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Abstract— Improper baseline return from the previous
task-evoked hemodynamic response (HR) can contribute
to a large variation in the subsequent HR, affecting the
estimation of mental workload in brain-computer inter-
face systems. In this study, we proposed a method using
vector phase analysis to detect the baseline state as
being optimal or suboptimal. We hypothesize that selecting
neuronal-related HR as observed in the optimal-baseline
blocks can lead to an improvement in estimating mental
workload. Oxygenated and deoxygenated hemoglobin con-
centration changes were integrated as parts of the vector
phase. The proposed method was applied to a block-design
functional near-infrared spectroscopy dataset (total blocks
= 1384), measured on 24 subjects performing multiple diffi-
culty levels of mental arithmetic task. Significantdifferences
in hemodynamic signal change were observed between the
optimal- and suboptimal-baseline blocks detected using
the proposed method. This supports the effectiveness of
the proposed method in detecting baseline state for better
estimation of mental workload. The results further high-
light the need of customized recovery duration. In short,
the proposed method offers a practical approach to detect
task-evoked signals, without the need of extra probes.

Index Terms— Baseline state, brain-computer inter-
face, functional near-infrared spectroscopy, hemodynamic
response, mental workload, vector phase analysis, working
memory.

Manuscript received December 20, 2020; revised January 28, 2021;
accepted February 22, 2021. Date of publication February 24, 2021;
date of current version March 8, 2021. This work was supported in
part by the Ministry of Higher Education Malaysia through the Higher
Institutional Centre of Excellence (HICoE) grant awarded to the Centre for
Intelligent Signal and Imaging Research (CISIR), National Grant, under
Grant FRGS/1/2018/TK04/UTP/02/10, and in part by the Yayasan UTP
under Grant 0153A-E99. (Corresponding author: Tong Boon Tang.)

Lam Ghai Lim, Wei Chun Ung, Yee Ling Chan, and Tong
Boon Tang are with the Centre for Intelligent Signal and Imaging
Research (CISIR), Institute of Health and Analytics, Universiti
Teknologi PETRONAS, Seri Iskandar 32610, Malaysia (e-mail:
limlamghai@gmail.com; ungweichun@gmail.com; elingx10@
hotmail.com; tongboon.tang@utp.edu.my).

Cheng-Kai Lu is with the Department of Electrical and Electronic
Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610,
Malaysia (e-mail: chengkai.lu@utp.edu.my).

Tsukasa Funane and Masashi Kiguchi are with the Center for
Exploratory Research, Research and Development Group, Hitachi
Ltd., Tokyo 185-8601, Japan (e-mail: tsukasa.funane.sb@hitachi.com;
masashi.kiguchi.py@hitachi.com).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNSRE.2021.3062117, provided by the authors.

Digital Object Identifier 10.1109/TNSRE.2021.3062117

I. INTRODUCTION

NEUROVASCULAR coupling takes place when there is an
increase in brain activity, leading to changes in cerebral

oxygenation and hemodynamics [1]. A number of brain imag-
ing modalities, such as functional magnetic resonance imag-
ing (fMRI) and functional near-infrared spectroscopy (fNIRS),
have been used to quantify the hemodynamic response (HR).
Due to the slow nature of HR, block design has been exten-
sively employed in hemodynamic-based experimental para-
digm [2]. The block design typically consists of multiple
repetitions of functional task/stimulation period alternating
with a control period for the recovery of task-evoked HR to the
baseline [2]. The amount of time required for the recovery has
been observed to prolong with an increase in the task duration
[1]. Hence, it is recommended that the control period should
have at least the same duration as, if not longer than, the task
period [3]. Besides, younger and older people have different
shapes and timings of the HR [4], [5], which can cause more
variations in the recovery time.

The most widely used control condition is rest [6], where
the participants are asked to stay relax and fixate their
eyes on a target in a computer display. However, unrelated
thoughts or mind wandering, the so-called default mode net-
work, is likely to be active during such resting state [7],
[8]. These task-independent ongoing or spontaneous brain
activities in either short or long rest period could be sub-
stantially stronger or even higher than that of the task period
[6], [9]. Such cognitive processes have resulted different
effects on the task-evoked HR [10]–[12]. In the worst-case
scenario, improper baseline return can change the time-shape
of task-evoked HR, resulting in a false identification of the
observed activation [13]. This may also lead to the cancellation
effects when performing the block averaging [14].

