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Detecting High Frequency Oscillations for
Stereoelectroencephalography in
Epilepsy via Hypergraph Learning
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Abstract— Successful epilepsy surgeries depend highly
on pre-operative localizationof epileptogeniczones. Stereo-
electroencephalography (SEEG) records interictal and ictal
activities of the epilepsy in order to precisely find and
localize epileptogenic zones in clinical practice. While it is
difficult to find distinct ictal onset patterns generated the
seizure onset zone from SEEG recordings in a confined
region, high frequency oscillations are commonly consid-
ered as putative biomarkers for the identification of epilep-
togenic zones. Therefore, automatic and accurate detection
of high frequency oscillations in SEEG signals is crucial for
timely clinical evaluation. This work formulates the detec-
tion of high frequency oscillations as a signal segment
classification problem and develops a hypergraph-based
detector to automatically detect high frequency oscillations
such that human experts can visually review SEEG signals.
We evaluated our method on 4,000 signal segments from
clinical SEEG recordings that contain both ictal and interic-
tal data obtained from 19 patients who suffer from refractory
focal epilepsy. The experimental results demonstrate the
effectivenessof the proposeddetector that can successfully
localize interictal high frequency oscillations and outper-
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forms multiple peer machine learning methods. In particular,
the proposed detector achieved 90.7% in accuracy, 80.9%
in sensitivity, and 96.9% in specificity.

Index Terms— High frequency oscillations, epilepsy,
hypergraph learning, deep learning, stereoelectro-
encephalography.

I. INTRODUCTION

EPILEPSY is the fourth most common neurological dis-
order, which is characterized by unpredictable seizures.

It impacts people of all age, and many patients with epilepsy
are medically intractable and require respective neurosurgery
to gain seizure freedom [1]. Epilepsy surgery relies critically
on pre-operatively localizing epileptogenic zones [1]. Thus,
presurgical biomarkers play an essential role in identifying
the epileptogenic zones that result in epileptic seizures. While
it is difficult to directly measure and localize the epileptogenic
zone by insufficiently concordant or inconclusive data from a
multitude of tests, intracranial electroencephalography (iEEG)
technologies [2], [3] is widely adopted. Among existing iEEG
technologies, stereoelectroencephalography (SEEG), which
records interictal and ictal activities of the epilepsy is increas-
ingly used to define the epileptogenic zone in complex cases,
providing a lower rate of complications than subdural grids [4].
Using the conventional spikes in SEEG to localize epilepto-
genic zones results in seizure freedom for 40-70% of surgical
patients during epilepsy surgery [5]–[7]. Therefore, there is
an overriding need for new reliable biomarkers to robustly
localize epileptogenic zones.

Recent studies have demonstrated that high frequency
oscillations (HFOs) can be used as a putative biomarker to
indicate epileptogenic zones [8]–[15]. Thus, it is desirable
to correctly identify HFOs in SEEG signals for evaluating
epileptic patients. However, it remains challenging to detect
high-frequency brain signals. First, HFOs require a high
sampling rate to digitize signal data. The high sampling rate
generate a substantial amount of data [16], [17], posing a
challenge for SEEG data analysis. Second, HFOs are typically
much weaker than the conventional low frequency brains
signals (e.g., spikes), making it hard to be identified by
human experts easily. Third, manual analysis of HFOs is a
subjective review, resulting in poor inter-reviewer agreement.
These challenges lead to subjective, time consuming, and error
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prone identification of HFOs in the current clinical setting.
Therefore, we aim to develop an automatic and objective
detection approach to accurately identify HFOs in complex
SEEG data.

Although HFOs detection is left unexploited for SEEG
data analysis, a number of automatic approaches [15], [18],
[19], have been reported to detect HFOs from electroen-
cephalography (EEG) and magnetoencephalography (MEG)
signals. Most of these methods share a similar framework,
which extracts discriminative features for decision making,
given a signal segment that is retrieved from the whole
data. Typically, these approaches employ handcrafted features
that were manually obtained from observation or statistical
analysis. These features were commonly referred as hand-
crafted features. For example, Klink et al. [18] proposed
an automatic HFOs detection and visualization approach in
MEG, while Quitadamo et al. [20] proposed a Kurtosis-based
HFOs detector to exploit statistical properties of the pre-ictal
and ictal iEEG time series. Burnos et al. [21] used hand-
crafted features (e.g., high frequency peak and low frequency
peak) to automatically distinguish HFOs in EEG. Unfortu-
nately, these handcrafted feature-based approaches require a
threshold that must be adjusted or re-optimized to recognize
HFOs in EEG and MEG data. Such a circumstance hin-
ders the generalizability of HFOs detection models. Addi-
tionally, there is no theoretical evidence derived from these
handcrafted features to guarantee an optimal performance of
HFOs detection.

