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Filter Bank-Driven Multivariate Synchronization
Index for Training-Free SSVEP BCI

Ke Qin , Raofen Wang, and Yu Zhang

Abstract— In recent years, multivariate synchronization
index (MSI) algorithm, as a novel frequency detection
method, has attracted increasing attentions in the study
of brain-computer interfaces (BCIs) based on steady state
visual evoked potential (SSVEP). However, MSI algorithm
is hard to fully exploit SSVEP-related harmonic compo-
nents in the electroencephalogram (EEG), which limits the
application of MSI algorithm in BCI systems. In this paper,
we propose a novel filter bank-driven MSI algorithm (FBMSI)
to overcome the limitation and further improve the accuracy
of SSVEP recognition. We evaluate the efficacy of the FBMSI
method by developing a 6-command SSVEP-NAO robot sys-
tem with extensive experimental analyses. An offline experi-
mental study is first performed with EEG collected from nine
subjects to investigate the effects of varying parameters
on the model performance. Offline results show that the
proposedmethod has achieveda stable improvement effect.
We further conduct an online experiment with six subjects
to assess the efficacy of the developed FBMSI algorithm in
a real-time BCI application. The online experimental results
show that the FBMSI algorithm yields a promising average
accuracy of 83.56% using a data length of even only one
second, which was 12.26% higher than the standard MSI
algorithm. These extensive experimental results confirmed
the effectiveness of the FBMSI algorithm in SSVEP recog-
nition and demonstrated its potential application in the
development of improved BCI systems.

Index Terms— Brain-computer interface, EEG signal, fil-
ter bank, multivariate synchronization index, NAO robot,
steady-state visual evoked potential.

I. INTRODUCTION

BRAIN-COMPUTER Interface (BCI) is a new interactive
technology for the human brain to realize direct con-

trol over external hardware devices [1], [2]. By decoding
the brain signals from electrical activities in the cerebral
cortex, human’s intention can be identified and converted
into the control instructions of external devices. That is,
a BCI system does not rely on external muscle and peripheral
nerve pathways. Also, it can provide humans with additional
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interactive channels [3], [4]. In recent years, an increasing
number of research efforts have been dedicated to the devel-
opment of BCI systems [5], [6], with applications extended
from the realization of wheelchair operation [7], prosthetic
control [8], neurological rehabilitation [9] for physically chal-
lenged patients to a wider range of practical scenarios, such as
virtual reality games [10], military detection [11] and operator
fatigue detection [12], [13]. Depending on the specific activity
patterns of the brain, EEG signals applied to BCI devel-
opment mainly include: slow cortical potential (SCP) [14],
P300 evoked potential [15], [16], steady-state visual evoked
potential (SSVEP) [17], [18], event-related desynchronization
(ERD) and synchronization (ERS) [19], [20]. Among them,
SSVEP has recently attracted extensive attention from BCI
researchers due to its high signal-to-noise ratio and outstanding
information transfer rate [21]–[23].

Over the past decades, significant progress has been made
in the development of SSVEP-based BCIs [2], [5]. It was
mainly driven by efforts from the two aspects: i ) the induced
paradigm and ii ) the recognition algorithm. By incorporating
phase information into the induction paradigm [24],
the stimulus frequency achievable with the computer monitor
is no longer limited by the fixed refresh rate of the screen,
which greatly increases the achievable control categories
of the SSVEP-based BCI system. In terms of recognition
algorithm, after the canonical correlation analysis (CCA)
method [25] commonly replaced the traditional power spectral
density analysis [26] (PSDA), the multi-channel SSVEP signal
recognition algorithms were gradually developed [27]–[30].
Zhang et al. [27] proposed a multiway canonical correlation
analysis (MCCA). By maximizing the correlation between the
multidimensional signal and the two-dimensional reference
signal to get the optimized reference signal. Pan et al. [28]
used the occipital single-channel EEG signal SSVEP response
stage to estimate the phase, proposed a phase constrained CCA
(p-CCA) algorithm and successfully applied it to SSVEP-BCI.
Zhang et al. [29] applied L1 regularization to trial path array
optimization in MCCA, and proposed a more powerful
L1-MCCA algorithm than MCCA. Zhang et al. [30] extracted
the common features of SSVEP from multiple sets of EEG
data recorded at the same stimulation frequency, optimized
the reference signal completely based on the training data,
and proposed a method based on multiset CCA (Mset-CCA).
These methods have shown superior performance to the
standard CCA algorithm in many respects, but the standard

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-3617-4032


QIN et al.: FILTER BANK-DRIVEN MULTIVARIATE SYNCHRONIZATION INDEX 935

CCA method is still used by many authors for baseline testing
of SSVEP systems and is active in the field of BCI [31]–[33].