In recent years, fNIRS-based brain-computer
interface (BCI) has shown a rapid development in the
field of neuroscience such as for mental workload assessment
[15]–[17]. Using the averaging technique over the repetitions
of each task difficulty level, a common finding has been
reported that the magnitude of brain activation increases
along with the increase in difficulty level [15], [18].
Although this technique has demonstrated a significant
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finding at the inter-subject level, it is of vital importance
to ensure the effectiveness of using fNIRS modality for
single-trial estimation of mental workload. Considering the
baseline-related factors, the estimation of mental workload
can be greatly affected when the previous task-evoked HR
does not return to a proper level of baseline. Hence, there is
a need to develop a baseline detection method.

In this study, we propose a method using vector phase
analysis, aiming to detect the baseline state of the task-evoked
HR (before the onset of new functional stimulation) as being
optimal or suboptimal. We exploit the facts that (i) fNIRS
can quantify both oxygenated (HbO) and deoxygenated (HbR)
hemoglobin concentration changes [19], and (ii) the occur-
rence of brain activation is detectable using vector phase
analysis [20]. In addition, the peak of task-evoked HR is
taken into consideration as the recovery duration scales pro-
portionally with it, and a novel vector phase diagram is
specifically designed to detect (with a set of design criteria) if
the task-evoked HR had returned to baseline. The proposed
method was assessed with a block-design fNIRS dataset
containing hemodynamic measurements over the prefrontal
cortex (PFC) of 24 human subjects [21]. At both inter-
and intra-subject analyses, we hypothesize that the estima-
tion of mental workload improves with an optimal baseline
detected with our novel vector phase method. Due to the
lack of a clear reference of an individual’s mental workload,
the behavioral performance, i.e. response time [22], was used
to evaluate the estimation of mental workload with fNIRS
activation.

II. METHODOLOGY

A. Proposed Method

Fig. 1(a) shows a standard block design employed in
hemodynamic-based experiment, with n denotes the current
block. A pre-task period (n = 0) is preceded and followed
by a repetition of block consists of task and rest periods
(n ≥ 1). The notations tn

g and tn
h are used to denote the

timeline, representing the end of task and rest periods for
nth block, respectively. The proposed method is formulated
using the time-shape of conventional HR, where HbO/HbR
increases/decreases after the task onset and returns to baseline
during the rest period [19]. The baseline state is identified
prior to task onset, with the aid of vector phase diagram.
At each time point t , the time-series HbO and HbR signals
are transformed to two-dimensional vector components x(t)
and y(t), respectively, with respect to their origins. Hence,
the following equations are derived:

x(t) = HbO(t) − HbOn−1
base (1)

y(t) = HbR(t) − HbRn−1
base (2)

where HbO(t) and HbR(t) are the time-series HbO and HbR
signals, respectively. HbOn−1

base and HbRn−1
base are the estimated

HbO and HbR baselines from (n − 1)th block, respectively.
These estimated baselines, acting as the origin, are used for the
execution of nth block. Both x(t) and y(t) are computed every
0.5 s, as such time interval is neither too long nor too short for
capturing the changes in HR. The expression of the magnitude

Fig. 1. (a) A typical block design used in hemodynamic-based experi-
ment. (b) The design of a vector phase diagram with multiple threshold
circles.

z(t) and the phase θ(t) of [x(t), y(t)] are then obtained as:
z(t) =

√
(x(t))2 + (y(t))2 (3)

θ(t) = tan−1 y(t)

x(t)
(4)

Fig. 1(b) displays the design of a vector phase diagram with
multiple threshold circles for the estimation of baseline state in
nth block prior to task onset of (n + 1)th block. Three major
zones are defined in different shaded colors (green, yellow,
and red) to describe the baseline state of task-evoked HR.
The minor zones are labeled as A1, A2, B1, B2, C1, and
C2 in accordance to the threshold circles and phases for a more
detailed explanation of the yellow and red zones. Basically,
green zone indicates that the task-evoked HR has returned
to an optimal baseline. The yellow zone (A1, B1, and C1)
implies that the task-evoked HR is somewhere in between peak
activation and optimal baseline. The red zone (A2, B2, and C2)
signifies that the task-evoked HR is rising towards the peak
activation. Three threshold circles are designed to separate the
zones, denoting as zn

a , zn
b , and zn

c , from the most inner to
the outer layer, respectively. zn

c denotes the peak activation
obtained from z(t), computing from the time interval of the
identified [HbOn−1

base, HbRn−1
base] to tn

g . Note that, the vector phase
diagram considers the range beyond zn

c , as this may happen
when the HR in rest period is higher than the task period [6].
The relationships among the threshold circles are expressed as:

zn
a = 0.3zn

c (5)

zn
b = 0.7zn

c (6)

where the coefficients 0.3 and 0.7 are chosen empirically.
HbOn

base and HbRn
base are estimated before the task onset of

(n + 1)th block. As HbO/HbR gradually decreases/increases
to baseline after the end of task [19], we identify the
time points (tn