Recently, machine learning techniques have been proposed
to identify HFOs and reduce human interference. Our recent
study discussed a stacked sparse autoencoder-based method
for HFOs detection in complex MEG signals [22]. The prior
detection technique required minimal human interference by
using a golden standard dataset to train the detector and
estimate the pairwise distance between the objects of the
interest (e.g., SEEG segments), However, it ignored the higher
order relationship among samples. In many real-world tasks,
representing a set of objects only based on pairwise rela-
tionship possibly causes information loss [23]. Hypergraph
learning [24] has been proposed to represent the complex rela-
tionship between objects. Nevertheless, it remains unknown if
hypergraph learning can improve the performance of HFOs
detection by considering complex relationships between SEEG
segments. Besides, distance measurement between objects are
essential in hypergraph construction process. While euclidean
distance is one of the most common distance metrics for this
purpose, it remains unclear what suits best for an optimal
HFOs detection, considering the unique characteristic of bio-
logical signals (i.e., SEEG signals). Meanwhile, regularization
terms [25], [26] have been introduced into hypergraph learn-
ing to control weight matrix complexity. However, it retains
as an open problem whether these regularization terms
could achieve desirable performance for the HFOs detection
task.

This study is to develop a hypergraph-based SEEG
HFOs (HSO) detector, aiming to automatically detect HFOs
signals to assist human experts for the visual review of SEEG
signals. Our key innovation is proposing a hypergraph learning

framework to identify HFOs in SEEG signals. First, our
method separates SEEG data into a series of signal segments.
Second, we evaluate the distance measurement between indi-
vidual SEEG segments. By utilizing the hyper-relationship
of signal segments, our HSO detector classifies each signal
segment into either normal-control signals or epileptic HFOs
in the time domain. Finally, the identified HFOs are delineated
at their original position with SEEG visualization software
(e.g., EEG processor [27]). Our proposed HSO detector is not
dependent on handcrafted signal features, enabling an objec-
tive and automatic detection of HFOs for the pre-operative
evaluation. The contribution of this study is three folds: First,
we introduced a hypergraph learning framework to detect
HFOs from SEEG data. Second, a robust adaptive signed cor-
relation index (ASCI)-based distance measurement approach
was utilized to quantify the morphological similarity between
SEEG signals. Third, a new regularization term was applied
to improve performance of HFOs detection.

The rest of this paper is organized as follows: Firstly,
the detailed hypergraph learning framework is presented in the
method section. Secondly, we describe the patients and their
associated SEEG data in this work. Experiment configurations,
such as model evaluation and peer models, are described.
Thirdly, we present the HFOs detection performance of the
proposed HSO detector as well as related machine learning
models. Comprehensive ablation studies are presented to test
our model. Finally, we discuss the discoveries and limitation
of our work.

II. HYPERGRAPH-BASED SEEG
HFOS (HSO) DETECTOR

A. Hypergraph Learning

This section briefly reviews the method of the hypergraph
learning. A simple graph, in which an edge only connects
two related vertices, can be considered as a special case
of the hypergraph. The simple graph can be undirected or
directed, depending on whether the pairwise relationships
between objects are symmetric [23]. Since the graph can
represent data distribution precisely, the learning assignment
can be performed on the graph. For instance, when clas-
sifying objects that are represented by vectors in a fea-
ture space, an undirected graph can be constructed based
on the pairwise distances, upon which various graph-based
learning methods can be applied [23]–[25], [28]. However,
in many real-world applications, such a pairwise relationship
of a simple graph could not capture the high-order infor-
mation between objects. Simply representing the complex
relationships by pairwise links may inevitably lead to the
loss of information that could be valuable in many learning
tasks [23], [29], [30]–[32]. Compared with a simple graph,
the hypergraph uses a hyperedge to connect any number of
vertices (two or more). Table I summarizes the notations and
the definitions for hypergraph learning.

A hypergraph G = (V, E, w) consists of three parts: the
vertex set V , the hyperedge set E , and the hyperedge weight
set w. In the hypergraph G, a weight value w(e) is assigned
to each hyperedge e. A |V| × |E | incidence matrix H which
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TABLE I
NOTATIONS AND DEFINITIONS USED IN THE PAPER

represents the hypergraph G is defined by [24]:

H (v, e) =
{

1 if v ∈ e

0 if v /∈ e
(1)

According to the definition of H, for any vertex v ∈ V , its
degree is defined by [24]:

d(v) =
∑
e∈E

w(e)H (v, e), (2)

Similarly, for any hyperedge e ∈ E , its degree is defined
by [24]:

δ(e) =
∑
v∈V

H (v, e), (3)

In hypergraph learning, Dv and De denote the diagonal matrix
of the vertex degrees and the diagonal matrix of the edge
degrees, respectively. Dw is used to denote the |E | × |E |
diagonal matrix of the hyperedge weights.