In recent years, the Multivariate synchronization index
(MSI) [34] algorithm has been validated as a feature
extraction method that is superior to CCA. Zhang et al. [35]
further improved the frequency recognition accuracy of
SSVEP by using the time-local information of SSVEP signal
when modeling the covariance matrix according to previous
studies [36], [37]. An extension of MSI algorithm [38]
was also developed based on the literature [39], [40] which
combined the delayed version of the EEG data to improve the
effectiveness of the CSP algorithm, resulting in higher recogni-
tion accuracy and an information transfer rate (ITR). However,
current frequency identification systems based on the standard
MSI algorithm or its variants cannot take the full advantage
of harmonic components in SSVEP signal. To address this
problem, filter bank strategy has been introduced into BCI
systems [41], [42], which aims to get more robustly decode
EEG patterns by exploiting multi-band information [43].
Ang et al. [41] have applied the filter bank common space pat-
tern (FBCSP) method to EEG power feature extraction in the μ
and β bands, significantly improving the recognition accuracy
of different motion image states. Chen et al. [42] applied filter
banks analysis to the improvement of CCA algorithm, pro-
posed a filter bank CCA (FBCCA) algorithm and successfully
applied it in SSVEP-BCI. Accordingly, we consider that the
filter bank approach has the potential to significantly improve
the performance of the SSVEP-BCI based MSI algorithm.

In this study, we propose filter bank-driven MSI (FBMSI)
algorithm to improve SSVEP frequency recognition. Our study
designs a 6-command SSVEP BCI system with 10-15Hz (1Hz
interval) as the stimulus frequencies, and verifies the FBMSI
algorithm with the system for NAO robot control. Firstly, this
study uses offline SSVEP experimental signals to discuss the
requirements of the filtering range and the harmonic number
of reference signal in FBMSI algorithm. In order to optimize
the subband design in the filter bank, a four-subband division
method is proposed ((F1): each subband contains one har-
monic frequency band; (F2) each subband contains three
harmonic frequency bands; (F3) each subband contains five
harmonic frequency bands; (F4) the upper cut-off frequency
of each subband is 105 Hz). In addition, this paper also
explores two subband weight assignment formulas E1 and
E2, and compares the different enhancement effects of the
two weight formulas on the SSVEP system. Finally, subband
decomposition is performed using method F4, and online
BCI experiments are performed in six subjects using the
weight formula E1. The experimental results showed that
the method significantly improved the individual identification
performance of the SSVEP frequencies and improved the over-
all identification accuracy and information transfer rate (ITR).

The following sections are arranged as follows:
Section 2 introduced signal acquisition and data preprocessing,
Section 3 introduced the FBMSI algorithm flow proposed in
this paper, Section 4 discussed and analyzed the results of
FBMSI algorithm, and Section 5 discussed and summarized
the results.

Fig. 1. Experimental stimulation interface and experimental lead.

II. SIGNAL ACQUISITION AND EXPERIMENT SETUP

A. Experiment Setup
In this study, a six-command SSVEP stimulation interface

was designed to provide control instructions to the robot,
as shown in Fig 1(a). The stimulation frequency was 10-15 Hz
(with an interval of 1 Hz) and the arrows represent the motion
control command of the robot. During the experiments, EEG
signals were recorded by a 16-channel wireless physiological
signal acquisition system produced by NEURACLE. The
sampling frequency was 1000 Hz and the 16 channels were
placed using the international 10-20 system standard, as shown
in Fig 1(b). The electrode impedance of each channel was kept
below 15k�. The 6-command SSVEP stimulation matrices
(each with a size of 3 × 3 cm) were displayed on a 23.5-inch
Samsung LCD (C24F396FHC) screen with a refresh frequency
of 60 Hz. The stimulation software was developed in MAT-
LAB’s Psychological Toolbox (PTB). Prior to the experiment,
each subject is informed about the content and procedure of
the experiment and signs an informed consent form.

B. Offline Experiment
Nine healthy subjects (six males and three females, aged

22-26 years, mean age: 24 years) with normal or corrected
normal vision participated in the data collection of the offline
experiment. The offline experiment consisted of 30 blocks,
each containing 12 trials. At the beginning of each trial,
a red square marker would appear at the target stimulus
location. Subjects were required to turn their attention to the
marker within 1 second. The target frequency box flashed
for 3 seconds, with a minute break between each block. The
offline experiment was designed to provide sufficient training
data for the FBMSI algorithm, so it was not necessary to drive
the NAO robot during this procedure. A total of 360 trials per
subject were performed in the offline experiments.

