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Abstract— Parkinson’s Disease (PD) is a common neu-
rodegenerative disease which impacts millions of people
around the world. In clinical treatments, freezing of gait
(FoG) is used as the typical symptom to assess PD patients’
condition. Currently, the assessment of FoG is usually
performed through live observation or video analysis by
doctors. Considering the aging societies, such a manual
inspection based approach may cause serious burdens on
the healthcare systems. In this study, we propose a pure
video-based method to automatically detect the shuffling
step, which is the most indistinguishable type of FoG.
Firstly, the RGB silhouettes which only contain legs and
feet are fed into the feature extraction module to obtain
multi-level features. 3D convolutions are used to aggregate
both temporal and spatial information. Then the multi-level
features are aggregated by the feature fusion. Skip con-
nections are implemented to reserve information of high
resolution and period-wise horizontal pyramid pooling is
utilized to fuse both global context and local features.
To validate the efficacy of our method, a dataset con-
taining 268 normal gait samples and 362 shuffling step
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samples is built, on which our method achieves an average
detection accuracy of 90.8%. Besides shuffling step detec-
tion, we demonstrate that our method can also assess
the severity of walking abnormity. Our proposal facilitates
a more frequent assessment of FoG with less manpower
and lower cost, leading to more accurate monitoring of the
patients’ condition.

Index Terms— Parkinsonianshuffling step, abnormal gait
recognition, 3D convolution, severity assessment.

I. INTRODUCTION

PARKINSON’S Disease (PD) is a progressive neurode-
generative disease of the central nervous system which

usually occurs in the elder group. PD patients suffer from
several kinds of movement disorders including static tremor,
muscular rigidity, bradykinesia and freezing of gait. These
movement disorders seriously affect the life quality of
patients, and over 6.1 million individuals suffer from it
worldwide [1]–[4]. Among these disorders, freezing of gait
(FoG) is a common debilitating symptom that occurs mostly
in the middle to later stage of PD. According to statistics,
in the later stage, more than 60% PD patients suffer from
FoG, and 70% PD patients’ falls are related to FoG [5], [6].
Therefore, FoG is considered as a typical symptom to assess
PD patients’ condition. For example, after a Deep Brain
Stimulation (DBS) surgery, FoG is often used to guide doctors
to adjust the parameters of electrical stimulation. However,
the assessment of FoG requires heavy labor of specialized
doctors. This work prevents the patients from getting more
frequent assessment during their rehabilitation. Commonly a
PD patient takes only 2 to 4 assessments a year, which is not
enough for continuous monitoring of the patient’s condition
changes. If the automatic method with high efficiency and
low cost can be developed, more frequent assessments can
be conducted. This could provide doctors with more detailed
information when adjusting patients’ treatments.

To describe FoG in detail, we refer to UPDRS standard
of walking abnormity to assign FoG symptoms with different
scores [7]. As is shown in Tab. I, FoG symptoms are divided
into four different levels according to severity. Thompson and
Marsden developed a similar division of FoG in [8], where
mild cases of FoG are called shuffling step. In our study,
we refer to FoG symptoms with score 1 and 2 as shuffling step.
Patients scored more than 2 are not able to walk independently,
thus these types of FoG are easy to recognize. In contrast,
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Fig. 1. The TUG test consists of six sub-tasks, including Sit, Sit-to-Stand, Walk, Turn, Walk-Back, and Sit-Back. We mainly focus on the sub-task
Walking which is highlighted in red. To protect patients’ privacy, the eye areas are covered in all figures in this paper.

TABLE I
UPDRS STANDARD FOR WALKING ABNORMITY

patients with shuffling step are not that easy to be distinguished
from normal people. They hit their feet to the ground toe to
heel when walking, which needs careful observation of doctors
to identify. Therefore, the shuffling step’s detection is much
more challenging than detection of FoG with scores 3 and 4.

Previous work has developed automatic methods for the
detection of FoG as a whole. In [9], Hu et al. developed a
dataset containing 45 subjects where most of them need help
to walk. While the proposed method achieved great accuracy
of FoG’s detection on their dataset, experiments on our dataset
in which subjects mainly suffer from shuffling step show that
the method is not capable of effectively detecting shuffling
steps. We focus on the detection of shuffling step and the
assessment of shuffling step severity in this paper.