HbO and tn
HbR) whereby HbO(tn

HbO) and
HbR(tn

HbR) are at minimum and maximum level, respectively.
To counter the delay between HbO and HbR signals in
returning to baseline [13], we compute the midpoint between
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Fig. 2. An illustration of the proposed method in detecting baseline state using a sample of time-series fNIRS signals with a total of three complete
sets of block (n = 1 to 3), where each block consists of a task (shaded in gray) and a rest period. The customized vector phase diagrams and the
enlarged views of the projected trajectory [x(t), y(t)] are shown for every block. Steps 1©– 9© are the execution of the proposed method. [HbO0

base,
HbR0

base] is identified before 1st block (step 1©). This is followed by the construction of vector phase diagram for 1st block (step 2©). The blue-color
projected trajectory starts from t0mid (the time where [HbO0

base, HbR0
base] is identified) to the end of task period and followed by the white-color

projected trajectory till the end of rest period. The black- and red-color points indicate the starting and ending of the projected trajectory, respectively.
Based on its ending location (green zone), an optimal baseline is detected for 2nd block (step 3©). Steps 1©– 3© are repeated for every new block.

tn
HbO and tn

HbR as:

tn
mid = tn

HbO + tn
HbR

2
(7)

Using tn
mid, HbOn

base and HbRn
base are obtained as HbO(tn

mid)
and HbR(tn

mid), respectively.
Fig. 2 illustrates the steps of applying the proposed method

on fNIRS signals. It begins with the pre-task period (n = 0)
by identifying HbO0

base and HbR0
base for the execution of next

block (n = 1). For the subsequent nth block, x(t), y(t), and
z(t) are computed using (1), (2), and (3), respectively, from
tn−1
mid to tn

g . The design parameters of vector phase diagram are
then obtained and computed using (5) and (6). After that, x(t),
y(t), z(t), and θ(t) are computed using (1), (2), (3), and (4),
respectively, over the time interval of rest period. The zone of
[x(t), y(t)] is simultaneously identified using the customized
vector phase diagram.

As the green zone indicates the most closer return of HR to
its initial starting values, a set of design criteria is applied to
determine the time interval for the computation of HbOn

base and
HbRn

base. It is selected based on the time interval of the first
satisfying condition in the following sequence: (i) The green
zone is detected over the rest period and (ii) the green zone is
detected from tn−1

mid to tn
g . When none of the above-mentioned

conditions (i) and (ii) are satisfied, HbOn
base and HbRn

base are
remained the same from the previous (n − 1)th block.

TABLE I
THE DEFINITION OF BASELINE STATE IN RELATION TO THE ZONE

IDENTIFIED AT THE END OF REST PERIOD

Table I summarizes the definition of baseline state in rela-
tion to the zone identified at the end of rest period, i.e. the zone
at [x(tn

h ), y(tn
h )]. The (n + 1)th block is detected to have an

optimal baseline when [x(tn
h ), y(tn

h )] is located in the green
zone. A suboptimal baseline is detected when [x(tn

h ), y(tn
h )]

lies in the red zone. Due to the uncertainty state of the yellow
zone, a different approach, i.e. considering the zone transition,
is used to detect the baseline state of the block that ends in
this zone. When [x(t), y(t)] transits from the green to yellow
zone, this indicates that the HR begins to activate and we
assume that there is still a high potential of obtaining the
time-shape of conventional HR. As such, an optimal baseline
is detected in this case. Oppositely, the transition from the
red to yellow zone implies that the HR starts to return to
baseline and it is therefore not suitable for the next task
to begin. As such, a suboptimal baseline is detected in this
case.
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Fig. 3. A 3 × 11 probe layout with a standard source-detector distance of 30 mm was used to cover the entire PFC in [21]. In accordance to the
international 10-20 system [24], sources 23 and 28 were constantly placed at the positions T4 and T3, respectively. The authors [21] have permitted
the use of the figure.

