
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021 607

Deep Reinforcement Learning for
Physics-Based Musculoskeletal Simulations of

Healthy Subjects and Transfemoral
Prostheses’ Users During

Normal Walking
Leanne de Vree and Raffaella Carloni , Member, IEEE

Abstract— This paper proposes to use deep reinforce-
ment learning for the simulation of physics-based muscu-
loskeletal models of both healthy subjects and transfemoral
prostheses’ users during normal level-ground walking. The
deep reinforcement learning algorithm is based on the
proximal policy optimization approach in combination with
imitation learning to guarantee a natural walking gait while
reducing the computational time of the training. Firstly,
the optimization algorithm is implemented for the OpenSim
model of a healthy subject and validated with experimen-
tal data from a public data-set. Afterwards, the optimiza-
tion algorithm is implemented for the OpenSim model of
a generic transfemoral prosthesis’ user, which has been
obtained by reducing the number of muscles around the
knee and ankle joints and, specifically, by keeping only the
uniarticular ones. The model of the transfemoral prosthesis’
user shows a stable gait, with a forward dynamic compa-
rable to the healthy subject’s, yet using higher muscles’
forces. Even though the computed muscles’ forces could
not be directly used as control inputs for muscle-like linear
actuators due to their pattern, this study paves the way
for using deep reinforcement learning for the design of the
control architecture of transfemoral prostheses.

Index Terms— Deep Reinforcement Learning (DRL), com-
puter simulation, prosthetics.

I. INTRODUCTION

COMPUTER simulations are used to analyze the bio-
mechanics of both healthy and impaired gait patterns

[1], [2], and to understand how assistive devices and pros-
theses can provide a valuable support to compensate for
abnormalities [3], [4].

In this study, we implement computer simulations on two
musculoskeletal models, i.e., the model of a healthy human
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subject and the model of a transfemoral (above-knee) amputee.
We use a Deep Reinforcement Learning (DRL) algorithm
for both models to optimize the muscle activation so that
the models can learn how to walk forward on a flat surface
at a normal speed. Specifically, two optimization algorithms
are compared, i.e., a Proximal Policy Optimization (PPO) [5]
and PPO with imitation learning [6], which we propose in
this paper. PPO with imitation learning is validated on the
healthy subject model with experimental data from a pub-
lic data-set and, then, applied to the transfemoral amputee
model. After training, the resulting gait patterns of the two
models are compared to study the effects of a generic
transfemoral prosthesis on the gait patterns and the mus-
cles’ forces, and to analyze the required actuators’ forces of
the prosthesis.

This study consists of three main steps. Firstly, this paper
brings DRL to the field of healthy gait analysis via com-
puter simulations. A state-of-the-art DRL algorithm (PPO)
is implemented and a DRL algorithm (PPO with imitation
learning) is proposed and implemented on a musculoskeletal
model of a healthy subject in the open-source simulation
software OpenSim [7]. This paper uses the model presented
in [8], which consists of two healthy legs including 18 healthy
muscles (9 per leg) to control 10 degrees of freedom. The
DRL algorithms (PPO and PPO with imitation learning) are
validated on a public data-set [9].

Secondly, this study introduces a generic musculoskeletal
model of a transfemoral amputee. This model is built in
OpenSim, and consists of 19 muscles to control 12 degrees of
freedom. The muscles are: 11 healthy muscles in the sound leg,
4 muscles at the hip joint of the amputated leg, and 4 muscle-
like actuators in the transfemoral prosthesis, i.e., a generic
prosthetic device with two agonist/antagonist muscle-like actu-
ators at the knee joint and two at the ankle joint, which
are lost following the transfemoral amputation. Previous
research has shown that it is possible to build realistic human
models with several deficits [2], transtibial (below-knee)
amputation [8], [10], and transfemoral amputation [11]
in OpenSim. However, there is not yet a transfemoral
amputees model with muscle-like actuators on a prosthetic leg,
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Fig. 1. The proposed DRL algorithm for the dynamic optimization of
the forward dynamic of the agent (either the musculoskeletal model of a
healthy subject or of a transfemoral amputee) during normal level-ground
walking.

specifically designed for implementing DRL, as proposed in
this paper.

Thirdly, this study applies the DRL algorithms (PPO and
PPO with imitation learning) to the transfemoral amputee
model. This paper exploits DRL to control the muscles of the
transfemoral amputees and the actuators’ forces of the trans-
femoral prosthesis to achieve normal level-ground walking
with a comparable gait pattern as the one of healthy subjects.

To summarize, the contributions of this paper are:
• To bring a state-of-the-art DRL algorithm (PPO) to the

analysis of gait patterns of healthy subjects.
• To propose to use a DRL algorithm (PPO with imitation

learning) on a healthy subject model in OpenSim.
• To validate the DRL algorithms (PPO and PPO with

imitation learning) on a public data-set of healthy subjects
during normal level-ground walking.

• To introduce a generic musculoskeletal transfemoral
amputee model in OpenSim.

• To use the DRL algorithms (PPO and PPO with imi-
tation learning) to control the healthy muscles of the
transfemoral amputees and the actuators’ forces of the
transfemoral prosthesis to achieve gait patterns with a
forward dynamics comparable to healthy subjects’.

• To analyze and evaluate the forces of the healthy muscles
and of the muscle-like actuators of the transfemoral
amputee model, and to compare them to the muscles’
forces of the healthy model and of healthy subjects.

This study, with reference to Figure 1, proposes to use a novel
DRL algorithm (PPO with imitation learning) to simulate the
forward dynamics of an agent (either the musculoskeletal
model of a healthy subject or of a transfemoral amputee)
during level-ground walking at a normal speed. The agent is
trained by a DRL algorithm, which is based on a deep neural
network that receives a reward (computed on an objective
function and an imitation learning term) and the observed
muscles’ and joints’ states of the agent as inputs, and outputs
an action, i.e., the activation of the muscles and of the muscle-
like actuators in the transfemoral prosthesis, that generates the
forward dynamic simulation. Sensory feedback, based on the
muscles’ and joints’ states of the agent, is used in the network.