Many sensor-based methods have been proposed to detect
FoG as the cost of sensors decreasing. Various gait motion
parameters such as speed and orientation angles can be
obtained by these sensors. However, clinical doctors still rely
on timed up-and-go (TUG) tests heavily to diagnose and assess
PD patients’ condition in practice. Fig. 1 shows the six sub-
tasks of the TUG test, including Sit, Sit-to-Stand, Walk, Turn,
Walk-Back, and Sit-Back, which cover the most important
activities in daily lives. Patients either perform TUG tests at
hospitals observed by doctors or capture TUG videos at home
and send them to doctors to get an assessment. In either way,
TUG videos are captured and recorded,which provides the data
foundation for automatic video-based assessment. Moreover,
for patients receiving remote treatments, video-based methods
are easier to be conducted since no specialized equipment is
required. The only device required by TUG tests is a mobile
phone with a camera. So, we follow the commonly used TUG
test and develop an automatic method to detect and assess
shuffling step based on TUG videos. Shuffling can be observed

in the stage of Walk, Turn and Walk-Back. In the sub-task Turn,
patients’ legs and feet are severely occluded. And the Turn
stage is often too short for careful observation. When patients
are walking back, the toes would be occluded by legs, leading
to severe loss of information about feet. Thus we only choose
the sub-task Walk for analysis.

Video-based assessment of shuffling step is somewhat sim-
ilar to the task of human gait recognition. The former detects
abnormity in PD patients’ gait, while the latter analyzes human
gait to recognize human identity. Inspired by the commonly
used framework in human gait recognition, we develop a
two-stage pipeline. The first stage is feature extraction and
the second stage is feature fusion. For preprocessing, a video
clip is processed to produce the silhouettes of the subject. The
RGB silhouettes are cropped to only contain legs and feet
as the input of the feature extraction module. Different from
general gait recognition in which explicit temporal relationship
can be ignored [10], shuffling step is explicitly characterized
by the hitting order of the toes and heels. This indicates
that temporal information could be critical for shuffling step
assessment. So for feature extraction, we utilize 3D convolu-
tions to extract features of a frame sequence as a whole and
produce multi-level features. Then the extracted features are
fused by max operation through time and 2D convolutions
are adopted to further extract spatial information. As the
difference between patients’ gait and normal people’s gait is
subtle, we argue that more information of high resolution is
needed. Therefore skip connections from the shallow levels
to the deep level are designed. At last, the fused features
are further refined by period-wise horizontal pyramid pooling
(PHPP) to combine both global context and local features
before fed into the final classification layer. Beyond only
detecting the existence of shuffling step, our method can also
assess the severity of walking abnormity. This is useful, for
example, in monitoring PD patients’ condition changes during
rehabilitation.

To validate the performance of our method, we collected
147 TUG videos from Tsinghua University Yuquan Hospital.
Based on these videos, 362 positive samples with shuffling step
and 268 negative samples with the normal step are sampled to
formulate the shuffling step dataset. Besides, all the videos are
given UPDRS scores according to their walking abnormity by
clinical doctors from Yuquan Hospital. Our method achieves
the shuffling step detection accuracy of 90.8% on the dataset,
which is superior to state-of-the-art method in FoG detection.
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Fig. 2. The overall framework of our proposed method. The model consists of two parts, namely the feature extraction module and the feature
fusion module. Finally, fully connected layers are used to produce the results of detection or assessment.

Also, our method performs well in severity scoring of walking
abnormity with the accuracy of 84.2%.

II. RELATED WORK

In this section, previous methods related to the analysis
of PD patients’ movement disorders are introduced. Methods
which only use RGB videos as input are referred to as
video-based methods, while methods which require specialized
equipment such as motion sensors or depth cameras are
referred to as specialized-equipment-based methods.