C. Online Experiment
The online BCI experimental design is illustrated in Fig 2.

The visual stimulus evoked the subjects’ SSVEP signal, and
the EEG cap (signal acquisition device) sent the collected
EEG signal to the signal synchronizer through Bluetooth. The
online BCI experiment adopted synchronization control, so it
was necessary to strictly synchronize the start time of SSVEP
stimulation with the collected EEG signals. The error of the
signal synchronizer used in this paper had an error of less than
1ms. The synchronized EEG signals were sent to the FBMSI
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Fig. 2. Flow chart of online experiment.

algorithm recognition module through TCP/IP protocol, and
the target instruction was identified by the effective SSVEP
segment in EEG signals. Then, the target instruction could be
sent to the NAO robot to drive the action. The camera of the
NAO robot’s head can give visual feedback to the subject.
The NAO robot’s stride length was set to 20 cm, and the
execution time for each action was approximately 3s. The
online BCI experiment consisted of 6 blocks, each containing
12 trials and each trial lasted for 5s (1s of visual stimuli, 1s of
target cues, and 3s of NAO robot movement time). After target
recognition, the subjects were provided with visual feedback
from the NAO robot’s camera and the next target prompt was
initiated. The online data analysis program was implemented
in the MatlabR2020a environment.

D. Data Preprocessing
The collected raw EEG signals were downsampled to

250Hz. The nine channels (Pz, P3, P4, POz, PO7, PO8,
Oz, O1, and O2) in parietal and occipital regions were used
for the experimental analysis, as they contained the most
informative SSVEP components [33]. In vision systems,
a delay process of vision should be considered [42], [44].
As suggested in literature [42], a 140-ms time delay was
chosen for the SSVEP analysis in our study. As a result,
the extraction ranges of offline and online experimental data
were [0.14, 3.14]s and [0.14, 1.14]s, respectively. Finally,
the offline experimental data sample for the EEG sample
used for data analysis is 9 (number of channels) × 750
(sampling points) × 360 (trials) × 9 (number of subjects);
the online experimental data sample for the EEG sample used
for performance validation is 9 (number of channels) × 300
(sampling points) × 72 (trials) × 6 (number of subjects).

III. METHOD

A. The Standard MSI Algorithm
The key step of the standard MSI algorithm is to calculate

the synchronization index between two multivariate signals for
frequency identification. Let X ∈ RN1×M and Y ∈ RN2×M

(N1 and N2 are the channels of the two signals, M is the
signal sampling length) respectively represent multivariate
EEG signals and reference signal. Among them, reference

signal Y is constructed as follows:

Y f =

⎡
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sin(2π f t)
cos(2π f t)

. . .
sin(2π Nh f t)
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⎤
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where fs is the sampling frequency, Nh represents the number
of harmonics used in the calculation process and f is the target
stimulation frequency. Without loss of generality, both signals
need to be standardized to have a zero mean and unit variance.
The calculation process is as follows:

Firstly, the joint correlation matrix between X and Y should
be calculated as:

C =
⎡
⎢⎣

C11 = 1

M
X X T C12 = 1

M
XY T

C21 = 1

M
Y X T C22 = 1

M
Y Y T

⎤
⎥⎦ (2)

Cross-correlation matrix (C12, C21) and autocorrelation
matrix (C11, C22) make up the joint correlation matrix. But
the existence of the autocorrelation matrix will affect the
synchronization computing. Therefore, the following linear
transformation is employed to remove the influence of auto-
correlation matrix in the joint correlation matrix:

U =
⎡
⎣ C

− 1
2

11 0

0 C
− 1

2
22

⎤
⎦ (3)

Then, the new joint correlation matrix can be described as
follows:

R = UCU T =
⎛
⎝ I1 C

− 1
2

11 C12C
− 1

2
22

C
− 1

2
22 C21C

− 1
2

11 I2

⎞
⎠ (4)

The autocorrelation matrix on the main diagonal is elim-
inated by introducing the unit matrices I1 ∈ RN1×N1 and
I2 ∈ RN2×N2. Then, the new joint correlation matrix R is
decomposed into eigenvalues to obtain eigenvalues λ1, λ2,
. . ., λP(P=N1+N2), which can be calculated to obtain the
normalized eigenvalues λ′

i :

λ′
i = λi /

P∑
i=1

λi = λi /tr(R) (5)

Finally, the formula for calculating the synchronization
index of Xand Yis as follows:

S = 1 +
P∑

i=1

λ′
i log(λ′

i )/ log(P) (6)

From (2), if Xand Y are completely uncorrelated, C12 =
C21 = 0, then C transformed by U is a diagonal matrix,
thus Smin = 0, λi = 1. Instead, if Xand Y are perfectly
synchronous, the matrix R will consist of four unit matrixes.
It is not difficult to conclude that half of the matrix eigenvalues
are 2 and the rest are 0. According to (6), when the number
of X and Y channels is only one, S gets the maximum value,
Smax = 1. For other conditions, Smax = log(2)/ log(P).
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Fig. 3. Frequency range corresponding to each subband of the
FBMSI algorithm, with the frequency range of the Nth subband being
[10∗N 105] Hz.