The remainder of the paper is organized as fol-
lows. Section II describes the theoretical background on

optimization strategies and DRL. Section III presents the
methodology of this study, i.e., the deep neural network
and the optimizer for training the two models to walk in
a normal gait pattern. In Section IV, the implementation in
OpenSim is described. The empirical results are presented and
discussed in Section V. Finally, concluding remarks are drawn
in Section VI.

II. THEORETICAL BACKGROUND

This Section discusses the current state of the art of opti-
mization strategies in bipedal locomotion and the motivation
behind the choice of using DRL in this study.

A. OpenSim

OpenSim is an open-source software for modeling,
simulating, controlling, and analyzing the human neuro-
musculoskeletal system. By performing inverse and forward
dynamics, OpenSim allows for simulations of human locomo-
tion and is used in a wide range of studies [7].

We have several justifications for using OpenSim in this
paper. First of all, OpenSim allows to run musculoskeletal
simulations, which are an accurate tool to study gait patterns
in the absence of human participants [12]. Moreover, OpenSim
provides a flexible platform that can be used in combination
with optimization routines based on reinforcement learning.
Furthermore, OpenSim is widely used in current research on
locomotion. Krogt et al. [13] use OpenSim to generate muscle-
driven simulations of normal walking and then, progressively,
weaken the muscle groups to examine how much weakness
could be tolerated in order to maintain a normal gait pattern.
Steele et al. [14] compare the contributions of mass center
accelerations and joint angular accelerations during single-
limb stance in crouch gait to those in unimpaired gaits.
LaPre et al. [15] analyze the interaction between residual limb
and prostheses’ sockets in transtibial amputees using OpenSim
as a simulation tool. OpenSim is also used in transfemoral
prosthetics research, for instance to examine the influence of
limb alignment and surgical technique on a muscle’s capacity
to generate a force [3], to study gait compensatory mecha-
nisms [4], and to understand the biomechanics of osseointe-
grated transfemoral amputees [11].

B. Optimization Strategies

Optimization strategies are algorithms that aim at optimiz-
ing a policy in order to perform a task. Algorithms have
been designed to find the global minimum of an objective
function by efficiently using computational power. Hereafter,
we discuss three different evolutionary algorithms (i.e., covari-
ance matrix adaptation, biogeography-based optimization, and
particle swarm optimization) and DRL algorithms that have
been used for dynamic optimization, as summarized in Table I.
The choice for using evolutionary algorithms methods is
often based upon their resemblance with natural selection,
thus assumed to produce more natural behaviors [16]. As in
evolution, the chances of reproduction for individuals in a
population are determined by the fitness of its genes. In these
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TABLE I
STATE-OF-THE-ART OF EVOLUTIONARY ALGORITHMS AND DRL ALGORITHMS FOR DYNAMIC OPTIMIZATION

applications, the population would be represented by candidate
solutions and its genes are the gait parameters, such as the
activation for each muscle. After each time-step, individuals
reproduce based on their fitness. Candidate solutions with a
higher fitness have a higher chance of reproduction, i.e., find-
ing the optimal solution for the task.

1) Covariance Matrix Adaptation: Covariance Matrix Adap-
tation Evolution Strategy (CMA-ES) is an evolutionary algo-
rithm often used as optimizer in robotic applications [17].
By continuously updating a matrix, the algorithm searches for
optimal solutions to optimize an objective function. An opti-
mization strategy based on CMA-ES for the simulated motion
of 3D bipedal characters has been developed in [1]. Physics-
based characters have been created after which the geometry
is optimized to allow for natural walking. Parameters, such
as muscle routing, physiological properties, and attachment
points, are optimized following an objective function to min-
imize errors based on speed, head orientation, head velocity,
and effort. Yin et al. [18] use CMA-ES for the torque control
of a powered ankle-foot prosthesis. Optimization of the control
parameters demonstrates that the overshoot of the CMA-ES
controller is lower than that in the original control parameters.
Similarly, Ong et al. [2] use CMA-ES as an optimizer to
create gait patterns. Two simulation models in OpenSim are

trained, i.e., one healthy subject and a subject with specific
ankle weaknesses, and their gait patterns are compared.

2) Biogeography-Based Optimization: Biogeography-Based
Optimization (BBO) [19] is an evolutionary algorithm similar
to CMA-ES. Instead of updating a matrix, BBO uses the
migration behavior of candidate solutions that are divided into
a population where the sharing process of decision variables
is analogous. Across generations, each candidate solution
immigrates decision variables from and emigrates them to
others. Davis et al. [20] use BBO to train a robot to walk with
a prosthesis. Their results show that BBO could achieve a 62%
decrease in the ground reaction force error with regard to gait
data. Thomas et al. [21] train artificial neural networks with
BBO for the control of a prosthetic knee. It is demonstrated
that BBO improves the average performance of the powered
knee prosthesis by 8%. Abdelhady et al. [22] use BBO to
optimize the parameters of an active prosthetic knee and
demonstrate good performances in the prediction of these
parameters. Ammu et al. [23] list several disadvantages of
using BBO as an optimizer. First, although BBO is designed
to converge to a solution, it often ends up in local minima.
This could be solved by increasing the rate of mutation next
to migration to increase randomness. However, high rates
may complicate the algorithm and it may not be able to find
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a solution. Second, there is no provision that requires to always
select the best members. Whether an individual reproduces in
BBO is dependent upon the rates of migration. To prevent local
minima, these probabilities are rarely set to 100%. Therefore,
useful information in the best members can be lost while
using BBO. Third, taking over features from the previous
generation is independent of the individual’s resultant fitness,
hence infeasible solutions are generated. This unnecessarily
increases the required computational resources, making the
algorithm less efficient.