1) Specialized-Equipment-Based Methods: Motion sensors
have been widely used to capture motion information.
Camps et al. [11] proposed an approach to recognize FoG
where a waist-placed inertial measurement unit (IMU) was
used to collect movement signals. They used an 8-layer
1D convolutional neural network to process the motion sig-
nals. Similarly, Mileti et al. [12] used wearable sensors on
patients’ lower limbs to collect movement signals of gait,
then the data was analyzed to evaluate the condition of
patients. Apart from motion sensors, depth cameras are also
common tools to analyze human gait. Nguyen et al. [13]
used a depth camera Kinect to obtain the 3D skeleton of the
patients. The 3D skeleton containing abundant information
about motion was then further utilized for detecting normal
gait. Dranca et al. [14] also used Kinect. After obtaining the
3D skeletons by Kinect, they utilized the Bayesian networks
to classify Parkinson abnormal gait into three kinds. With
the help of specialized equipment, these methods showed
great performance in detecting movement disorders. However,
the usage of specialized equipment leads to inconvenience
in practice. For example, the wearable sensors may interfere
with the patients’ movement, especially when patients suffer
from severe movement disorders. Also, the calibration of these
sensors is too difficult for patients to operate at home which
prevents the large scale of application in a remote manner.
As for depth cameras, though the cost of them is decreasing
these years, very few families would buy them for daily use.
Even if in hospitals, doctors need additional labor to establish
them along with traditional TUG test. On the contrary, pure
video-based methods need no additional work since TUG test
videos are usually recorded. The videos can also be captured
by commonly used mobile phones which means video-based
methods can be easily and conveniently conducted in a remote
manner.

2) Video-Based Methods: Deep learning has been proven to
be powerful in video processing. Tang et al. [15] proposed a
method to achieve accurate detection of toe-off events using

a single camera. They used consecutive silhouettes difference
maps (CSD-maps) to represent the gait pattern. They argued
that the CSD-maps provided significant features for toe-
off event detection. Hu et al. [9] proposed a vision-based
method to recognize FoG. They first detected the keypoints
of legs and feet and then employed the graph convolution
neural networks (GCNN) [16] to obtained the features of the
keypoints and combined the features extracting from C3D
networks to classify the abnormal gait and the normal gait.
Wolf et al. [17] proposed multi-view 3D Convolutional Neural
Network (MV3DCNN) to capture spatial-temporal informa-
tion from gait sequences. Optical flow image was utilized
to enhance the performance when facing different clothings.
To solve the problem that convolutional network couldn’t deal
with long image sequences, a gait sequence was cut into
several short sequences as the input of the network. Tha-
par et al. [18] proposed a two-stage method to identify human
gait from multiple views. A 3D convolutional neural network
was designed to estimate the viewing angle and perform
subject identification. Liu et al. [19] proposed a video-based
method to quantify hand movement bradykinesia severity on
PD patients. Human pose estimation method was used to get
finger joints’ locations and then an SVM classifier used them
to generate score ratings. Generally, mild movement disorders
like shuffling step have not received much attention yet.
We hence propose a pure video-based method to automatically
assess shuffling step.

III. THE PROPOSED METHOD

Fig. 2 illustrates the overall framework of our method. Two
major modules are designed in our method. Firstly, each frame
of a sample is pre-processed into a RGB silhouette as the
input of the feature extraction module. Mask R-CNN [20] is
used to produce the bounding box of the subject and then
NLGInet [21] is utilized to parse the human body from
the bounded patch. Noted that shuffling step is a movement
disorder which affects the behaviour of a patient’s legs and
feet most, the RGB silhouette is further cropped to only
contain legs and feet. Next, the cropped RGB silhouettes of
a sample are concatenated together and fed into the feature
extraction module. The feature extraction module utilizes
3D convolutions to extract multi-level features. The feature
volume of the i-th level is a 5-dimensional tensor, denoted
as Vi ∈ R

B∗T∗H∗W∗C , i = 1, 2, 3, where B, T, H, W, C
refer to batch size, time span, height, width and channels
respectively. Then the multi-level features are fused temporally
and spatially. To aggregate information across time, the max
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Fig. 3. The detailed architecture of our method. The feature extraction module is marked by the orange dashed line, and the feature fusion module
is marked by the blue dashed line.

operation is utilized to extract most salient features in all
frames. As for spatial fusion, multi-level features of different
resolutions are combined and processed within multiple scales.
The fused features are then flattened and fed into a classifier
to produce the final detection result or the predicted severity
level. Details of the structure of our proposed method are
illustrated in Fig. 3.

A. The Feature Extraction Module

The feature extraction module is designed to extract multi-
level temporal-spatial features. As is shown in Fig. 3, the fea-
ture extraction module consists of three levels. The first level
extracts local features of each frame independently at original
resolution. Noted that shuffling step is rather subtle compared
to normal gaits, features of the first level are of the same
resolution as input images to reserve information of high
resolution. A 3D convolutional layer with 1*3*3 kernels is
implemented to independently extract each frame’s features
in parallel. The second and third levels extract more global
features and combine informative cues cross time. The features
of each level are V1, V2 and V3 respectively.