B. fNIRS Dataset

The proposed method was applied on the lab-based fNIRS
dataset published in [21]. Briefly, 10-Hz sampling rate fNIRS
data were collected from a total of 38 right-handed healthy
university students performing mental arithmetic task using a
closed-loop brain training system, specifically to optimize the
mental workload at WM-related brain region. A 3 × 11 probe
layout with a standard source-detector distance of 30 mm
was used for the fNIRS recording over the PFC (see Fig. 3).
The experimental paradigm began with a 25-s pre-task and
followed by a total of 60 block repetitions consists of 15-s task
and 15-s rest periods. The whole protocol lasted approximately
30 min. During the task period, subjects were asked to men-
tally calculate and solve as many four-choice mathematical
questions as possible. Addition or subtraction or a mixture of
both were used for the mathematical questions, comprising
of six difficulty levels from the easiest two single digits to
the hardiest three double digits. As the detection of baseline
state is only applicable after the task period of 1st block,
the evaluation of task-evoked HR began from the 2nd block
onwards. Hence, a maximum of 59 blocks per subject were
available for assessment.

There are a few reasons of selecting the dataset to assess
our proposed method. Firstly, due to the high variations at
the intra- and inter-subject levels, we expected that there
would be a mixture of baseline state in the dataset. As such,
it offers a sizable amount of blocks with optimal or sub-
optimal baseline to assess the effectiveness of the proposed
method. Secondly, the experimental paradigm fulfilled a typ-
ical block design, where the duration of the rest period is
recommended to have at least equal to or more than that of
the task period [3]. Thirdly, the utilization of multiple task
difficulty levels provides a means to evaluate the estimation
of mental workload under the influence of baseline state.
In this case, it is vital to select the blocks with optimal
behavioral performances. As the time taken in responding to
a task is associated with the level of mental workload [22],
the blocks without a single attempted question were excluded.
In addition, the blocks with an average response time of more
than 1.5 interquartile range were further excluded to remove
the non-optimal workload states, such as disengagement and
overload [23].

C. Channel of Interest

MATLAB (Mathworks Inc., New York, USA) was primarily
used for the data analysis. Prior to analysis, the channels
with poor optode-to-scalp coupling were removed [25]. The
light intensity data were transformed to the optical density
data. The wavelet-based filtering with Daubechies 5 setup was
chosen as a channel-by-channel approach for motion artifacts
correction [26]. For every channel, the optical density data
under the wavelengths of 695 and 830 nm were converted
to the time-series HbO and HbR signals using the modified
Beer-Lambert law [27]. These signals were obtained in the
unit of millimolar millimeter (mM·mm), a product of the
hemoglobin concentration change and optical path length.
A third order Butterworth bandpass filter with cutoff fre-
quencies of 0.01 to 0.09 Hz was then applied to remove the
slow drifts (<0.01 Hz), Mayer wave (∼0.1 Hz), respiration
(∼0.3 Hz), heartbeat (∼1 Hz), and high frequency noise
(3–5 Hz) [28].

The proposed method was developed based on the
time-shape of the conventional HR model. As such, a chan-
nel of interest (COI), i.e. the most activated channel, was
selected for each subject to avoid misinterpretation of fNIRS
signals arising from noisy or non-activated channels [29].
The time-series fNIRS signals were analyzed using general
linear model (GLM)-based statistical parametric mapping [30].
A widely used two-gamma hemodynamic response func-
tion (HRF) with the standard parameter values were adopted
to represent the conventional HR model [31]. Canonical
HRF (cHRF) was generated by convolving the HRF with
the boxcar function that corresponds to the time-piece of the
experimental paradigm. The design matrices included a con-
stant term, cHRF, and the temporal and dispersion derivatives
of the cHRF [13]. The regression coefficient (β) and statistical
t-value (tstat) for the time-series HbO and HbR signals of every
channel were estimated for the cHRF model using MATLAB’s
fitlm function. The association of the HbO/HbR signal with
the conventional HR model was confirmed with a significant
positive/negative tstat (p < 0.05) [30]. The COI was selected
from the channel with the largest absolute average of tstat
obtained from both HbO and HbR signals. To identify the
Brodmann area (BA), the probe layout was mapped onto
the head model applied in [25] as the reference position
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Fig. 4. (a) Total solved questions, (b) performance score, and (c) response time at each difficulty level. Error bars indicate SD. Statistical significance
of Bonferroni post hoc test is shown: *p < 0.01 and **p < 0.001.

was similar. Prior to the execution of the proposed method,
the identified COI was downsampled by averaging the latest
five data points for every 0.5 s.

D. Evaluation

1) Behavioral Performance: Based on the findings of the
closed-loop brain training [21], every subject managed to
achieve and solve a minimum of third difficulty level for the
mental arithmetic task. Due to the difference in attempted diffi-
culty levels across subjects, it was not possible to one-by-one
compare the difficulty level. Hence, the difficulty level was
simplified to three levels, with levels 1 and 2 maintained,
and levels 3 and above were considered as level 3. The
total solved questions, response time, and performance score
were averaged at each difficulty level for every subject. The
main effect of difficulty level on each behavioral outcome
was examined using one-way repeated measures analysis of
variance (ANOVA). Geisser-Greenhouse correction was used
to deal with the violation of sphericity and Bonferroni post hoc
test was employed to identify the locus of the main effect.