3) Particle Swarm Optimization: Particle Swarm Optimiza-
tion (PSO) is an evolutionary algorithm that focuses more on
swarm behavior rather than on information sharing, and is one
of the most commonly used optimization techniques [24]. PSO
is defined by self-organization, i.e., it is not controlled by any
factor inside or outside the system. It performs searching on
a swarm of particles that updates each time-step. To find the
global minimum, each particle moves towards its previously
best solution and the global best solution in the swarm.
Ferreira et al. [25] propose a simulated transtibial amputee
model with both a passive and an active prosthesis optimized
by means of PSO. The fitness was calculated in terms of
distance traveled, minus a penalty for falling and not adhering
to a desired velocity. It is found that, with an asymmetric gait
pattern, amputees consume around 20-30% more metabolic
energy compared to healthy individuals. Azimi et al. [26]
introduce a robust model as an adaptive controller for an
active transfemoral prosthetic leg. In their framework, PSO
is used to optimize the design parameters of the controller
where the cost function consists of control signal magnitudes
and tracking errors. They showed that PSO obtains an 8%
improvement in the objective function. Kameyama [27] reports
several issues with regard to the stability and convergence
of PSO, e.g., the trajectory of each particle might become
an oscillation, hence leading to instability of the algorithm.
In addition, the algorithm rarely leads to convergence after a
local minimum.

4) Deep Reinforcement Learning: Although there exists a
rich literature on studying transfemoral prostheses using var-
ious optimization strategies, research that has examined the
effects of transfemoral prostheses on walking patterns using
DRL as an optimization strategy is relatively sparse.

DRL consists of two parts, i.e., reinforcement learning
and deep learning. Reinforcement learning is a branch of
machine learning in which the learner is a decision-making
agent that takes actions in an environment receiving feedback
for its actions when judged in terms of solving a certain
problem [31]. Hence, the agent can take actions in an environ-
ment and, based on the reward that action provides, the agent
decides whether this action should be taken again when being
in the same state.

Most of the current contributions to prosthetics
research that use DRL are applications to arm prostheses.
Katyal et al. [28] use a shallow neural network in combination
with reinforcement learning to learn a policy for in-hand
manipulation from raw images. This method requires a
discrete action space, which would not work for walking,
where a method that can solve for a continuous action space

(i.e., non-binary values for muscles activation) is required.
This paper extends this approach by allowing the DRL
algorithm to learn in a continuous action space. Vasan and
Pilarski [29] use reinforcement learning to teach a powered
prosthetic arm to perform tasks as an intact arm. This method,
called learning-from-demonstration, requires experimental
data for muscle activations. Since in this paper, we do not
intend to use muscle activations data for a transfemoral
prosthetic leg, we propose to exploit imitation learning which
uses data on the model’s state, e.g., the joint angles, rather
than muscle activations. This allows the algorithm to find
the optimal muscle activations to generate a walking pattern
without information of what those activations should be.
Mudigonda et al. [30] demonstrate that it is possible to learn
robust grasp policies for anthropomorphic hands by means of
DRL. This method uses the trust-region-policy optimization,
i.e., an algorithm similar to the one used in this paper.
PPO, as used in this paper, optimizes the trust-region-policy
optimization by modifying the surrogate objective function
such that it prevents large policy updates. This adaptation
improves the algorithm’s performance and decreases the
complexity of implementation and computation [5].

C. Transfemoral Prostheses and DRL

Previous research has demonstrated that DRL may provide
an effective tool in studying arm prostheses. However, so far,
DRL has not yet been applied to transfemoral prostheses.
This paper argues that DRL can be effectively applied to
transfemoral prostheses for the following reasons.

Firstly, DRL has proven to perform well for studying
transtibial amputees so it provides a promising method for
transfemoral amputees. In the NeurIPS 2018 Artificial Intel-
ligence for Prosthetics challenge, participants were asked to
build a controller for a transtibial amputee model with the
goal of moving it forward, and were encouraged to use DRL.
Kidzinski et al. [8] use a musculoskeletal model of 19 muscles
with one leg having the below-knee leg replaced by a prosthe-
sis. Results have shown that DRL can find solutions in which
the agent learns a policy to efficiently move forward.

Secondly, a musculoskeletal model of a transfemoral
amputee performs its motions in a continuous action space
and DRL is specialized to deal with continuous action spaces.
Muscles cannot only activate or deactivate, they can also
partly activate by imposing less or more power to the muscle.
Combined with the degrees of freedom, this creates a large
action space which makes reinforcement learning unsuitable.
Therefore, DRL can provide solutions allowing an agent to
learn how to walk with different transfemoral prostheses.

Thirdly, using DRL limits the need of experimental data.
In transfemoral prostheses research, collecting experimental
data can be complicated due to the costs of finding and
testing suitable participants. The advantage of using computer
simulations in combination with DRL techniques is that it
does not require the agent to have knowledge about the
environment. The agent purely acts on the rewards and the
penalties it receives from trying actions, which are designed
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TABLE II
THE STATE VARIABLES OF THE AGENT (EITHER THE

MUSCULOSKELETAL MODEL OF THE HEALTHY SUBJECT

OR OF THE TRANSFEMORAL AMPUTEE)

based on an objective, such as moving forward. Therefore,
little experimental data is needed to find an efficient solution.