Fig. 4. Flow chart of FBMSI algorithm.

Based on (6), the identification of SSVEP can be realized.
With (7), K indices, S1, S2, . . . , SK are obtained with K
reference signals. Then, the target frequency ftarget could be
recognized.

ft arg et = max
k

Sk k = 1, 2, . . . , K (7)

B. FBMSI Algorithm
In order to take full advantage of the harmonic components

of SSVEP signals, the FBMSI algorithm was proposed by
combining MSI and filter bank strategy. With reference to the
filter bank design method in [42], a total of 9 fourth-order
Chebyshev zero-phase filters were designed to decompose the
SSVEP signal into 9 subbands (XFilterbank−N, N represents the
subband index, N = 1, . . . . . . , 9). By extracting the harmonic
components from each subband, a better recognition effect
than the standard MSI method could be achieved. The method
of subband division was shown in Fig 3. In this study, the
stimulation frequency was 10-15 Hz, and the lower cutoff
frequency of each subband was 10∗ N Hz. 105Hz was chosen
as the upper cutoff frequency of each subband (the best results
were obtained at this cutoff frequency).

Fig 4 illustrated the framework flow of the proposed algo-
rithm. After the decomposition of the filter bank, the syn-
chronization indices of the subband signal and the sine-cosine
reference signal were calculated separately. For the kth target

stimulus frequency, the synchronization index vector S was
composed of the synchronization index calculation for the N
sub-band signals.

S =

⎡
⎢⎢⎣

S1
k

S2
k· · ·

SN
k

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

M SI (X Filterbank−1 , Y f )
M SI (X Filterbank−2 , Y f )

· · ·
M SI (X Filterbank−N , Y f )

⎤
⎥⎥⎦ (8)

The MSI (XFilterbank−N, Yf) represented the synchronization
index Sk N between the N th subband signal and the reference
signal, which was normalized to between [0,1] and multiplied
by the weight vector W. Among them, the normalization layer
in the FBMSI algorithm is to improve the optimization effect
of parameters a and b as much as possible. If the difference
between the calculated values for the different subbands is too
large, the high-frequency subbands are characteristically sub-
merged in the low-frequency subbands because the calculated
values are too small, which limits the optimization ability of
parameters a and b. Therefore, we designed a normalization
layer to map the computational results of the filter between
0 and 1. Since the SNR of the SSVEP harmonic components
decreases as the response frequency increases, the weight
coefficient WN for each subband component is defined by the
following power exponential formula E1:

E1 : WN = N−a + b, N ∈ [19] (9)

where N represents the index of the subband, a and b rep-
resents the constant parameters to be optimized. In order to
reduce the computational time and effort, and to facilitate
the visual expression of the parameters at the same time,
the final optimization range of parameter a is [0, 2]. Parameter
b represents the baseline weight of each sub-band and is
developed to compensate for the lack of a power exponent
N−a that reduces subband weight too rapidly. According to
(9), each sub-band has an equal baseline weight, the range of
parameter b is designed to be [0, 1].

In this study, the classification performance of the FBMSI
algorithm was evaluated with parameters a and b optimized
using grid method based on offline data. The synchronization
exponential vectors of each subband, which had been scaled
by the weight vectors, were summed together. The obtained
results could be regarded as the feature vectors obtained by
feature extraction. Wherein, the maximum synchronization
index corresponds to the index K corresponding to the target
frequency, thus realizing the target recognition of SSVEP
signal.

IV. FBMSI ALGORITHM OPTIMIZATION AND

RESULTS ANALYSIS

As described in Section 3, the FBMSI algorithm performs
standard MSI calculations based on the subband decom-
position of the original EEG signal. The conditions that
affected the recognition accuracy of MSI algorithm include:
the number of harmonics in the reference signal and the filter
range. In order to improve the recognition accuracy of the
FBMSI algorithm, these two conditions need to be optimized.
In addition, in the discussion of [42], it was found that not
all subbands are beneficial for target recognition. Therefore,
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Fig. 5. Relationship between the number of harmonics and recognition
accuracy under different signal lengths. The green circles represented
the highest recognition accuracy obtained at different signal lengths
(3s: 97.59%, 2.5s: 96.98%,2s: 94.57%, 1.5s: 90.99%, 1s: 82.22%, 0.5s:
59.48%).

it was also necessary to optimize the number of subbands
decompositions. Thus, this section discussed the number of
harmonics, the filter range, and the number of subbands suit-
able for the FBMSI algorithm firstly. Then, the improvement
effect of the FBMSI algorithm was evaluated using offline data
under optimal conditions. Finally, online testing was used to
verify the robustness of the optimization results and whether
the optimization conditions caused overfitting.