Due to the property of representing high-order relationship,
the hypergraph can be applied to different machine learning
tasks, such as classification, clustering, ranking, and embed-
ding. Here, we use the binary classification as an example. The
hypergraph learning framework with regularization is defined
as [23]:

arg min
f

{λRemp( f ) + �( f )}, (4)

where Remp( f ) is an empirical loss, λ > 0 is a tradeoff
parameter to balance the two terms in equation (4), �( f ) is a
regularizer on the hypergraph, f is the classification function,
which generates predicted labels. Specifically, the regulariza-
tion term in the hypergraph is defined as [24]:

�( f )

= 1

2

∑
e∈E

∑
u,v∈V

w(e)H (u, e)H (v, e)

δ(e)

(
f (u)√
d(u)

− f (v)√
d(v)

)2

,

(5)

By letting � = Dv
− 1

2 H Dw De
−1 H T Dv

− 1
2 and L = I −�,

the normalized regularization term can be defined as [24]:

�( f ) = f T L f, (6)

where L is the hypergraph Laplacian matrix and a positive
semi-definite matrix. Meanwhile, the difference between the
vector of predicted labels f and the vector of original labels
y is measured by empirical loss Remp( f ), which is defined
as [24]:

Remp( f ) = ‖ f − y‖2 . (7)

B. The Framework of HSO Detector

This section introduces the proposed approach for HFOs
detection. Fig. 1 shows the framework of our HSO detector.
Our model consists of four steps (1) SEEG signal segmenta-
tion; (2) distance measurement; (3) hypergraph construction;
and (4) hypergraph learning. In step (1), SEEG signals are
separated into a series of small signal segments. The label
of each sample in the gold standard dataset is prepared by
clinicians. In step (2), the distance measurement is calcu-
lated between every pair of the signal segments based on
ASCI similarity measurement. In step (3), the hypergraph
is constructed by generating a set of hyperedges from each
signal segment and its neighbors. In step (4), the hypergraph
Laplacian is applied to the classification framework, and
the label probability of testing data and the weights of the
hyperedges are simultaneously optimized through hypergraph
learning.

1) Signal Segmentation: Using a moving-window tech-
nique [33], the SEEG signal from multiple channels could be
segmented into a series of signal segments. For the hypergraph
learning purpose, the clinical epileptologists pre-selected a
number of HFOs and baseline control (BC) signal segments
based on the invasive recordings and surgical outcomes. A total
of n signal segments (HFOs and BC samples) were composed
of a golden standard data set for model development and eval-
uation. The duration (i.e., window size) of each signal segment
is w milliseconds. Namely, both HFOs and BC signal segments
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are represented by time series vectors in time domain. Differ-
ent window sizes and overlaps could be adjusted. In the current
work, we applied a time moving window without overlap
to segment the processed SEEG signal. The selection of the
moving window size is very challenging. If the window is too
small, it may not cover visible HFOs signals. If the window
is too big, the sample signals contain too much redundant
information which may negatively impact machine learning
models to understand HFOs. After reviewing multiple previous
studies [34]–[36], as well as our own data, we set 1,000 mil-
liseconds as a pre-selected size of moving window. In this
way, in spite of various length of SEEG recording for different
subjects, the output from the signal segmentation component
of HSO detector are all unified to a signal segments with
1,000 milliseconds length. Details of the data are described in
section III-A.

2) Distance Measurement: In this work, we used a new
distance measurement inspired by ASCI, which is demon-
strated to be more suitable for sequential SEEG data com-
pared to the traditional L2 measurement used in classic
hypergraph learning framework. ASCI [37] is a normalized
similarity index ranging from −1 to 1, accounting for the
amplitude difference between signal segments. By taking the
advantage of this amplitude dependency, we employ ASCI
to measure the morphological similarity between two SEEG
signal segments in hypergraph learning. Assume va and vb

are the Z-score transformation of two signal segments in
the same hyperedge, and let ASC I (va , vb) denote the ASCI
between these two signal segments. Signal trichotomization
is the first step of ASCI measurement between two samples
signals. Let R be the signal amplitude space. We divide R
into upper space Ru , middle space Rm , and lower space
Rl . U = u(i) and L = l(i) are pre-defined threshold
vectors at time instant i , (e.g., u(i) = 0.25 and l(i) =
−0.25). The three sub-spaces are defined as: upper sub-space
Ru = {V > U}, middle sub-space Rm = {L ≤ V ≤ U},
and lower sub-space Rl = {V < L}. The trichotomization
Ta = {ta(i)} of signal va = {va(i), 1 ≤ i ≤ N} is defined
by [37]:

ta(i) =

⎧⎪⎨
⎪⎩

1 if va(i) ∈ Ru

0 if va(i) ∈ Rm

−1 if va(i) ∈ Rl

(8)

Then, the trichotomization Tb of vb = {vb(i), 1 ≤ i ≤ N}
can be computed in a similar way. The ASCI between SEEG
signal segments va and vb is calculated by [37]:

ASC I (va , vb) = Ta o Tb√
Ta o Ta × √

Tb o Tb
, (9)

where ⊗ is the signed correlation between two trichotomized
vectors Ta and Tb

Ta o Tb =
N∑

i=1

ta(i) ⊗ tb(i), (10)

where ⊗ is the signed product of Ta and Tb and defined
by [37]:

ta(i) ⊗ tb(i) =

⎧⎪⎨
⎪⎩

1 if ta(i) = tb(i)