Fourthly, DRL allows for making and studying adaptations
of a prosthetic device quickly. Due to material, time, and
participant constraints, experimental methods for transfemoral
prosthetics complicate the adaptation of a prosthetic device and
testing it directly. With computer simulations, changes to the
device can be made quickly and specifically. This allows for
testing several variations of, e.g., joints’ motors, allowing for
finding the optimal combination of the device’s specifications
that lead to highest performance. DRL is flexible, meaning that
the same algorithm can be applied to an agent with a different
prosthetic device and still converge to a solution.

III. METHOD

This paper proposes to use a DRL algorithm (PPO with
imitation learning) so that the agent (either the musculoskeletal
model of a healthy subject or of a transfemoral amputee) learns
how to walk forward on a flat surface at a normal speed,
as shown in Figure 1. The remainder of this Section details
the components of the DRL algorithm.

A. Deep Neural Network

DRL algorithms are based on deep neural networks. In this
study, we propose to use a multi-layer perceptron, a feed-
forward artificial neural network that consists of 4 layers,
i.e., an input layer with 214 neurons (for the healthy subject
model) or 218 (for the transfemoral amputee model), two
hidden layers with 312 neurons each, and an output layer
with 18 neurons (for the healthy subject model) or 19 neurons
(for the transfemoral amputee model). For each neuron vi ,
the output y is calculated using a general output function,
i.e., y(vi ) = tanh

(
b + ∑n

i=1 xiwi
)
, where n is the number of

inputs from the previous layer, x the input to the neuron, w
the weight between the current and the previous neuron, b the
bias, and tanh the activation function.

The input to the deep neural network (see Figure 1) is
the state of the agent (i.e., a vector of positions/rotations,
linear/rotational velocities, and linear/rotational accelerations
of the joints’ angles and of the body segments either of the
musculoskeletal model of the healthy subject or of the trans-
femoral amputee), ground reaction forces, muscle activities,
muscle fiber lengths, muscle velocities, and tendon forces.
Table II summarizes the state variables of the agent.

The output of the deep neural network (see Figure 1) is
an action, i.e., an 18-dimensional for the healthy subject

model or a 19-dimensional vector for the transfemoral amputee
model, where each variable represents the activation of one
of the muscles in the models. Both the state vector and
action vector are continuous variables, which entails that
the values they contain are neither binary nor binned to a
certain distribution. Our goal is to optimize the weights in
the neural network such that, for each given state, the deep
neural network outputs the optimal action to allow the agent
(either the model of the healthy subject or of the transfemoral
amputee) to walk.

B. The Learning Algorithms

The neural network is trained to obtain input-output behav-
iors that satisfy the task of normal walking. During training,
the weights of the connections between the neurons are opti-
mized such that the network outputs desirable actions based on
the state input. The following subsections discuss the learning
algorithms used to train the neural network.

1) Proximal Policy Optimization: The optimization used in
this paper is PPO, i.e., an algorithm introduced in [5] as
an alternative to policy gradient methods. By modifying the
surrogate objective function of the trust-region-policy opti-
mization method, PPO becomes more effective yet simple to
implement. In PPO, the agent alternates between sampling
trajectories with the newest policy, and performs optimization
on the objective function using the earlier sampled trajectories.
It aims to not allow for large updates of the policy, i.e., the
mapping from states to actions. This is done by keeping
the Kullback-Leiber divergence, which measures how one
probability distribution is different from another, between the
new and the old policy within the trust region. To achieve
this, PPO clips the probability ratio and adds the Kullback-
Leiber divergence term to the loss. The ratio rt (θ) denotes
the probability ratio between the probabilities of the new
and the old policy, i.e.: rt (θ) = πθ (αt |st )

πθold (αt |st )
, where θ and

θold are the new and the old parameters, π is the policy,
πθ is the policy corresponding to the parameter θ , αt and
st are the action vector and the state vector at the time-step
t , respectively. PPO uses the following objective function:
LC L I P(θ) = E

[
min(rt (θ) Ât , cli p(rt(θ), 1 − ε, 1 + ε) Ât )

]
,

where E is the expected value, Ât is the advantage estimation,
i.e., the difference between the expected and the real reward
from an action, and ε is the clip value. If the probability ratio
falls outside the range [(1 − ε), · · · , (1 + ε)], the advantage
function is clipped to prevent too large policy updates. Intu-
itively, a high advantage means that the difference between
the expected and the estimated reward is positively turned
to the estimated reward. Hence, the new action in this state
gives more reward than expected by the current policy. Since a
higher reward is better, we want to ensure that the probability
of taking the new action in this state increases to increase
future reward. Therefore, we update the weights in the neural
network such that there is a higher probability of taking this
action in this state. The clip surrogate makes sure that the
update is not too large, as disruptions in the current policy may
have a negative influence on previous updates made. On the
contrary, for a low advantage the new action in this state gives
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TABLE III
THE HYPERPARAMETERS AND SPECIFICATIONS USED IN

PPO LEARNING ALGORITHM DURING TRAINING

less reward than expected by the current policy. Therefore,
we want to decrease the probability of taking this action in
the current state. Again, we update the weights in the neural
network such that there is a lower probability of taking this
action in this state, while the clip surrogate ensures that the
update is not too large. The advantage is calculated using the
expected and the real reward from an action. The expected
reward is based on the old policy, while the real reward is the
output of the reward function, as discussed in the next section.

Table III summarizes the hyperparameters and specifica-
tions used in PPO learning algorithm. Note that δ controls the
size of the allowed policy updates (i.e., the Kullback-Leiber
divergence should be smaller than δ) and γ is the discount
factor (0 ≤ γ ≤ 1), i.e., a meta-parameter that determines to
what extent the agent considers future rewards. If the discount
factor γ is set to 0, then the agent only considers the current
reward. A discount factor close to 1 is preferred when rewards
in the distant future are to be prioritized.