In human gait recognition, frames of a human gait sequence
can be considered as independent [10]. However, we argue
that shuffling step is characterized by the explicit temporal
relationship which needs temporal aggregation. Specifically,
when a patient with shuffling step is walking, his toes tend
to hit the ground before his heel, while for normal people,
the hitting order is just the opposite. If the order of frames
in a sequence is disrupted, this important cue would be lost.
Therefore, we utilize 3D convolutions to model the temporal
relationship. To extract more global cues and reduce the cost
of computation, pooling layers are used to downsample the
feature volumes by 2 times before the second and the third
levels.

In our method, we consider three types of convolu-
tional cells. They are C3D-cell, D3D-cell, and P3D-cell.

Fig. 4. The C3D-cell comes from C3D network [22].

Fig. 5. D3D-cell contains multiple composite function layers (CFL),
and the input of each CFL refers to the features of all former CFLs’
outputs [23].

In [22], five 3D convolutional layers were cascaded to
extract deep features. Following this design, we implement
a basic cell consisting of a 3D convolutional layer, a ReLU
layer and a batch normalization layer as the C3D-cell.
As is shown in Fig. 4, the kernel size of the 3D convolutional
layer is 3*3*3. D3D-cell is much more complicated [23].
Liu et al. proposed the D3D network for video-based per-
son re-identification. A D3D-cell consists of six composite
function layers (CFL), and these CFLs are densely connected
in the form of densenet as shown in Fig. 5. In each CFL,
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Fig. 6. P3D-cell derived from Pseudo-3D Residual Networks [24].

a 1*1*1 3D convolutional layer is used to adjust channels and
a 3*3*3 convolutional layer is utilized to extract temporal-
spatial features. Compared to C3D-cell, the D3D-cell has
larger receptive field and requires more parameters. Inspired
by the great success of ResNet [25] in numerous challenging
image recognition tasks, Qiu et al. proposed the Pseudo-
3D Residual Networks to extend residual networks to 3D
convolutions [24]. The structure of the P3D-cell is illustrated
in Fig. 6. The temporal processing and spatial processing
are separated. D3D-cell and P3D-cell suffer from over-fitting
much as the number of samples in our dataset are relatively
small. The total number of layers in a D3D-cell is much more
than C3D-cell. As for P3D-cell, the longest path in a cell
is deeper than C3D-cell leading to higher complexity. As a
result, we adopt C3D-cell as the 3D convolutional cell in our
experiments. If the dataset is expanded in the future, it is
possible that D3D-cell and P3D-cell can also exhibit good
performance.

B. The Feature Fusion Module

The extracted multi-level spatial-temporal features are
aggregated by the feature fusion module, as is shown in Fig. 3.
The features are fused in both temporal and spatial dimensions.

1) Temporal Fusion: All vision cues related to shuffling
step need to be aggregated through time. Shuffling step is
a kind of movement disorder which is hard to distinguish
from normal gaits and usually the typical characteristics of
shuffling step only appear among a few consecutive frames.
Also, in different stages of a gait cycle, shuffling step symptom
could appear at different locations. For example, at the hitting
moments of feet, pixels around the toes may be critical. While
in the process of moving legs, the rigidity of legs may present
discriminative features. Therefore an effective mechanism to
identify and aggregate informative features during different
stages is required. To process features across time at a fine-
grained level, the pooling layers in the feature extraction
module only down-sample the feature volumes spatially while
the time span of feature volumes remains unchanged. After
the process of 3D convolutions, a max operation across time
is utilized to reserve the most descriptive features of shuffling
step’s pattern at each pixel, leading to three levels’ feature
maps Mi ∈ R