2) Task-Evoked fNIRS Signals and Activation: Using the zone
identified at the end of rest period, the total blocks were
computed for each zone. The original dataset was referred as
raw-baseline block (RBB). Accordingly, the blocks detected
with our proposed method were labeled as an optimal-baseline
block (OBB) or suboptimal-baseline block (SBB). The average
value computed over a time interval of 0–0.5 s before the task
onset was used to perform baseline correction for each block.
The block average of HbO and HbR signals were conducted
in accordance to the detected baseline state at both inter- and
intra-subject levels. The task-evoked HbO/HbR activation was
computed from the average of HbO/HbR signal amplitudes
over the entire duration of the task period for every block
[32], [33].

3) Mental Workload Estimation: At the inter-subject
level, HbO/HbR activation was further averaged within
each difficulty level and the detected baseline state.
One-way repeated measure ANOVA with Geisser-Greenhouse
correction (if necessary) and Bonferroni post hoc test were
performed on HbO/HbR activation to access the effect
of difficulty level. As the response time demonstrates a
strong association with the difficulty level [22], Pearson’s
correlation coefficient r was obtained to individually examine

its association with HbO/HbR activation in RBB, OBB, and
SBB. In order to perform statistical comparison, Fisher’s
Z-transformation [34] was applied to convert the sampling
distribution of the Pearson’s correlation coefficient r to the
normally distributed variable Zr . The correlation coefficient
Zr across subjects was then statistically evaluated using
Bonferroni-corrected paired t-test.

III. RESULTS

A subject’s data was excluded due to a technical glitch
during the experiment. Six subjects’ fNIRS data were severely
corrupted with the motion artifacts over multiple time inter-
vals, causing the failure of COI identification. Besides,
the poor synchronization of either HbO or HbR or both
signals with the task timeline led to another failure of COI
identification in 7 subjects. Overall, GLM analysis identified
COI in the remaining 24 subjects (identification number:
S01–S24), located either over the right (17 subjects) or left
(7 subjects) PFC. The mean and standard deviation (SD)
for HbO signal were β = 0.032 ± 0.024 and tstat = 34.9
± 24.4 at p < 0.001, whereas for HbR signal were β =
−0.009 ± 0.007 and tstat = −29.2 ± 22.4 at p < 0.001.
A total of 1416 blocks (24 subjects × 59 blocks/subject) were
available. However, 32 blocks (2.3%) that left unattempted or
detected as non-optimal workload states were further excluded.
Thus, the remaining 1384 blocks (97.7%) were used for the
assessment.

A. Behavioral Data

Fig. 4 shows the total solved questions, performance
score, and response time at each difficulty level across
24 subjects. One-way repeated measures ANOVA with
Geisser-Greenhouse correction returned a significant main
effect of difficulty level on the total solved questions
[F(1.5,35.3) = 461.4, p < 0.001], performance score
[F(1.4,31.1) = 27.9, p < 0.001], and response time
[F(1.1,25.3) = 85.6, p < 0.001]. For the total solved
questions, Bonferroni post hoc test showed that the level
1 was significantly greater than all other levels (both p <
0.001) and level 3 was significantly smaller than all other
levels (both p < 0.001). Similarly, for the performance
score, level 1 was significantly higher than all other levels
(both p < 0.01) and level 3 was significantly lower than
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TABLE II
THE DISTRIBUTION OF BLOCKS IN ACCORDANCE TO THE DETECTED BASELINE STATE

all other levels (both p < 0.001). For the response time,
opposite trends were observed, where level 1 was significantly
faster than all other levels (both p < 0.001) and level 3 was
significantly slower than all other levels (both p < 0.001).

B. Baseline Detection

Table II summarizes the number of blocks in RBB, OBB,
and SBB for each zone. The largest number of blocks was
identified in C1 zone (506 blocks; 36.5%), followed by the
green zone (416 blocks; 30.1%), and C2 zone (256 blocks;
18.5%), equivalent to an overall of 1178 blocks (85.1%).
A minimal number of blocks were identified in A1, B1,
A2, and B2 zones, contributing to the remaining 206 blocks
(14.9%).