A. Optimization of Number of Harmonics for FBMSI
Algorithm

In MSI-related algorithms, the number of harmonics in the
reference signal is closely related to the recognition accuracy.
In [33], [35], satisfactory results were obtained using Nh = 2.
While in [38], optimal results were obtained using Nh = 3.
Similarly, the recognition effect of the FBMSI algorithm also
depended on the harmonic number Nh of the reference signal.
Fig 5 showed the relationship between the number of harmon-
ics and the recognition accuracy at different signal lengths
(0.5-3s in steps of 0.5). Colorbar showed the relationship
between color and recognition accuracy. It was not difficult to
conclude from Fig 5 that the recognition accuracy of FBMSI
increased gradually with increasing signal length. At Nh =
4, the FBMSI algorithm achieved the highest recognition
accuracy at different signal lengths. Therefore, Nh = 4 is
the most suitable reference signal harmonic number for the
FBMSI algorithm.

B. Optimization of Analysis of Harmonics for FBMSI
Algorithm

In the frequency domain, for each frequency of the SSVEP
stimulation, the subjects’ EEG signals produced energy spikes
at both the fundamental and octave frequencies of the stimulus
frequency. For the application of SSVEP filter range, there
were no fixed conclusions [33], [35], [38], [42]. Therefore,
the filter range of FBMSI was discussed in this study, and
Fig 6 showed the relationship between filter range and
recognition accuracy (0.5-3s in steps of 0.5) under different
signal lengths. Colorbar showed the relationship between
color and recognition accuracy. The demand for filtering
range was also slightly different for different signal lengths.

Fig. 6. The relationship between recognition accuracy and filter range
under different signal lengths. The green circles represent the highest
recognition accuracy at different signal lengths. Under different filtering
ranges (left to right), the number of subband decomposition was set as
follows: 3, 5, 7, 8, 9, 9.

The peaks of recognition accuracy were mainly concentrated
in the two filter ranges of 10-90 Hz and 10-105 Hz. Among
them, 10-90Hz: 97.47%, 97.04%, 94.63%, 90.74%, 81.64%,
58.92%, 10-105 Hz: 97.59%, 96.98%, 94.57% 90.99%,
82.22%, 59.48%. Although the best recognition accuracy
was obtained in the filtered range of 10-90Hz for signal
lengths at 2s and 2.5s, it did not differ significantly from
that of 10-105Hz (97.04% vs 96.98%, 94.63% vs 94.57%).
On the contrary, under short-time SSVEP signals (0.5s,1s),
the recognition accuracy of 10-105Hz was about 0.5% higher
than that of 10-90Hz (82.22% vs. 81.64%, 59.48% vs.
58.92%). Therefore, 10-105Hz was chosen as the filter range
for the FBMSI algorithm.

C. Optimization and Analysis of Subband Decomposition
Number for FBMSI Algorithm

SSVEP components contained in the EEG signals were
observed to vary along with the signal length. In general,
SSVEP components of subjects become more stable as the
stimulation time increased [17]. Our study suggested that
the number of subband decomposition (SDN) required for
EEG signals with different SSVEP components was differ-
ent. In short, the change of signal length may affect the
required SDN in the FBMSI algorithm. Therefore, this paper
discussed the minimum SDN required to achieve the maximum
recognition accuracy at different signal lengths. As can be
seen from Fig 7, the demand for SDN from SSVEP signal
decreased with the increase of data length. This indicated that
there is no need for too many subbands to extract features
when the EEG signal contains sufficient SSVEP components.
When the stimulus time is short and the SSVEP component
of the EEG signal is small, it is necessary to decompose
the original EEG signal into more subbands to obtain more
features. Therefore, the required SDNs of FBMSI algorithm in
SSVEP signal recognition process with different time lengths
are also different.

D. The Improved Effect of FBMSI Algorithm
In order to better interpret the improvement principle of

the FBMSI algorithm, EEG (target frequency: 15 Hz) signal
with a time length of 3s was taken to analyze as an example.
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Fig. 7. The minimum SDN required to identify the maximum accuracy
for different data lengths (in second). Each SDN represents the largest
subband index of the original EEG signal decomposition under the signal
length.

Fig. 8. Illustration of the FBMSI algorithm for the recognition of
SSVEP at a target stimulus frequency of 11 Hz. The FBMSI method
corrected the MSI identification result (12 Hz) to 15 Hz (FB-1:10-105 Hz,
FB-2:20-105 Hz, FB-3:30-105 Hz, FB-4:40-105 Hz).