B∗H∗W∗C, i = 1, 2, 3.
2) Spatial Fusion: As is shown in Fig. 3, M1, M2 and M3 are

aggregated together with 2D convolutions and pooling layers.
Further, we argue that high resolution features are valuable for
detecting shuffling step, since shuffling step is characterized

by certain local structures. For example, the length of the
movement of toes on an image is very small while the raising
abnormity of toes is one of the most important features of
shuffling step. Thus, we develop a block called UP to make
a better combination of shallow high-resolution features with
deep features. In the UP block, skip connections from shallow
layers to deep layers are designed and features from different
layers are summed up. To match the original resolutions,
upsampling layers are used. Then the summed features are
spatially fused by a successful pooling mechanism called
horizontal pyramid pooling (HPP) [26]. HPP divides a feature
map horizontally into several strips as is shown in Fig. 7.
According to the height of the strips, these strips contain
information of different scales. In our experiments, the feature
map is divided into 1,2,4 and 8 strips respectively leading to
15 strips with different scales. Each strip is pooled spatially by
global average pooling(GAP) and global max pooling(GMP),
and the GAP result and GMP result are summed up. After the
above mentioned operation, each strip is represented by a C
dimensional vector and all the 15 vectors are concatenated into
a new feature map. Then independent fully-connected layers
are implemented to transform these C dimensional vectors into
C ′ dimensions, denoted as G ∈ R

B∗N∗C ′
, where N = 15 in

our experiments.
Moreover, we notice that shuffling step has characteristics

at different time granularity. For example, the hitting order of
toes and heels can be determined by a few frames near the
exact hitting moment, while detecting abnormity of moving
legs requires global analysis of a whole gait sequence. There-
fore, we propose to conduct spatial fusion within multiple
time spans. We propose a new pooling mechanism called
period-wise horizontal pyramid pooling (PHPP) to conduct
spatial fusion directly on V3 before max operation. Fig. 7
illustrates the difference between PHPP and HPP. To be
concise, the diagrams only display operation for each channel.
Empirically, we divide the whole time span into 1,2 and
3 periods respectively, leading to a total of 6 periods. For each
period, horizontal pyramid pooling is done and the resultants
are concatenated across channel dimension. To adjust channels
of the resulting feature maps, independent fully-connected
layers are used to produce G p ∈ R

B∗N∗C ′
. Then G p is added

with G and the resultant is flattened as input of the final
classification layer.

IV. EXPERIMENTAL RESULTS

A. Data Preparation

Approved by Tsinghua University Yuquan Hospital, we have
collected a dataset of totally 18 PD patients and 42 normal
people. Each patient took several TUG tests before and after
Deep Brain Stimulation (DBS) operation. The time interval
between two TUG tests is at least one month so that the
collected TUG videos are of rich diversity. As for normal
people, identical TUG tests are conducted in Tsinghua Uni-
versity Yuquan Hospital to reduce the environmental biases in
data collection. In total, 147 TUG videos are collected. Fig. 8
illustrates several TUG video fragments in our study.

All TUG videos are of the frame rate of 25 frames per sec-
ond (FPS), namely the interval between consecutive frames
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Fig. 7. Illustration of horizontal pyramid pooling (HPP) and period-wise horizontal pyramid pooling (PHPP). To be concise, the diagrams only display
operation for one channel. The resultants for all the channels are concatenated together.

Fig. 8. Sample frames from Yuquan Hospital. The first row displays
frames collected from Parkinson patient with shuffling step and the sec-
ond row refers to the normal gait.

is 40 ms. According to our observation on the collected data,
normal individuals or PD patients with shuffling step spend
under 0.8s to complete a cycle of gait, which is defined as the
time interval between two consecutive hitting moments on the
ground of the same foot. Therefore we collect 25 consecutive
frames which contain a complete cycle of gait as a sample.
In general, for one TUG video three to five samples are
produced. Moreover, all the 147 videos are given UPDRS
scores by professionals to describe the severity of shuffling
step following the standard shown in Tab. I. Tab. II shows the
scoring of our samples. It is noticeable that our samples are
all mild cases scored 0,1 and 2. As is discussed in Section I,
for patients with scores more than 2 who couldn’t walk
independently without help, FOG can actually be detected

TABLE II
UPDRS SCORES OF THE SAMPLES

in a straightforward way. On the contrary, it is much more
meaningful and more difficult to distinguish a mild case
from normal people. Samples with zero scores are denoted
as negative and the others are regarded as positive, leading to
a total of 362 positive samples and 268 negative samples.