2) Reward Function: The reward function provides the agent
(either the model of the healthy subject or of the transfemoral
amputee) with information about the value of its actions.
In reinforcement learning, the agent does not have any infor-
mation about the environment. The only information it gets
is that, after each action, it receives a reward for that action.
This reward can be either positive or negative, and the agents’
behaviors are based upon maximizing the reward.

The reward function has a large influence on the agents’
behaviors and, in this study, we want the agent to walk
similarly to a healthy subject. In this paper, the reward function
rewardgoal,t consists of four parts: the amount of distance
travelled, the adherence to a desired velocity, the muscle
fatigue, and the time-steps the agent manages not to fall, i.e.:

rewardgoal,t

=
∑

t

(rewarddistance − penaltyvelocit y − penaltycost)

+
∑

t

(rewardalive) (1)

where t is the time-step. The first part of the reward function
concerns the distance the agent has travelled. This is expressed
by adding a goal reward that calculates the difference in
the x-position of the agent’s pelvis between the current and
the previous time-step. The higher this difference, the more
distance the agent has travelled during a time-step and the

higher is its reward. The second part rewards the agent for
adhering to a target velocity. During each of the simulations,
the agent gets as input a certain target velocity. This velocity
changes two or three times for each simulation. The goal of
the agent is to develop a walking pattern in the specific target
velocity, such as 4.5 km/h, which is a reasonable speed for
human walking. During each time-step, the difference between
the velocity of the agent’s pelvis and the target velocity is
calculated. The sum of squared error of this difference denotes
a penalty for deviating from the target velocity. The third
element of the reward function gives a penalty for muscle
fatigue. The transport costs the amount of energy that the
muscles use for moving from point to point. Certain gait
patterns, such as one-legged walking, may also allow the
agent for reaching its goal. However, this gait pattern puts
more pressure on the muscles compared to a more natural,
symmetric, two-leg gait pattern. Since we are looking for the
most efficient gait for reaching the task, we add a penalty for
muscle fatigue. For each time-step, the squared sum of the
muscle activations serves as a penalty for the agent. Lastly,
the fourth part of the function regards the number of time-
steps the agent manages not to fall. The simulation stops every
time the pelvis of the agents drops below 0.7 m, and the agent
is explicitly rewarded for every additional time-step it walks
without falling down.

3) PPO With Imitation Learning: The reward function is
designed to lead to realistic motions, but it does not ensure
that the motions are human-like. Hence, inspired by the work
in [8] on transtibial amputee models in OpenSim, this paper
proposes to use PPO with imitation learning.

PPO with imitation learning has proven to decrease training
times as well as to increase performance. To implement PPO
with imitation learning, we introduce an imitation term next
to the original reward function. The added imitation term
uses experimental data (from the NeurIPS 2018 for transtibial
amputees [8]) to ensure that the algorithm converges to a
solution and that the agent develops a natural walking pattern.
For each time-step, both the position and the velocity loss of
the pelvis, knee, hip, and ankle joints are calculated. This is
done by taking the sum of the squared error of the difference
between the current angles of the agent’s joints and the joints’
angles in the data in [8] at a specific time-step. The same is
done for the velocities, where their losses are calculated by the
difference between the current velocities of the agent’s joints
and the joint’s velocities in the data in [8] at a specific time-
step. These losses serve as a penalty to the reward. The higher
the losses, the lower the reward and the other way around.
This encourages the agent to keep its states as close to the
ones in the data as possible, hence encouraging a more natural
walking pattern. It should be noted that the data-set used for
training [8] required no scaling because it was specifically
designed for OpenSim and for the healthy subject model used
in this study. However, before using the data for the training
of the imitation learning part of both models, they have been
processed to guarantee a symmetric gait pattern of the hip,
knee, and ankle angles.

The final reward consists of the sum of the goal reward
term and the imitation reward term. For the selection of the
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TABLE IV
SOME TRIALS FOR FINDING THE OPTIMAL WEIGHTS OF THE GOAL

AND IMITATION LEARNING TERMS OF THE REWARD FUNCTION.
THE REWARD COLUMN SHOWS THE AVERAGE AFTER

30.000 EPISODES OF TRAINING. THE BEST

RESULTS ARE IN BOLD

weights of each terms, several simulations were conducted
which showed that 40% for the goal reward and 60% for
the imitation reward are the optimal values. Table IV reports
some trials, but more were conducted around 40-60 as they
showed high average result. In combination with Equation 1,
the proposed final reward function is:

Rewardt = 0.4 · rewardgoal,t + 0.6 · rewardimitat ion,t (2)

IV. IMPLEMENTATION

In this Section, we implement the DRL algorithm presented
in Section III on the two OpenSim musculoskeletal mod-
els (healthy subject and transfemoral amputee). Specifically,
the healthy subject model is used to implement the DRL
algorithm (PPO and PPO with imitation learning) and to val-
idate the emerging gait patterns with experimental data from
a public data-set [9]. The transfemoral amputee model uses
the validated DRL algorithm (PPO and PPO with imitation
learning) to analyze the effects of a transfemoral prosthetic leg
on gait patterns. Figure 2 visualizes the models and Table VIII
(see Appendix) details the included muscles.

A. Two Models

In OpenSim, a musculoskeletal model consists of rigid body
segments connected by joints. Hill-type muscles connect these
joints and produce forces and motion [32]. Therefore, once
a musculoskeletal model is created, OpenSim allows users
to investigate a wide range of topics, such as the effects
of geometry, the joint kinematics, and the properties on the
muscle-tendons’ forces and joints’ moments. Figure 2 (a)
shows an example of an animation in OpenSim, where the
red lines represent activated muscles, while the blue lines
are deactivated muscles. For the implementation of the DRL
algorithm, this paper makes use of the environment in [33],
which provides a link between the OpenSim software and the
Python programming language (www.python.org).