−1 if ta(i) · tb(i) = −1

0 otherwise

(11)

At any time instant, if va(i) and vb(i) are in the same sub-
space, they are called a concordant pair. Two signal samples
are termed discordant if one of them is in upper sub-space
and the other one is in lower sub-space. The sample pair is,
otherwise, called nilcordant. Apparently, ASCI is increased by
more concordant pairs, the unaltered by nilcordant pairs, and
decreased by discordant pairs. The ASCI is closer to 1 when
two SEEG signal segments demonstrate high morphological
similarity, and it approaches -1 when two SEEG signal seg-
ments have low similarity. In this way, the morphological
similarity between two segments can be effectively measured.
Based on the morphological similarity between two signal
segments, the correlation distance between va and vb is defined
as follow:

dASC I (va, vb) = 1 − ASC I (va , vb). (12)

When va and vb have high morphological similarity,
the correlation distance dASC I (va, vb) is closer to 0. Other-
wise, when the two signal segments demonstrate low mor-
phological similarity, the correlation distance dASC I (va, vb)
approaches 2.

3) Hypergraph Construction: Hypergraph construction is an
important step during the hypergraph learning process. When
constructing hypergraph, we consider each signal segment in
the data set as a vertex in the hypergraph G = (V, E, w).
For instance, if there are n signal segments in the data set,
then the generated hypergraph consists of n vertices. Let
V = {v1, v2, . . . , vn} denotes n signal segments with known
clinical labels. In our approach, a star-expansion strategy [38]
was applied to build a set of hyperedges by exhaustively
visiting each vertex vn in V . Specifically, the vertex vn in
V was chosen as a centroid vertex and each hyperedge en

was generated by connecting vn and its nearest k neigh-
bors. In this way, the hyperedges set E = {e1, e2, . . . , en}
was formed and each hyperedge en connected k + 1
vertices.

After the hypergraph was constructed, each hyperedge en

associates with a positive weight value w(e). This value was
estimated by the sum of the similarities between two signal
segments, defined by:

w(e) =
∑

va,vb∈e

exp

(
−dASC I (va, vb)

2

ϕ2

)
. (13)

where va and vb are two signal segments in the same
hyperedge. dASC I (va, vb) is the correlation distance between
these two signal segments. In traditional hypergraph learn-
ing [24], [26], Euclidean distance is a common metric to mea-
sure the distance d(va, vb) between two samples. However,
in our study, due to the unique characteristic of biological
signals, Euclidean distance may not be an optimal metric to
measure the similarity between two signal segments. Thus,
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Fig. 1. The overview of hypergraph based learning method for detecting HFOs in SEEG data.

we introduce dASC I (va, vb) to measure the similarity between
SEEG signal segments. In the following sections, we would
demonstrate that dASC I (va, vb) is an effective way to improve
the detection of HFOs in the hypergraph-based model. The
parameter ϕ is empirically set to the median value of the
distances of all signal segment pairs. The aforementioned
process shows that a higher weights would be assigned to
the hyperedges if the signal segments in the hyperedge have
closer relationships.

4) Hypergraph Learning: In our paper, we consider the
HFOs detection task as a binary classification problem [23].
Therefore, the HFOs detection can be formulated as a reg-
ularized optimization problem arg min f {λRemp( f ) + �( f )},
where �( f ) is the regularization term and Remp( f ) is a loss
function term. According to Equation 5, we find that the
regularization term �( f ) is a function which contains with
the parameter F and the parameter w(e). In the the regular-

ization term �( f ), the term
∑

u,v∈V 1
2

w(e)
δ(e)

(
f (u)√
d(u)

− f (v)√
d(v)

)2

measures the quality of the hyperedges e. When vertex u
and vertex v belong to the same hyperedge e. A hyperedge
with good quality means vertex u and vertex v are in the
same class, which makes the term

(
f (u)√
d(u)

− f (v)√
d(v)

)
approach

close to zero. During the hypergraph learning process, our aim
is to minimize the objective function, so a straightforward
method is to optimize the parameter F and the parameter
w simultaneously. In the previous hypergraph learning study,
yu et al. [25] proposed a 2-norm regularizer to enforce the
sparsity on hyperedge weight matrix. The 2-norm regularizer
controls the model complexity motivated by the success of
sparse learning. Gao et al. [26] proposed a L2 regularizer
to learn the optimal hyperedge weight. The L2 regularizer
enables the model to optimize the parameter F and the
parameter w simultaneously. Combining with the advantages
of the above two approaches, a L2 hypergraph weight reg-
ularizer φ(w) can be added in the objective function as
follows:

arg min
F,w

{λRemp( f ) + �( f ) + μφ(w)}

φ(w) = (1 − ρ)‖Dw‖2 + ρ

m∑
i=1

wi (e)
2

s.t .
m∑

i=1

wi (e) = 1, 0 ≤ ρ ≤ 1, λ > 0, μ > 0 (14)

where 0 ≤ ρ ≤ 1 is a positive control parameter. When
ρ = 0, the hypergraph weight regularizer becomes ‖Dw‖2,
which induces sparse solutions for hypergraph weight matrix.
When ρ = 1, the hypergraph weight regularizer becomes∑m

i=1 wi (e)	, which improves the performance of classifi-
cation by learning the optimal hyperedge weight. The loss
function term can be defined as:

Remp( f ) = ‖F − Y‖2 =
∑
v∈V

( f (v) − y(v))2 . (15)

where F is the vector of predicted labels and Y is the vector
of ground-truth labels. For each vertex v ∈ V , y(v) returns
its clinical label, where y(v) = +1 and y(v) = −1 denote
HFO and baseline control signal, respectively. Meanwhile,
to measure the efficiency of our hypergraph learning method,
we need to keep some data for testing. Since the labels on
these data are unknown, we use ‘0’ as the labels to represent
these unknown data. Let n denote the number of the training
set, and Y = [

y1, y2, . . . , yn
]T is a n × 1 vector.

Our hypergraph learning based method detects HFOs by
inspecting the performance of each hyperedge in separat-
ing the signal segments into two classes. To achieve this
goal, we assumed the to-be-learned label on each signal was
unknown, and then we used our hypergraph learning method to
estimate the likelihood fn for each vertex vn in the hypergraph.
Since the likelihood fn is a probability index, then the value of
fn is between −1 and +1. To classify HFOs and BC signals,
there are two cases here. If 0 < fn ≤ 1, the vertex vn will be
assigned to HFO. And if −1 ≤ fn ≤ 0, the vertex vn will be
assigned to baseline control signal.

According to Equation 15 and Equation 6, the learning task
for detecting HFOs is to minimize the sum of the three loss
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Algorithm 1 The Iterative Algorithm of Equation (9)
Input: The vertex set V = {v1, v2, . . . , vn} and the clinical

label vector Y = [y1, y2, . . . , yn]T .
Output: The optimized value of F and w.
1: Applying star-expansion strategy to the vertex set V for

constructing hypergraph G and calculating H , Dv , De,
Dw , L.

2: Initialize F (k) and w(k), when k = 0.
3: while not convergence do
4: F (k+1) = 1

1+λ (I − L) F (k) + λ
1+λY .

5: Update the w(k+1) based on equation (15).
6: k = k + 1.
7: end while

function terms as follow:

Ψw(F) = λ ‖F − Y‖2 + FT L F

+μ{(1 − ρ)‖Dw‖2 + ρ

m∑
i=1

wi (e)
2}.

s.t .
m∑

i=1

wi (e) = 1, 0 ≤ ρ ≤ 1, λ > 0, μ > 0 (16)

where λ > 0 and μ > 0 are two positive weight parameters.
By differentiating Ψw(F) with respect to F , we obtain the
following equation:

∂Ψ

∂ F

(
λ ‖F − Y‖2 + FT

(
I −Dv

− 1
2 H Dw De

−1 H T Dv
− 1

2

)
F

)

= 0 ⇒ F =
(

I + 1

λ
L

)−1

Y (17)

Meanwhile, by differentiating Ψw(F) with respect to w,
we obtain the Equation:

∂Ψ

∂w

(
μ{(1 − ρ)‖Dw‖2 + ρ

m∑
i=1

wi (e)
2} + FT L F

)
= 0

(18)

Here, let 	 = FT Dv
− 1

2 H and ϒ = (∑m
i=1 wi (e)	

)− 1
2 ,

the optimization problem can be derived as:

−De
−1
(i,i)	

2
i + μ (2ρ + (1 − ρ)ϒ) wi (e) = 0 (19)

Now, We can obtain the following Equation:

wi (e) = De
−1
(i,i)	

2
i

μ (2ρ + (1 − ρ)ϒ)
. (20)

where 	i denotes the i -th column of the m × m matrix
	. When we get F and w, similar to many existing
approaches [39], [40], we can optimize F and w simulta-
neously by an iterative algorithm. The optimizing process is
described in Algorithm 1.

III. EXPERIMENTAL SETUPS

This section presents the experimental setups, including
our SEEG data set, model evaluation, and peer methods.
We implement the proposed hypergraph model, as well as
peer models with the optimized model parameters. By using
the same data set, we provide a fair comparison on the
performance of HFOs detection.