Since our work specifically focuses on the sub-task Walk
in TUG tests, we use the method proposed by Li et al. [27]
to achieve automatic sub-task segmentation. After Walk frag-
ments are separated out, Mask R-CNN [20] is used to detect
human body area and produce bounding boxes around the
body centers. Based on these bounding boxes, the human body
area is cropped out and resized into 128*64 for each frame of
a sample. Moreover, NLGInet [21] is used to perform human
parsing to eliminate the interference of background. Noticed
that shuffling step is more related to patients’ legs and feet,
the input images are further cropped to only contain the lower
part of the body. Empirically, we directly crop the lowest
quarter of the 128*64 images, leading to inputs of 32*64.
Based on the above pre-processing, we produce a total of 6
types of input as is shown in Fig. 9. The first three types
contain the full body of the subject, and the size of them
is 128*64. Type-I is the original RGB version of the full
image. Type-II is the silhouette version. Type-III is produced
by eliminating background of Type-I, and is called the RGB
silhouettes. Type-IV to VI only contain the lower part of
the body. They are directly obtained by cropping the lowest
quarter of the full size version. Experiments show that Type-VI
performs the best compared to others, thus the following
experimental results are all produced with Type-VI inputs.
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Fig. 9. Illustration of six types of inputs. The first row corresponds to
Type-I,II,III, and the second row displays Type-IV,V,VI.

B. Detection of Shuffling Step

A fully-connected binary classification layer is implemented
following the proposed feature fusion module to detect the
existence of shuffling step. As is mentioned above, samples
with zero scores are considered as negative samples and
the other samples are regarded as positive. To make the
experimental results more stable and more reliable, the com-
plete dataset is randomly divided into three parts to perform
three-fold cross validation. Samples of the same subject are
restricted to be in exactly one fold, so that the training set
and the validation set do not have samples from the same
participant.

Three metrics are used to assess the performance of our
method and several previous state-of-the-arts. The average
classification accuracy of three folds is referred to as acc.
Besides, prec is used to assess the precision of the predicted
positive samples and rec is used to measure the detection ratio
of shuffling step as is defined in (1) and (2). Similar to acc,
the average prec and rec are calculated on three folds.

prec = true posi tive

true posi tive + f alse posi tive
(1)

rec = true posi tive

true posi tive + f alse negative
(2)

To validate the effectiveness of our method, we reproduce
several methods on our dataset. GaitSet [10] is a successful
method for human gait recognition which is designed to
recognize human identity from a gait sequence. D3D is also
a classical architecture designed for person re-identification
problem initially [23]. The final multi-class classification lay-
ers of them are replaced with binary fully-connected layers
to produce the detection results of shuffling step. C3D is
proposed as a universal 3D descriptor for video analysis. We
follow the architecture designed in [22] which is initially
designed for video-based action classification. Five C3D cells
and two fully-connected layers are concatenated to produce
a binary classification results. P3D [24] is another effective
architecture for video-based action classification, and the final

TABLE III
AVERAGE RESULTS OF 3-FOLD CROSS-VALIDATION

TABLE IV
TRUTH TABLE OF THE SAMPLES

fully-connected layer is modified to produce binary output.
JGP-GCNN [9] is recently proposed to detect FoG symptom
from videos which is the most relevant method with ours. All
the above mentioned methods are fed with inputs of the same
formats as ours.

Tab. III shows the quantitative comparison between our
method and several state-of-the-arts. Our method achieves an
accuracy of 90.8%, outperforming others with a large margin.
Our method also achieves both higher precision and recall
which demonstrates that our method not only enhances the
overall accuracy but also maintains a good balance between
sensitivity and specificity. And Tab. IV shows the truth table of
our method for the detection of positive and negative samples,
where positive samples represent shuffling step and negative
samples represent normal gait.

To further demonstrate the effectiveness of our proposed
method, ablation study is conducted and Tab. V presents the
results. For comparison, We replace the 3D convolutional
cells with parallel 2D convolutions, denoted as “Ours-2D”.
It is shown that 3D convolutions contribute a lot in both
precision and recall, in line with our intuition that temporal
relationship is critical for shuffling step’s detection. Moreover,
the combination of shallow high resolution features with deep
features is also effective especially for the detection recall.
Tab. V shows that the high resolution features contribute
significantly on the detection recall with more than 5 percent
at the cost of a slight sacrifice on detection precision. It is
reasonable that the high resolution features are capable of
detecting the subtle difference between mild cases of shuffling
step and normal gaits, which may be the reason of the great
improvement on recall. Further, the proposed period-wise
horizontal pyramid pooling (PHPP) helps to achieve a better
balance between sensitivity and specificity and enhance the
overall accuracy of the detection. The period-wise temporal
fusion makes it possible to aggregate information at different
time scales, enabling global consideration of both long-term
features and short-term characteristics. More interestingly,
accuracy on three folds further reveals the ability of PHPP to
stabilize the performance of the model, which implies better
generalization on different data composition.
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TABLE V
ABLATION STUDY