1) Healthy Subject Model: The healthy model is the muscu-
loskeletal model of a human. For this study, we use the model
provided in the NeurIPS 2018 with two healthy legs [33].
The model has 18 muscles to control 10 degrees of free-
dom. Specifically, each leg has 6 uniarticular muscles and
3 biarticular muscles, as shown in Figure 2 (b) and (c). The
10 degrees of freedom are: 3 between the pelvis and the ground
(2 transl.and 1 rot.), 1 at each hip joint, 1 at each knee joint,
1 at each ankle joint, and 1 to move the pelvis freely.

Fig. 2. Overview of the muscles used in the two models. (a) Shows
the healthy subject model with 18 Hill-type muscles [32], shown in red
and blue. (b) Displays in red the six uniarticular muscles in each leg
that produce flexion or extension torques at single joints. (c) Shows the
three biarticular muscles in red that generate torques at pairs of joints.
The healthy subject model contains both the uniarticular muscles from
(b) and the biarticular muscles from (c) in each leg. The transfemoral
amputee model contains both the uniarticular and the biarticular muscles
in the left leg and only the uniarticular muscles from (b) in the right leg
(i.e., the transfemoral prosthesis).

2) Transfemoral Amputee Model: The simulated transfemoral
amputee model proposed in this study consists of 19 muscles
to control 12 degrees of freedom. Specifically, the left healthy
leg has 11 muscles, i.e., 6 uniarticular muscles and 3 biarticular
muscles (as shown in Figure 2 (b) and (c)), and 2 uniarticular
muscles for the hip adduction and abduction. The right trans-
femoral prosthetic leg has 8 uniarticular muscles, i.e., two ago-
nist/antagonist muscles at the hip joint, two agonist/antagonist
muscles at the knee joint, and two agonist/antagonist muscles
at the ankle joint (as shown in Figure 2 (b)), and 2 muscles
for the hip adduction and abduction. The 12 degrees of
freedom include the 10 of the healthy subject model, plus one
additional degree of freedom for each leg allowing for the hip
adduction/abduction. Hip adductors/abductors were added to
both legs to make the model more realistic and allow it for
maintaining stability.

This transfemoral amputee model has been realized in
OpenSim by replacing the OpenSim model input file in [33]
with an adjusted model such that the right leg does no
longer include three biarticular muscles, i.e., gastrocnemius,
hamstrings, and rectus femoris. The short head of the biceps
femoris, vasti, soleus, and tibialis anterior muscles were kept
so they can simulate muscle-like linear actuators, i.e., sources
to power the prosthetic leg. The hip adductors and abductors
were taken from the transtibial model in [8] and added to the
OpenSim model file.

3) Muscle Actuation: The two models as presented above
contain simulated biological muscles based on a first-order
dynamic Hill-type muscle model between excitation and acti-
vation [34]. Figure 3 shows the Hill-type muscle model includ-
ing a contractile element (CE), a parallel elastic element (PE)
and a series elastic element (SE). The generated muscle force
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Fig. 3. Hill-type muscle model that describes the musculo-tendon
contraction mechanics in the two models [32]. It includes a contractile
element (CE), a parallel elastic element (PE), and a series elastic
element (SE). The elements generate a force on the tendon [34].

is a function of three factors: the length, the velocity, and the
activation level, which can range between 0% and 100%. The
muscle activations generate a movement as a function of mus-
cle properties, such as, the maximum isometric force, the mus-
cle fiber length L M , the tendon slack length LT , the maximum
contraction velocity, and the pennation angle αM .

Based on the observation of the state vector, the DRL
algorithm outputs a vector of muscle excitations. OpenSim
calculates the muscle activations from the excitations by
using first-order dynamics equations of a Hill-type muscle
model. To summarize, during each time-step of 10 ms,
the simulation: (i) computes the activations of the muscles
based on the provided excitation vector; (ii) actuates the
muscles; (iii) computes the torques based on the activations;
(iv) computes the ground reaction forces; (v) computes the
positions and the velocities of the joints and the bodies’
segments; (vi) generates a new state based on the forces,
velocities, and positions of the joints.

B. Validation Data-Set
For validating the proposed DRL algorithms and, specif-

ically, for implementing the imitation learning reward term,
we use the experimental data taken from a public data-set [9].
The data was collected on 83 typically developing children
by measuring the kinematics and kinetics of the hip, knee,
and ankle joints, the surface electromyographic signals, and
the spatio-temporal data. It contains the means of all subjects
over one gait cycle at speeds ranging from very slow to very
fast (>3 of the standard deviation below or above the mean
of the free speed). This paper uses the pelvis, hip, knee,
and ankle joints’ angles, velocities, and the ground reaction
forces.

V. RESULTS AND DISCUSSION

This Section presents the results of the DRL algorithm
(PPO and PPO with imitation learning). The first part shows
the results on the healthy model and demonstrates that it
can be validated against experimental data by comparing the
kinematic results of the simulation to the experimental data [9].
The second part shows the results of the transfemoral amputee
model. The third part discusses the performances of the two
models and compares them against experimental data [9].

A. Healthy Subject Model

1) Algorithms’ Performance: Figure 4 (left) shows the per-
formance of the DRL algorithm on the healthy model.

Fig. 4. The learning curves of the DRL algorithm (PPO and PPO with
imitation learning) applied to the healthy subject model (left) and to the
transfemoral amputee model (right). The y-axis shows the reward and the
x-axis the amount of episodes. It can be seen that, in both cases, PPO
with imitation learning performs better as over time it learns to maximize
rewards.