According to the discussion in Section 4.3, only four subbands
were needed at a time length of 3s. After the original EEG
signal passed through four different filters, the synchronization
index with sine-cosine reference signal was calculated sepa-
rately. In Fig 8, the blue line represents the synchronization
index of the six stimulus frequencies calculated by the standard
MSI algorithm. It can be seen that MSI misidentified the target
frequency as 12 Hz. While in the other filter calculations (red
line), the maximum value was reached at 15 Hz. After the
superposition of the weight vector W, a spike was finally
formed at the target frequency of 15 Hz, which improved the
recognition effect.

Fig 9 compares the BCI performance of our developed
FBMSI model and the standard MSI algorithm in relation to
signal length (0.64-3.14s, step size 0.1s). It can be seen that
FBMSI achieved better results than standard MSI for both
recognition accuracy and ITR across various signal lengths.
Moreover, in the range of 1.14-3.14s, FBMSI and standard
MSI showed significant differences in recognition accuracy
and ITR, and the paired T-test showed that p < 0.05. At 1s,
FBMSI obtained the highest ITR, 76.18 bits/min. Compared
to standard MSI (52.73 bits/min), the improvement was nearly
50%. Therefore, in this study, a data length of 1 s was selected
for the online SSVEP experiment. At this time, the average

Fig. 9. Average recognition accuracy and ITR of FBMSI algorithm
under different signal lengths. Error bars represent standard devia-
tion. Asterisks indicat significant difference between the two methods
(∗: p < 0.05).

TABLE I
RECOGNITION ACCURACY AND ITR IN ONLINE SSVEP-NAO

ROBOT EXPERIMENT

recognition accuracy of FBMSI algorithm was 82.22%, which
was 12.22% higher than that of MSI algorithm (70.00%).

Fig 10 shows the parameters of FBMSI when the data
length is 1s. For FBMSI algorithm, the larger the SDN
required, the more filters would be used, resulting in higher
computational cost. If the same parameter combination
achieved the same optimal recognition effect under differ-
ent SDNs, it was obvious that the smallest SDN was the
best choice. Fig 10(a) shows the minimum SDN required to
achieve maximum recognition accuracy for each combination
of parameters a and b. Fig 10(b) shows the recognition effect
for all combinations of parameters a and b with SDN = 9.
The green circles in Figs 10(a) and 10(b) represent the optimal
combination of parameters: SDN = 9, a = 2, and b = 0.1.

E. Performance of FBMSI Algorithm in Online BCI
Table I showed the recognition accuracy and ITR of all

subjects in the online SSVEP experiment. Since the movement
time of the NAO robot varied for different action commands,
only the time for stimulation and calculation were included in
the calculation of ITR.

In the online recognition system, the number of reference
signal harmonics Nh was 4, the high frequency cutoff fre-
quency was 105 Hz, and SDN = 9. In the online experiment,
the average recognition accuracy for all subjects was 83.56 ±
7.63% and the average ITR was 83.47 ± 19.32 bits/min. Both
evaluation indicators were slightly higher than the results in the
training data (acc: 82.22%, ITR: 76.18 bits/min). These slight
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Fig. 10. Recognition accuracy of the weight parameters (a, b) in FBMSI obtained by grid method optimization. (a) The minimum SDN required
to achieve the highest recognition accuracy under each combination of parameters a and b. The green circle represented the highest recognition
accuracy among all combinations (82.22%). (b) The recognition effect for each weighted parameter combination at SDN = 9. The green circle
represents the optimal combination of parameters: SDN = 9, a = 2, b = 0.1.

differences may be caused by the differences between the
subjects in the two experiments. The paired T-test showed no
significant difference (P > 0.05) between the two experimental
results of six subjects who participated in both offline and
online experiment. In this study, based on the collected online
experimental data, MSI algorithm was used to analyze the
online data. The results showed that FBMSI had a signifi-
cantly better recognition accuracy than MSI under different
numbers of harmonics (Nh = 1:65.05%, Nh = 2:71.99%, Nh =
3:70.37%, Nh = 4:71.30%, Nh = 5:72.92%, Nh = 6:73.15%,
Nh = 7:72.69%, Nh = 8: 71.86%). The proposed method got
12.26% higher than standard MSI (Nh = 4) in recognition
accuracy (offline enhancement: 12.22%). It is noteworthy that
the overall result comparison could prove that the parameter
optimization result of FBMSI did not appear

overfitting phenomenon and exhibited strong robustness.
At the same time, these results also demonstrate the effec-
tiveness and feasibility of the FBMSI algorithm in online
SSVEP-based BCI.