TABLE VI
COMPARISON OF INPUT FORMATS

TABLE VII
IMPACT OF ADDITIONAL DATA FROM CASIA

Tab. V also lists the number of parameters of our proposed
method. It is notable that the 3D convolutional cells and
the skip connections from high resolution features to deep
features do not increase the number of parameters greatly.
And also the PHPP block only increases a small portion of
parameters which proves that the enhancement achieved by
our method does not merely result from higher complexity.
As for FLOPs and speed, only several milliseconds are needed
to analyze a 25-frames sequence on a Geforce RTX 2080Ti
GPU. Though the UP and PHPP structures consume a little
bit more time, the proposed method is still fast enough for
real time applications. And it is very promising to apply our
method on mobile platforms in real time in the future.

C. Impact of Input Formats

Fig. 9 displays the six types of inputs. The impacts of
them are evaluated using our proposed method on the detec-
tion accuracy. Tab. VI shows the quantitative results. It is
observable that the cropped versions consistently outperform
their counterpart full size version. This may be explained by
the intuition that shuffling step is much more related with
abnormity of legs and feet than the upper part of body,
so that the cropped versions would guide the network to focus
directly on the most important parts. Moreover, the silhouette
versions lead to unsatisfactory results. This implies that the
RGB variance of the image, which represents illumination,
textures and body structures, contains rich motion cues of the
subject. Since Type-VI performs the best on the dataset so
that all the other experiments are carried out with this kind of
inputs. Noticed that compared with results shown in Tab. III,
the input formats are even more influential than the network

Fig. 10. Five frames come from CASIA data [28]. We select 96 samples
from CASIA data to balance our dataset.

architecture. This proves that input format is also a critical
factor of detection accuracy which needs careful consideration.

D. Experiments With Additional Data

As the scale of our dataset is relatively small and the positive
samples and negative samples are not very balanced, we refer
to the public dataset for the extension. We refer to CASIA
gait dataset to increment the number of negative samples [28].
CASIA gait dataset contains three sub-sets, namely Dataset A,
Dataset B and Dataset C. Among them, Dataset B provides
multi-view walking videos for 124 individuals. We select
the front-view videos of 24 subjects to generate 96 negative
samples. Fig. 10 illustrates several samples generated from
CASIA data. The additional 96 samples are randomly divided
into three folds and added into our dataset. Tab. VII shows
the performance of our method on the extended dataset. The
extension of the dataset boosts the average accuracy to 91.3%.
This implies that with more data available, our method would
perform even better on the detection accuracy.

E. Severity Assessment of Walking Abnormity

Compared with detection of shuffling step, a more challeng-
ing and more practical analysis on PD patients is the severity
assessment of walking abnormity. In our dataset, each video
is assigned with a score as its label according to UPDRS
standard shown in Tab. I. We design a three-class classification
task based on these TUG videos. The dataset is divided into
three folds and cross-validation is performed. Noticed that
one TUG video could contain more than one sample. If a
video only contains one sample, then the prediction score of
this sample is assigned to the video as the final prediction.
When a video contains more than one sample, we calculate the
most number of prediction as to the video’s prediction score.
In this way, our method achieves an average scoring accuracy
of 84.2%. As we do not find similar research assessing the
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severity of shuffling step based on RGB videos, we do not
conduct experiments for comparison. Our method is helpful for
assessing PD patients’ condition changes during their recovery.
The accuracy at present is largely restricted by lack of labelled
data. In the future, it is promising to achieve more accurate and
more continuous assessment of PD patients with the expansion
of dataset.

V. CONCLUSION

In this paper, we propose a video-based automatic method
for shuffling step detection and severity assessment. 3D con-
volutions are adopted to aggregate informative temporal cues.
In the feature fusion module, multi-level features are fused
both temporally and spatially. Extensive experiments demon-
strate the effectiveness of our proposed method. We also
explore the possibility of automatically scoring walking abnor-
mity. With the development of large-scale dataset, it is
promising to achieve remote and automatic assessment of
PD patients’ condition more accurately in the future.
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