A total of 416 blocks in the green zone (30.1%) were
detected with an optimal baseline. Meanwhile, 269 (19.4%)
and 375 (27.1%) blocks in the yellow zone were detected
with an optimal and suboptimal baseline, respectively. The
remaining 324 blocks in the red zone (23.4%) were detected
with a suboptimal baseline. For those blocks detected in the
yellow and red zones, we further quantified the number of
blocks where [x(t), y(t)] has ever reached the green zone in
any time point over the rest period. Such a trend was found
in 293 (45.5% of 644) and 113 (34.9% of 324) blocks for the
yellow and red zones, respectively. The total blocks in OBB
and SBB across subjects were ranged from 18 to 42 and 17 to
40 (see Table III), respectively.

C. Block-Averaged Time-Series fNIRS Signals

Fig. 5 displays the block-averaged time-series fNIRS sig-
nals in RBB, OBB, and SBB at each difficulty level over
24 subjects. In general, HbO signal showed greater changes
compared to HbR. As observed in RBB, a large variability
was present in the time-shape of task-evoked HR. It was worth
noting that OBB was more closely resembled to the time-shape
of conventional HR and showed larger changes in both HbO
and HbR signals. In contrast, such time-shape was severely
affected in SBB.

Although the time-shape of conventional HR was present
over the task period in OBB, not all task-evoked fNIRS signals
showed a proper return to baseline over the rest period. This
was notably observed in subjects S03, S04, S08, S09, S12,
S13, S15, S18, S19, and S21 (see Supplementary Fig. 1(b) as
a sample), where the average fNIRS signals were considerably

Fig. 5. Block-averaged time-series fNIRS signals in RBB, OBB, and SBB
at each difficulty level over 24 subjects. The transparent shaded areas
indicate SD at each time point. The task starts and finishes at time 5 and
20 s, as indicated by vertical solid and broken lines, respectively.

far from reaching the initial baseline. Hence, the chances of
being detected as an optimal baseline are likely to decrease
for the subsequent block. As a result, the total blocks in
OBB tended to be smaller than that in SBB. On the other
hand, the average fNIRS signals in OBB returned to about a
similar level of its initial baseline in subjects SO1, S02, S05,
S06, S07, S10, S11, S14, S16, S17, S20, S22, S23, and S24
(see Supplementary Fig. 1(a) as a sample). This explained the
higher tendency of obtaining larger numbers of total blocks in
OBB as compared to that in SBB.

D. Inter-Subject fNIRS Activation

Fig. 6 shows the HbO and HbR activations in RBB, OBB,
and SBB at each difficulty level across 24 subjects. One-way
repeated measures ANOVA returned a significant main effect
of difficulty level on HbO activation in RBB [F(2,46) = 4.3,
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Fig. 6. HbO and HbR activations in (a) RBB, (b) OBB, and (c) SBB at each difficulty level across 24 subjects. Statistical significance of Bonferroni
post hoc test is shown: *p < 0.05, **p < 0.01, and ***p < 0.001.

TABLE III
PEARSON’S CORRELATION COEFFICIENT r OF FNIRS ACTIVATION WITH THE RESPONSE TIME

p = 0.02] and OBB [F(2,46) = 72.8, p < 0.001], but not in
SBB [F(2,46) = 1.0, p = 0.371]. Similarly, the main effect
of difficulty level on HbR activation was significant in RBB
[F(2,46) = 4.2, p = 0.021] and OBB [F(1.5,35.3) = 22.9,
p < 0.001], but not in SBB [F(2,46) = 0.3, p = 0.709].

In RBB, Bonferroni post hoc test showed that the
magnitudes of both HbO and HbR activations at the level
3 were significantly greater than that of level 1 (both
p < 0.05). In OBB, Bonferroni post hoc test revealed that
the magnitudes of both HbO and HbR activations at the
level 2 were significantly larger than that of level 1 (both
p < 0.01). Not only that, the magnitudes of both HbO and
HbR activations at the level 3 were significantly larger than
that of levels 1 and 2 (all p < 0.01).

E. Intra-Subject Correlation Between fNIRS Activation
and Response Time

Table III presents the correlations between fNIRS activation
and response time at the intra-subject level. The COI and

dominant BA number are listed as well. In RBB, 12 subjects
showed significantly weak positive correlation of HbO activa-
tion with the response time (r = 0.27 to 0.50, p < 0.05),
whereas 8 subjects demonstrated significantly weak nega-
tive correlation of HbR activation with the response time
(r = −0.27 to −0.41, p < 0.05). Extracting OBB using
the proposed method demonstrated an improvement in the
correlation strength, where 19 subjects showed significantly
weak to moderate positive correlation of HbO activation with
the response time (r = 0.41 to 0.63, p < 0.05), and 17 subjects
showed significantly weak to moderate negative correlation of
HbR activation with the response time (r = −0.33 to −0.64,
p < 0.05).