TABLE V
THE MEAN TOTAL REWARD RECEIVED AND THE STANDARD DEVIATION

FOR THE COMBINATIONS OF DRL ALGORITHM AND MODELS

TABLE VI
SIMILARITY METRICS BETWEEN EXPERIMENTAL AND SIMULATED DATA

OF THE EMERGING GAIT PATTERN OF THE HEALTHY MODEL. THE

RMSE IS REPORTED IN UNITS OF THE SD. THE Z-SCORE

DENOTES THE MEAN TAKEN OVER ALL SCORES

FOR EACH 2� OF THE GAIT CYCLE

The red curve shows the average reward for PPO over a
total of 30.000 episodes (one simulation), and the blue curve
shows the same results for PPO with imitation learning.
It can be noted that PPO with imitation learning allows for
a better learning compared to PPO, with a reward mean
of 1784.69 compared to 641.74 (see Table V). These numbers
indicate that the healthy subject model learns to optimize the
objective function around four times better when PPO is com-
bined with imitation learning. After around 15.000 episodes,
there is a steep rise in rewards, which means that the agent
has learned a policy, i.e., a division of weights in the neural
network, that allows it to maximize returns based on the reward
function.

2) Kinematics: Figure 5 (black line) shows the kinematics
for the emerging gait pattern of the healthy model, which has
been learned using PPO with imitation learning. It compares
the experimental data (gray area), including the angles of the
hip, knee and ankle joints, and the horizontal and vertical
ground reaction forces of the healthy model. The figure shows
that the simulated kinematic and kinetic trajectories of the
emerging gait pattern are similar both in value and shape to
the experimental data.

Table VI summarizes the kinematic results in terms of
the root-mean-squared error (RMSE) and the Z-score. The
RMSE compares simulation mean trajectories to those of
experimental data. It is computed by taking the square root
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Fig. 5. The horizontal/vertical ground reaction forces and the
hip/knee/ankle joints angles of the emerging gait pattern using PPO with
imitation learning of the healthy model (black line) and of the transfemoral
amputee model (blue line) compared to the experimental data in [9] (the
grey area is the healthy subject experimental data varying 1 standard
deviation from the mean).

of the difference in errors squared and reported in units of
standard deviation (SD). The Z-score denotes how close the
simulation data is to the mean of the experimental data.
The closer it is to 0, the closer the simulation is to the
experimental data. It is computed for the simulation data at
every 2% of the gait cycle. It can be noted that, for the
majority of the gait cycle, the kinematics and kinetics of the
emerging gait pattern are within 1 SD of the experimental data
describing a natural walking pattern. Furthermore, for each
of the measures, the RMSE between the simulated and the
experimental data is no more than 2.20 SD and the Z-score
is at most 1.77 away from the mean. The ground reaction
forces were found to match well with experimental data with
Z-scores of 1.15 and −0.26.

B. Transfemoral Amputee Model
1) Algorithms’ Performance: Figure 4 (right) shows the per-

formance of the DRL algorithm on the transfemoral amputee
model. The red curve shows the average reward for PPO
over a total of 30.000 episodes (one simulation), and the
blue curve shows the same results for PPO with imitation
learning. It can be noted that PPO with imitation learning is
able to learn to maximize its rewards, with a steep increase
in average reward around the 20.000th episode. Moreover,
the results show that PPO with imitation learning allows for
the transfemoral amputee model to learn to walk forward
with a reward mean of 2724.36 compared to 940.07 of PPO
(see Table V). These numbers indicate that the transfemoral
amputee agent has learned a policy that allows it to maximize
returns based on the given reward function.

2) Kinematics: Figure 5 (blue line) shows the kinematic data
for the emerging gait pattern of the transfemoral amputee
model. It compares the angles of the hip, knee and ankle
and the horizontal and vertical ground reaction forces of the
transfemoral amputee model with the healthy subject model
and the healthy subject experimental data along the gait cycle.

The emerging gait pattern was found to have a similar shape
and value for the hip and ankle, while it differs for the knee.
The hip angles were found to be not much diverging from
before, hence there is not much influence of the prosthesis
on the movements of the hips. For the ankle, the resulting
angles were found to have a similar shape and value compared
to experimental data, yet being less smooth compared to the
healthy model. This could be explained by that having less
muscles in both the lower and upper leg allows for less control
over the ankle hence making it more prone to uncontrolled and
larger movements. The angles for the knee were found to be
most diverging from both the healthy and the experimental
data. The shape along the gait cycle is maintained, yet the
angles are more extreme compared to the other data. The
ground reaction forces were also found to have a similar shape
for the transfemoral amputee model. However, for both forces
the general value is higher compared to the healthy subject
model. Hence, the ground exerted more force to the left leg
of the amputee model compared to the left leg of the healthy
model. This finding implies that the amputee model’s left leg
consumes more strength than the healthy model’s left leg,
as higher strength can be related to increased ground reaction
forces [35].

C. Comparison of the Two Models

One of the goals of this study is to find the difference in the
power used by the muscles around the knee and ankle between
the healthy subject and the transfemoral amputee. Table VII
summarizes the results of our simulations with regard to the
used muscle power. It shows the mean in activation and fiber
force values for the four muscles around the knee and ankle
joints taken over 500 episodes of the trained model (∼3 gait
cycles). For each model, the difference in the left and right leg
were computed and added to return a total difference in means.
It demonstrates that the difference in activation for the amputee
model (0.542) is 49.8% higher compared to the healthy model
(0.272). The difference in fiber force is 17.9% higher for the
amputee model (2292.782 vs. 1943.878). The results confirm
our hypothesis that for the transfemoral amputee model, both
activation and fiber force are higher for the right leg (i.e, the
prosthesis) and the difference between legs is higher compared
to the healthy model. The same conclusion is reached from
the Figures 6 and 7 in the Appendix, which show the fiber
force for each of the four muscles over time, and from the
Figures 8 and 9 in the Appendix, which show the distribution
and the mean fiber forces for each of the four muscles.