A. Data

SEEG data were acquired from 19 clinical patients
(3-33 years old, with a mean age of 21.2 years) who suf-
fer from refractory focal epilepsy for clinical purposes. All
patients had at least one seizure during the SEEG record-
ing. Consequently, the SEEG data included both ictal and
interictal data. The present study focused on interictal SEEG
data and was approved by the institutional review board at
Beijing Neurosurgical Institute. A presurgical evaluation
which includes symptom analysis, surface EEG, anatomic
magnetic resonance imaging (MRI), positron emission com-
puted tomography (PET-CT), and other evaluations was con-
ducted to all the patients. For the patients who showed no
clear epileptogenic zone in noninvasive evaluations, depth
electrodes (8–16 contacts, 0.8 mm diameter, 3.5 mm inter-
contact distance) with the Integra CRW System (NeuroSight
Arc 2.7.1, Integra LifeSciences, SM USA) were implanted in
their brain during SEEG recording. The target and trajectory
of the electrodes were determined by non-invasive evaluation
and hypotheses about the localization of epileptogenic foci
and network. SEEG data were acquired by a 256-channel NK
EEG 2100 system (Nihon-Kohden, Japan) with a sampling rate
of 2,000 Hz. All the patients experienced at least 2 habitual
seizures (from 2 to 18 times) during video-SEEG monitoring.
Based on the timing of habitual seizures, the monitoring time
varied from 2 to 30 days.

All data were de-identified before data analysis. We use
different analytical methods in ictal and interictal SEEG
data,respectively. For analyzing interictal activities of the
epilepsy, 2-3 epochs within 2 minutes long are selected in
slow-wave sleep stage, which were 2 hours after a seizure
to eliminate the influence of seizure. For analyzing ictal
activities of the epilepsy, the seizure onset is determined by
video monitoring of clinical symptoms and EEG ictal onset
patterns. We used ictal data to determine the seizure onset
zones (SOZ). In this study, 142 SEEG probes with 1654 con-
tacts were implemented in the patients. The average number
of contacts (electrodes) implemented for each patient was
88. We analyzed 1482 contacts (electrodes) for all patients.
Approximately, 67 electrodes were analyzed per patient.
At least two experienced epileptologists reviewed all SEEG
data and excluded noise or artifacts. The two epileptologists
also reviewed all seizures recorded in the patients, and SOZ
were localized by SEEG signals in 1-70 Hz during their habit-
ual seizures. SOZ were considered as putative epileptogenic
zones. The clinical true epileptogenic zones were validated on
the basis of surgical outcomes. Specifically, if the resection
of putative epileptogenic zones resulted in seizure freedom
after surgery for at least one year (Engel surgical outcome
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scale ≤ 1a/ILAE surgical outcome scale ≤ 1), the putative
epileptogenic zones are considered as the true clinical epilep-
togenic zones.

HFOs were analyzed with band-pass filter of 80-500 Hz
using EEG studio (MEG Center, Cincinnati Children’s Hospi-
tal Medical Center, Cincinnati, OH, USA) [27]. For the model
evaluation purpose, only HFOs in the epileptogenic zones were
labeled as epileptogenic HFOs in our detector. Meanwhile,
the clinical epileptologists selected HFOs and BC signal seg-
ments based on the SEEG recordings and surgical outcomes.
Each signal segment contains a series of 2,000 signal time
points. A total of 4000 signal segments (1640 HFOs samples
and 2360 BC samples) were composed of a gold standard data
set for model evaluation.

B. Model Evaluation

For model evaluation, we adopt a k-fold cross validation
scheme by using the gold-standard SEEG data set. Specifically,
we split the whole data set into k portions. While one portion
of data are reserved for model testing, the rest of k-1 portions
are utilized for model training and validation. This procedure
is repeated until all the portions of data are tested once.

Accuracy, sensitivity and specificity are calculated to quan-
tify the performance of the proposed detectors. In the experi-
ment, we evaluate true positive (TP), false positive (FP), true
negative (TN), and false negative (FN) for the classification
by comparing the predicted labels and ground-truth labels.
Then, the accuracy, sensitivity and specificity are calculated
by:

Accuracy = T P + T N

T P + T N + F P + F N

Sensi tivi ty = T P

T P + F N

Speci f ici ty = T N

T N + F P
(21)

C. Compared Methods and Setting in HFOs Detection

To compare our hypergraph learning method with peer
machine learning models, we also implemented k-nearest
neighbors [41], neural networks (shallow layers) [42], logis-
tic regression [43], linear and non-linear support vector
machine (SVM) models [44], and our previously proposed
deep learning-based SMO detector [22].

1) K-Nearest Neighbor: In the k-nearest neighbor model,
we applied Euclidean distance as the distance measurement
between signal segments. The number of nearest neighbors
was optimized from 5 to 10.

2) Neural Networks: We designed a two-layer shallow neural
networks. The input layer contains 200 nodes. We set the
number of hidden nodes in the hidden layer based on empirical
values [100, 50, 25, 10]. The neural network was trained with
the stochastic gradient decent algorithm. Learning rate was
0.01, and training epoch was set as 500.

3) Logistic Regression: We utilized the Maximum-
likelihood estimation algorithm to optimize the coefficient of
logistic regression model.

Fig. 2. The distribution of different quality of hyperedges under different
hypergraph learning schemes.

4) Linear and Nonlinear Support Vector Machine (SVM):
For the linear SVM model, we searched the margin penalty
with empirical values [2−5, 2−4, . . . , 24, 25]. For nonlinear
SVM, we utilized the Radial Basis Function (RBF) ker-
nel. By using a grid search method, we searched the mar-
gin penalty [2−5, 2−4, . . . , 24, 25], and kernel scale gamma
[0.5, 1.0, 1.5, 2.0, 2.5].