On the other hand, there was no significant correlation in
SBB for both HbO and HbR activations with the response time
(all subjects: p > 0.05). Overall, the correlation coefficient
Zr between response time and HbO/HbR activation across
24 subjects are shown in Supplementary Fig. 2. The magnitude
of positive/negative correlation between response time and
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HbO/HbR activation in OBB was significantly larger than that
in RBB and SBB (all p < 0.001).

IV. DISCUSSION

In this study, we proposed a method using vector phase
analysis to detect the baseline state of the brain activa-
tion, with the ultimate aim of optimizing the estimation of
mental workload. Despite the difference in the number of
detected OBB and SBB for every subject, our findings reached
similar conclusions: (i) the large variations observed in the
task-evoked HR were contributed by the difference in baseline
state and (ii) the blocks detected with an optimal baseline
demonstrated a significant improvement in the estimation of
mental workload.

A. Behavioral Data

As the difficulty level of the mental arithmetic task
increases, subjects required more time to mentally compute the
arithmetic questions. Therefore, they solved lesser questions
within the task period at higher difficulty level. This tends
to increase the mistake, leading to a drop in the performance
score. Such behavioral outcomes were expected and in agree-
ment with the previous studies utilizing multiple WM loads
[15], [16], [35]. As reflected in the very minor number of
excluded blocks, subjects showed that they were able to focus
and perform the task despite a lengthy brain training session.
This further justified the validity of using these datasets for
the assessment of our proposed method.

B. Baseline Detection

It has been a well-known and widely-accepted finding on the
time-shape of conventional HR in the activation region, where
HbO/HbR increases/decreases after functional stimulation and
gradually returns to baseline during the control period [19].
Note that, the COI of every subject was either located on
dorsolateral (BAs 9 and 46) or ventrolateral (BA 45) PFC.
This was expected as both regions are highly responsible
for the WM processes related to arithmetic functions [36],
[37]. Ideally, from the task onset to the end of rest period,
the trajectory of fNIRS signals is supposed to follow such
path: green → C1 → C2 → C1 → green. With the proper
estimation of HbOn−1

base and HbRn−1
base for the execution of

nth block, the proposed method returned significantly high
percentage of blocks identified in green, C1, and C2 zones
(85.1%). At present, the thresholds of 0.3 and 0.7 were chosen
empirically. These thresholds can be further optimized to
improve the overall performance of the proposed method.
Conversely, a minor number of blocks were identified in A1,
A2, B1, and B2 zones (14.9%). This may occur when there
is a large lagging between HbO and HbR signals in following
the time-shape of conventional HR.

One may argue that 15-s rest period may not be sufficiently
long enough to ensure the complete return of HR to baseline.
Here, we showed that 45.5% and 23.4% of the blocks in the
yellow and red zones had been in the green zone, respectively.
This implies that even when the HR reaches an optimal
baseline before the end of rest period, it may not sustain at
that particular level. The systemic fluctuation (both HbO and

HbR synchronously change in the same direction) and spon-
taneous brain activity (HbO and HbR change in the opposite
direction) are likely to coexist during the rest period [1], [19].
The proposed method took into account the influences from
both cases, whereby the thresholds and zones of the vector
phase diagram were properly designed and optimized for the
detection of baseline state. In this case, it is very likely that
the detection of suboptimal baseline was resulted from the
spontaneous or ongoing brain activity [6]–[8].

There are many other factors that have been suggested
to account for the large variability in the time-shape of
task-evoked HR, such as the experimental design [38], task
complexity [38], and the systemic physiological changes [19],
[39]. Our findings demonstrated that the baseline state is also
one of the factors contributing to the large variability in the
time-shape of task-evoked HR, agreeing with the previous
studies [6], [9], [13]. The time-shape of conventional HR was
certainly affected when the HR did not return to an optimal
baseline, which can increase the false negatives in identifying
the brain activation [13]. Overall, a different number (18–
42) of blocks detected with an optimal baseline was obtained
across subjects, implying that some subjects were able to
rest at most of the time while some had serious difficulty
to rest their minds. A part of the blocks showed that the
task-evoked HR sustained throughout the rest period and did
not completely return to baseline. This situation was observed
in other studies as well [13], [40], suggesting that more time
is needed for the task-evoked HR to return to baseline.