V. DISCUSSION AND SUMMARY

A. Filter Bank Design of FBMSI Algorithm
In the design process of the filter bank, the filter range is the

first factor to be determined. In our study, FBMSI achieved
the best results at the upper cutoff frequency of 105 Hz,
which was slightly different from the upper cutoff frequency
of 90 Hz in [42], indicating that optimization of the upper
cutoff frequency may be the direction of development to
improve the performance of the filter bank algorithm.

In order to explore the design optimization method of the
filter bank, three design methods were proposed and compared
with the filter banks designed in this paper:

(F1) Each subband contained one harmonic band, as shown
in Fig 11(a). Filter range: {10∗N, min [15∗N, 105]} Hz.

(F2) Each subband contained three harmonic bands,
as shown in Fig 11(b). Filter range: {10∗N, min [15∗3∗N,
105]} Hz.

(F3) Each subband contained five harmonic bands, as shown
in Fig 11(c). Filter range: {10∗N, min [15∗5∗N, 105]} Hz.

(F4) The upper cutoff frequency of each subband is 105Hz,
as shown in Fig 11(d). Filter range: {10∗N, min [15∗N,
105]} Hz.

Fig 12 shows the SSVEP recognition accuracies obtained by
the four methods at different signal lengths. With the increase
of harmonic frequency bands contained in each subband,
the recognition accuracy increased gradually. The paired T-test
showed that the FBMSI algorithm under the four filter bank
design methods had significant difference in recognition accu-
racy from the standard MSI algorithm (P < 0.05). However,
among the four design methods, there were significant differ-
ences between F1 and others (P < 0.05). Although F4 achieved
the highest recognition accuracy at different data lengths, there
were no significant differences among F2, F3, and F4(P >
0.05). Therefore, the three methods were validated by using the
data collected from online experiment. The results showed that
the F4 method again achieved the highest recognition accuracy
(F2:81.48%, F3:82.87%, F4:83.56%). These results may indi-
cate that the recognition effect would improve as the number
of frequency bands contained in each subband increased.

B. Subband Weight Formula of FBMSI Algorithm
The advantage of FBMSI was not only to decompose the

SSVEP signal into subbands to make more effective use of
the harmonic components, but more importantly in the use
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Fig. 11. Subband division corresponding to the four methods of FBMSI algorithm in filter design. (a) F1, (b) F2, (c) F3, (d) F4.

of (9) give the subbands appropriate weight coefficients. The
subband weight coefficients obtained by the corresponding
optimization and the subbands made FBMSI have a stable
improvement effect on MSI. This paper also compared another
weighting formula E2:

E2 : WN = a exp−bN +c, N ∈ [19] (10)

where N denotes the index of the subband, and a, b,c are
constants (a, b ∈ [0, 2], c ∈ [0, 1]). Compared with (9),
the corresponding subband weight coefficients decrease more
stable. And the value of each subband weight coefficient
was more average. Similarly, this study used grid method
to optimize E2 based on offline data to achieve the optimal
classification performance, where the step size of a, b was
0.25, and the step size of c was 0.1. The results were shown
in Fig 13.

Fig 13(a) shows the recognition accuracy of both methods
E1 and E2 at different signal lengths. With the increase of sig-
nal length, the difference of recognition accuracy between the
two methods gradually decreased. But the results of E1 method
were higher than that of E2 method in all cases. Fig 13(b)
showed the minimum SDN required to achieve the optimal
recognition accuracy at different signal lengths. Interestingly,
the method E2 did not show the same pattern of method
E1 (Roughly, the longer the signal length is, the smaller
SDN is required), but only required four or five filters, i.e.,
only four or five subbands were needed to decompose the
SSVEP signals. Although the recognition accuracy of E2 was
slightly lower than that of method E1, the number of required
filters was much smaller than method E1 in short-time SSVEP
signals (0.6-1.6s). This means that more than half of the
computational cost could be saved during the recognition of
short-time SSVEP signals. In the hardware configuration of
this study, the computational cost increases by about 4ms
for each additional filter, and the cost would increase with

Fig. 12. Under four filter bank design methods, recognition accuracy of
FBMSI algorithm at different data lengths (0.74-3.14s, step size 0.2s).

Fig. 13. Different performance of the two weight formulas in FBMSI.
(a) The recognition accuracy of E1 and E2 methods at different signal
lengths. (b) The minimum number of filters required for E1 and E2 to
achieve the highest recognition accuracy at different signal lengths.

the decrease of hardware configuration. Therefore, E2 method
is more suitable for SSVEP recognition system with lower
hardware configuration, which reduces the computational cost
and increases the real-time performance of the system at a
slight sacrifice of accuracy.
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Fig. 14. Weighting coefficients of FBMSI algorithm under E1 and E2.
(a): signal length = 1 s, (b): signal length = 2 s, (c): signal length = 3 s.
The red and blue dashed lines represent the weight coefficients of the
unused subbands of E1 and E2.