5) SMO: our previous work is a 4-layer SSAE-based neural
networks with an input layer, three hidden layers and an output
layer. The number of nodes in the hidden layer was set to
30 based on our previous work. The building process includes
pre-training, supervised learning, and fine tuning steps. A loss
function with L2 regularization and sparsity regularization
terms were adopted from [45]. During model optimiza-
tion, we tested sparsity proportion [0.1, 0.2, 0.3, 0.4, 0.5] and
L2 regularization weight [0.1, 0.2, 0.3, 0.4, 0.5]. 500 epoches
were sufficient for to guarantee the convergence of the model
and the learning rate was set to 0.01.

IV. EXPERIMENTAL RESULTS

In this section, we conducted comprehensive experiments
for evaluating our HSO detector on separating HFOs from
BC signals. We first validated the SEEG data set. Then,
ablation tests on HSO detector were presented. To explore
the effectiveness of our proposed method under different
parameter setting, the study of parameter exploration were also
provided. At the end, experimental results of different machine
learning methods are described in Section IV-F.

A. SEEG Data Validation

At the beginning of the experiment, we set the value of
selected neighbors K to 5 and constructed 1000 hyperedge for
representing the complex relationship between SEEG signal
segments. Some hyperedges may bring negative effects for
detecting HFOs, since the regularized term in hypergraph
learning enforces the labels of signal segments connected by
the hyperedge to be close, a hyperedge that contains both
HFOs samples and BC samples may degrade the performance
of detecting HFOs. In order to measure the effectiveness
of constructed hyperedges, we divided the hyperedges into
three categories: (1) Good quality hyperedges which consist
of 5 HFOs samples or 5 BC samples. (2) Normal quality
hyperedges which consist of 4 samples selected from HFOs
or BC and 1 sample from other category. (3) Bad qual-
ity hyperedges which consist of 3 samples selected from
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TABLE II
CLASSIFICATION PERFORMANCE COMPARISON BETWEEN FOUR

DISTANCE MEASUREMENT APPROACHES

HFOs or BC and 2 samples from the other category. In our
experiment, we adapted hyperedge weight learning to remove
the ineffective hyperedges. During hyperedge weight learn-
ing process, the weights of some hyperedges may become
negative value. To avoid the influence of these hyperedges,
we set the negative values to 0 instead. Figure 2 shows
the distribution of hyperedges with different quality types
under different hypergraph learning schemes. In hypergraph
without hyperedge weight learning, we noted that bad quality
hyperedges account for a large part of hyperedges. When
we adopt hyperedge weight learning scheme in traditional
hypergraph, the ineffective hyperedges were removed. The
total number of non-zero hyperedges droped to 502. The
proportion of good quality hyperedges increased apparently.
However, when the hyperedge weight learning scheme was
applied in HSO, the proportion of bad quality hyperedges
decreased. This is because that HSO has already benefited
from the ASCI scheme. Compared to traditional hypergraph,
the ASCI scheme leads to a high initial proportion of good
quality hyperedges and normal quality hyperedges, improving
the detection of HFOs. Figure 2 validates the effectiveness of
our HSO detector.

B. Ablation Study on ASCI Scheme

During hypergraph construction, sample distance d(x, y),
that measures the similarity between two signal segments,
plays an important role. Traditionally, Euclidean distance is
a common metric to measure the distance d(x, y)) between
two samples, such as images [26]. However, in our study,
the samples are one-dimensional biological signals. Consid-
ering the unique characteristic of biological signals, Euclid-
ean distance may not be an optimal metric to measure the
similarity between two signal segments. Thus, we introduced
a new ASCI mechanism to measure the similarity between
SEEG signal segments. Specifically, for each signal segment,
we calculated its ASCI-based distance with other signal seg-
ments, and find similar signal segments to form the hyper-
edge. In this way, the constructed hypergraph can detect
HFOs based on a new signal-specific distance measurement
approaches.

We tested the performance of HSO using four distance
measurement approaches: Pearson’s correlation coefficient,
Spearman’s rank correlation coefficient, Euclidean distance,
and ASCI. For a fair comparison, we use the same exper-
imental configuration. According to Table II, the proposed
ASCI approach achieved the best performance on accuracy and
sensitivity. The ASCI approach correctly detected HFOs signal
with an accuracy of 90.7%, outperforming Spearman approach
by 3.1%, Pearson approach by 3.6%, and Euclideanapproach

Fig. 3. Classification performance comparison with different K values.

by 2.6%. This demonstrates that our HSO benefits from the
ASCI method on measuring the similarity of signal segments.
Our ASCI-based HSO approach was able to achieve a sensitiv-
ity of 80.9%, which is 3.5%, 3.1 %, and 5.8% higher than the
Spearman, Pearson, and Euclidean approaches, respectively.
As illustrated in Table II, the Euclidean approach returned the
lowest performance in terms of sensitivity. However, compared
to other three approaches, the Euclidean approach achieves
the best performance in terms of specificity, which relates
to the detection of BC signals. The ablation experiments
demonstrated that our ASCI approach provides a suitable
trade-off between the detection of BC signals and HFOs.