C. Mental Workload Estimation

A number of cognitive tasks with multiple difficulty levels
have been applied in fNIRS and fMRI studies for the assess-
ment of mental workload, reaching a general conclusion that
the brain activation in WM-related regions increases along
with the increase in difficulty level [15], [16], [18], [32]. After
detecting the blocks with an optimal baseline, such trends were
better observed in both HbO and HbR activations. On top of
that, we took a step further to examine the relationship between
fNIRS activation and response time at the intra-subject level.
It is worth noting that, despite the variations in the number of
detected blocks with an optimal baseline, a majority of them
demonstrated an improvement in the correlation strength for
both HbO and HbR activations with the response time. These
findings demonstrate the reliability of fNIRS modality in
single-trial estimation of mental workload, providing that the
hemodynamic baseline is at optimal state prior to functional
stimulation.

Judging from our findings, the presence of systemic physi-
ological change, such as from the scalp hemodynamics, may
not critically affect the findings as it is reported to have a
much more uniform change [41], [42]. In addition, both HbO
and HbR signals were considered for the identification of
COI to avoid misinterpretation of brain activity [29]. Hence,
the activation difference among the task periods should mainly
reflect the changes in neuronal activity associated with the
WM loads. At present, there are many features that have
been extracted from fNIRS signals for task-related and mental
workload classifications using machine learning approaches,
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e.g. slope, mean, peak, variance, skewness, and kurtosis [16],
[43]–[45]. To the best of our knowledge, none of the studies
have considered the variability arising from the baseline state.
As such, it is highly anticipated that the classification perfor-
mance can be further enhanced when incorporating with our
proposed method.

In [3], a different set of time intervals has been selected
for the baseline correction (commonly ranging from 0–2 s
to 0–10 s before the task onset) and task-evoked activation
(entire task or peak activation period). The selection of these
time periods was shown to greatly affect the findings and
the conclusion drawn [3], [46]. This issue may worsen when
there is a large HR variability observed in the task and rest
periods. In this study, the entire task period was selected as
every change in the HR during the task period is reflecting
the change evoked by the functional stimulation. Note that,
we have additionally analyzed the activation by choosing
several time periods for the baseline correction (data not
shown), up to 0–5 s from the current 0–0.5 s. We observed
that the correlation strength reduced with the increase in the
time period used for baseline correction, implying the large
HR variability in the rest period can affect the computation
of task-evoked activation to a certain degree. Yet, the overall
improvement was still observed in OBB.

D. Limitations and Future Perspective

A total of 7 subjects did not have a COI, where the
measured fNIRS signals were poorly resembled the time-shape
of conventional HR. Based on the visual observation in the
WM-related regions, a majority of the rest periods showed a
stronger hemodynamic activity than that of the task periods.
This may imply a complete failure of using the rest as a
control. Applying the proposed method to these data led to
high detection number of SBB, which makes it not suitable for
the assessment. Besides, the issues with the selection of time
periods for the baseline correction and task-evoked activation
need to be further investigated.

Although our findings have demonstrated an overall
improvement in the estimation of mental workload, rejecting
a large number of blocks detected with a suboptimal baseline
may not be a feasible approach when the block repetitions
are limited. Taking a future perspective, we see a need to
implement this method in a real-time fNIRS-based BCI as a
means to estimate the optimal duration for the rest period,
i.e. ensuring the baseline state is at optimal before initiating
a new functional stimulation. Doing so, we believe that the
rejection rate can be greatly minimized or even ensure that all
blocks are accepted for analysis. This method is also suitable
for other cognitive tasks used in block-design fNIRS studies.

V. CONCLUSION

Taking the consideration of brain activation evoked during
the functional stimulation, we proposed a method using vector
phase analysis to detect its baseline state as being optimal
or suboptimal. A vector phase diagram was designed and
customized for each functional stimulation. In addition, a set
of design criteria was applied to identify the location of

baseline, which acts as the vector origin. The proposed method
was applied to a continuous block-design fNIRS dataset with
60 block repetitions. Despite the unequal numbers in detect-
ing baseline state, our findings emphasize the importance of
ensuring an optimal baseline before the onset of functional
stimulation. The blocks detected with an optimal baseline
demonstrated a better resemblance with the time-shape of
conventional HR, leading to an improvement in the estimation
of mental workload.

In short, the findings supported our hypothesis that the
estimation of mental workload improves when selecting the
neuronal-related HR associated with an optimal baseline. The
existing technique used for removing systemic activity, such as
the implementation of shorter source-detector separation [19],
requires an extra cost and effort to fit the additional probes.
The proposed method offers a solution to this issue as it is
practically useful without any additional hardware and also
because of the importance of improving the significance level
in statistical analysis. Considering the variability in HR among
different individuals is inevitable, this method is anticipated
to enhance and improve the data analysis in fNIRS-based
BCI.

REFERENCES
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