-temporal pattern of flickering periods and
the restriction relationship among epochs to code targets. The
experimental classification results confirmed that this method
can effectively use the limited number of available frequencies
to code more targets. In addition, the self-correcting ability of
this method can effectively improve the classification accuracy,
which improves the SSVEP-based BCI speller performance.

The system could be further improved in the following
directions. Firstly, this study used the training-free FBCCA
method to extract SSVEP feature. In general, training-free
systems are more practical but the performance might not
be as good as the training method. Further investigation of
how the DFBC combined with training method can improve
the classification accuracy is required. Secondly, system para-
meters such as the epoch length, stimulation frequencies,
and preprocessing on EEG signals also can be optimized to
achieve a better system performance. Thirdly, more channels
of SSVEP signals from the occipital region can boost the sys-
tem performance. On the other hand, fewer electrode channels
are user-friendly in the BCI application. The accuracy and
convenience should be balanced according to the configuration
of the system and application environment.
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