C. Impact of Selected Neighbors K for Hyperedge
Construction

In the star-expansion strategy [38], parameter K is used to
select similarity-based nearest neighbors to form the hyper-
edge. In our experiment, we tested different value of K to
optimize the classification performance of our HSO detector.
In the conventional hypergraph theory, when the value of
K is too small, the hyperedge only contains a few signal
segments. The complex relationship between signal segments
can’t be fully represented by the constructed hypergraph.
Conversely, when the value of K is too large, a hyperedge
that connects too many signal segments has a negative effect
on the discriminative ability of the constructed hypergraph.

Figure 3 shows the classification performance curve with
respect to different K in our gold standard data set. Figure 3
illustrates the classification performance is not highly sensitive
to parameter K. In our following experiments, we set the K to
10 to measure the classification performance of HSO detector.

D. Impact of Parameter λ and μ in the Objective Function

In the objective function, the parameter λ modulates the
effect of loss term ‖F − Y‖2, while parameter μ modulates
the effect of weight regularization term φ(w). Figure 4 shows
the classification performance curve with respect to different λ.
Figure 5 shows the classification performance variation curve
with different μ values. The experiment results demonstrate
that our HSO detector achieves a steady classification perfor-
mance when μ and λ vary. We set parameter λ to 100 and
parameter μ to 50 in the following analysis.
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Fig. 4. Classification performance comparison with different λ values.

Fig. 5. Classification performance comparison with different μ values.

Fig. 6. Classification performance comparison with different ρ values.

E. Impact of Control Parameter ρ

In the weighted regularization term, control parameter ρ
balances the sparsity on hyperedge weight matrix and clas-
sification effect. As mentioned previously, when ρ = 0,
φ(w) controls the model complexity motivated by the success
of sparse learning. When ρ = 1, φ(w) learns the opti-
mal hyperedge weight. Figure 6 compares the classification
performance with different ρ values. The experiment results
demonstrate that our HSO detector achieves a steady classi-
fication performance, when ρ varied. Meanwhile, by varying
the value of ρ, we achieve a desirable balance between the
sparsity on hyperedge weight matrix and classification effect.
In our experiment, we set parameter ρ to 0.7 to measure the
classification performance of HSO detector in the following
analysis.

F. Method Comparison

We compared the HSO detector to several machine learn-
ing classification models. Deep learning models have been
demonstrated to outperform the traditional models in several

TABLE III
PERFORMANCE OF DIFFERENT METHODS FOR SEVERAL MEASURES

ON THE SEEG DATA SET. THE RESULTS OF OUR PROPOSED

METHOD ARE DENOTED IN BOLD

applications [46]. Especially, for the application of detecting
HFOs, our previous work of the SSAE-based HFOs detec-
tor [22] provides a promising way with superior performance
to detect HFOs from MEG data. In this case, whether our
hypergraph learning based classification model can outperform
the deep learning models is yet to know. By adopting 10-fold
cross validation strategy, the HSO detector was compared to
multiple advanced machine learning models, including deep
learning model, respectively.

Table III shows the classification performance of different
methods for HFOs detection on the SEEG Data set. In our
experiment, our HSO detector achieves a sensitivity of 80.9%,
which improves the performance of detecting HFOs up to
19.4%. The superior performance of our HSO detector on sen-
sitivity demonstrates utilizing the ASCI scheme to construct
hypergraph can significantly enhance the classification perfor-
mance. Note that although our HSO detector achieved the best
performance on accuracy, the superiority of our HSO detector
is not significant. Table III shows the similar performance on
specificity, which reflects the proportion of true negative (the
identification of BC signals). Compared to our previous work,
our HSO detector outperforms the SMO method by 4.6%
on accuracy, 9.7% on sensitivity, and 0.4% on specificity.
Meanwhile, compared to another previous work [26], our
approach HSO detector outperforms the traditional hypergraph
method by 2.6% on accuracy and 5.8% on sensitivity, and
achieves a low specificity. Also note that our HSO detector
brings a suitable trade-off between the detection of BC signals
and HFOs.

V. CONCLUSION

This work presented a hypergraph learning-based approach
to automatically and precisely detect HFOs from SEEG data.
While a novel ASCI-based distance metric was introduced to
measure the signal morphological similarity between SEEG
signal segments, a regularization term was also used to
optimize the constructed hypergraph. Compared to currently
available machine learning and deep learning classifiers, our
detector achieved the best performance on the detection of
HFOs from SEEG data. There are several future directions.
One is to extend our detector to a multi-label classifier with a
function to recognize additional patterns or sub-patterns (e.g.,
spike, ripple and fast ripple) in SEEG. Another direction is
that our HFOs detector could also be applied on other iEEG
technology (e.g., ECoG). Further comparisons are required
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between our method and other existing approaches in clas-
sifying iEEG signals.
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