C. Weight Variation of FBMSI Algorithm
In order to investigate the relationship between the weight

coefficient and the signal length, we further investigated the
variation of the weight coefficient of E1, E2 under three signal
lengths (1s, 2s, and 3s). The results were shown in Fig 14. For
the convenience of presentation, the lower cutoff frequency of
each subband shall prevail, and subbands above 50 Hz were
referred to as high-frequency subbands (HFS) and vice versa
as low-frequency subbands (LHS).

By comparing the weight coefficients under three signal
lengths, it was obviously found that the weight coefficients
of LHS became higher as the signal length increases. The
reason for this phenomenon was similar to that discussed
in Section 4.3: when EEG signals contain sufficient SSVEP
components, it is unnecessary to extract too many subbands
to obtain harmonic information. Instead, the HFS at this time
could be considered as noise. When the stimulation time
is shorter and the SSVEP component of the EEG signal
is unstable, more subbands need to be extracted to obtain
harmonic information. At this time, the effective information
implied by the HFS will be beneficial to the identification of
target frequency. However, this does not mean that increasing
the weight of HFS can improve the recognition performance
of short-time SSVEP signals. Comparing the two weight
formulas, E2 gives a relatively stable weight coefficient for
HFS. But the effective subband is limited to LFS, which
means that HFS does not enter the recognition process. This
phenomenon indicates that giving too high weight to HFS is
not beneficial to the target recognition. From these results,
E1 gives a lower weight to HFS according to the power
exponent., which accordingly achieved better results.

D. Comparison With Other Methods
In recent years, Zhang et al. [35], [38] has developed

two powerful variants of MSI. In [35], the algorithm called
time-localized MSI (TMSI) measured correlation based on
the entropy of the normalized eigenvalues of the multichannel
signals covariance matrix at hyperparameters τ = 24, v = 3.
Paper [38] proposed an extension of MSI (EMSI) method by
using a time delay method, where the best identification results
were obtained when the hyperparameter τ = 1. This paper

TABLE II
COMPARISON OF THE PROPOSED FBMSI METHOD WITH OTHER

METHODS

also compared the CCA algorithm with its improved algorithm
based on the filter bank, FBCCA [42]. Reference [42] decom-
posed the original EEG signal into 10 subbands to improve the
frequency detection of the CCA algorithm. In order to make
a more comprehensive comparison of these methods, we also
used the Benchmark dataset [45] of Tsinghua University, cor-
responding to the experimental target frequency, 1224 pieces
of data (subject 5 data download failed) were intercepted at
[0.64 1.64] (the stimulus started at 0.5s) for analysis. The
parameter setting and identification results of each method are
shown in Table II.

As can be seen from Table II, the recognition accuracy
of the various methods, when tested on Benchmark dataset,
is slightly reduced. Regarding the gap in the identification
accuracy of the two datasets, there are two reasons for our
analysis: (1) In Tsinghua University’s dataset, the short target
cue time is only 0.5s, compared with 1s in our experiment,
and (2) In the case of short prompt times, two-thirds of the
subjects in Tsinghua University’s dataset were naive subjects,
that’s not friendly for target recognition.

Although the identification accuracy of various methods
decreased slightly, our proposed method still achieved the
highest identification effect. Also, the lift effect on the MSI
algorithm is above 10%, demonstrating that our improvement
on the MSI algorithm has a stable lift effect. Those comparison
results showed that the FBMSI algorithm had good recognition
performance, which proved the effectiveness and feasibility of
the FBMSI algorithm in training -free SSVEP-based BCI.

VI. CONCLUSION

To fully exploit the SSVEP-associated harmonic compo-
nents in EEG signals, we modified MSI with filter bank strat-
egy and proposed a filter bank driven MSI algorithm (FBMSI)
for further improvement of SSVEP recognition in BCI appli-
cations. Four subband decomposition methods were designed
to compare in the framework of this algorithm, and method
F4 was found to have the best recognition effect and stability.
Furthermore, our study also compared the effects of two
weight formulas, E1 and E2, on the BCI effect. Among them,
E1 had the best recognition effect, but E2 could improve
the real-time performance of the system with lower hardware
configuration at a slight sacrifice of recognition accuracy. The
results of both off-line and online experiments showed that
the method significantly reduced the recognition error rate of
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standard MSI algorithm and greatly improved the recognition
accuracy and real-time transmission rate of SSVEP-BCI.
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