D. Limitations and Future Outlook

As shown in the previous sections, deep reinforcement
learning is able to generate a stable gait with a forward
dynamic comparable to the healthy subjects’ for physics-based
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TABLE VII
RESULTS FOR THE COMPARISON OF THE DIFFERENCE IN MUSCLE

USAGE BETWEEN THE HEALTHY AND TRANSFEMORAL

AMPUTEE MODELS

TABLE VIII
LIST OF MUSCLES IN BOTH THE HEALTHY SUBJECT MODEL

(FROM KIDZINSKI et al. [33]) AND THE PROPOSED

TRANSFEMORAL AMPUTEE MODEL

musculoskeletal model of both healthy subjects and trans-
femoral prostheses’ users. However, the computed muscles’
forces and, specifically, the fiber forces of the four muscle-
like actuators (two agonist/antagonist at the knee joint and two
agonist/antagonist at the ankle joint) in the model of the trans-
femoral amputee have an erratic pattern (see Figures 6 and 7
in the Appendix). As a consequence, these forces could not
be directly used as control inputs for the muscle-like linear
actuators in the control architecture of a prosthesis.

Future research should focus on investigating how the
forces could be less erratic, such that they can be used as
control inputs for the muscle-like linear actuators. A possible
solution could be found by using the output of the deep
neural network (specifically the activation forces of the four

Fig. 6. Fiber forces for the short head of the biceps (a) and vasti (b) over
500 time-steps (∼3 gait cycles). The blue and red lines denote the mean
fiber force over the time period.

muscle-like actuators) to define a reward term that penalizes
erratic patterns. This can be achieved by adding the penalty
term to the total reward function described by Equation 2.
By feeding the muscle activations (i.e., the control inputs to
the muscle-like linear actuators) directly back into the reward
term, the system will learn that to improve the reward, it needs
to output less erratic patterns. This way the training of the deep
neural network would account for additional requirements on
the action to take onto the agent and, if defined correctly,
compute smoother control inputs for the muscle-like linear
actuators.

VI. CONCLUSION

By examining the usage of computer simulations to study
transfemoral prostheses and gait patterns, this paper con-
tributes to an expanding research field. Having large amounts
of literature on healthy walking patterns as well as transtibial
prostheses, this paper hypothesized that computer simulations
could be used for studying transfemoral prostheses as well.

Testing these predictions, we presented two main contri-
butions of this research to the existing literature. Firstly, we
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Fig. 7. Fiber forces for the soleus (a) and tibialis anterior (b) over
500 time-steps (∼3 gait cycles). The blue and red lines denote the mean
fiber force over the time period.

found that the use of deep reinforcement learning is useful
for studying gait patterns for transfemoral prostheses. The
presented modification of the proximal policy optimization
that includes imitation learning allowed for an optimization
of the algorithm and a 2.8 times increased mean reward
compared to regular proximal policy optimization. Secondly,
the emerging gait pattern was validated against experimental
data from a public data-set, with close to natural ground
reaction forces as well as joint angles for the hip, knee,
and ankle. Our results suggest that a transfemoral prosthesis
would need around 49% more activation around the knee and
ankle compared to the healthy leg. Moreover, there should be
an increase of 17% in force that the replacing muscle-like
linear actuators would have to provide to generate a natural
gait pattern. The forces computed with deep reinforcement
learning and, specifically, with proximal policy optimization
combined with imitation learning, show an erratic pattern.
As a consequence, it would not be possible to directly use
them as control inputs for muscle-like linear actuators in the
control architecture of a transfemoral prosthesis. Future work
will focus on the generated muscles’ patters that can be used
as direct control of transfemoral prostheses.

Fig. 8. Comparison of distribution and mean fiber forces for the short
head of the biceps femoris (above) and vasti (below) over 500 time-steps
(∼3 gait cycles).

Fig. 9. Comparison of distribution and mean fiber forces for the
soleus (above) and of the tibialis anterior (below) over 500 time-steps
(∼3 gait cycles).

APPENDIX

Table VIII reports the list of muscles in both the healthy
subject model in [33]) and the proposed transfemoral amputee
model. It can be noted that the hip adductors/abductors are not
present in the healthy subject model and that the biarticular
muscles are not present in the right leg of the amputee model
(i.e., in the transfemoral prosthesis).

Figure 6 reports the fiber forces of the short head of the
biceps femoris (a) and of the vasti (b) over 500 time-steps
(∼3 gait cycles). The blue and red lines denote the mean
fiber force over the time period. For the biceps femoris,
the fiber forces of both the healthy subject and the transfemoral
amputee are comparable. For the vasti, it can be seen that
the difference in mean fiber force between the left and right
leg is larger for the transfemoral amputee’s model than for
the healthy subject’s. Figure 7 reports the fiber forces for
the soleus (a) and of the tibialis anterior (b) over 500 time-
steps (∼3 gait cycles). The blue and red lines denote the
mean fiber force over the time period. It can be seen that,
in general, the muscles in the amputee model’s right leg
(i.e., the prosthetic leg) have a higher fiber force compared
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to the healthy model’s right leg. Moreover, it can be seen that
the difference in mean fiber force between the left and right
leg is larger for the amputee model compared to the healthy
model.

Figure 8 compares the distribution and mean fiber forces
for the short head of the biceps femoris (above) and of the
vasti (below) over 500 time-steps (∼3 gait cycles). Figure 9
compares the distribution and mean fiber forces for the soleus
(above) and of the tibialis anterior (below) over 500 time-
steps (∼3 gait cycles). From both figures, it can be seen that,
the difference in mean fiber force between the left- and right
leg is higher in the amputee model compared to the healthy
model.
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