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Robot-Based Assessment of HIV-Related Motor
and Cognitive Impairment for Neurorehabilitation

Kevin D. Bui

Abstract—There is a pressing need for strategies to
slow or treat the progression of functional decline in peo-
ple living with HIV. This paper explores a novel rehabilita-
tion robotics approach to measuring cognitive and motor
impairment in adults living with HIV, including a subset
with stroke. We conducted a cross-sectional study with
21 subjects exhibiting varying levels of cognitive and motor
impairment. We tested three robot-based tasks - trajectory
tracking, N-back, and spatial span — to assess if metrics
derived from these tasks were sensitive to differences
in subjects with varying levels of executive function and
upper limb motor impairments. We also examined how well
these metrics could estimate clinical cognitive and motor
scores. The results showed that the average sequence
length on the robot-based spatial span task was the most
sensitive to differences between various cognitive and
motor impairment levels. We observed strong correlations
between robot-based measures and clinical cognitive and
motor assessments relevant to the HIV population, such
as the Color Trails 1 (rho = 0.83), Color Trails 2 (rho =
0.71), Digit Symbol — Coding (rho = 0.81), Montreal Cog-
nitive Assessment — Executive Function subscore (rho =
0.70), and Box and Block Test (rho = 0.74). Importantly,
our results highlight that gross motor impairment may be
overlooked in the assessment of HIV-related disability. This
study shows that rehabilitation robotics can be expanded
to new populations beyond stroke, namely to people living
with HIV and those with cognitive impairments.
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|. INTRODUCTION

ODAY, there are nearly 37 million persons living with

human immunodeficiency virus (PLWH) worldwide [1].
As PLWH age due to the success of antiretroviral ther-
apy (ART), the challenges have shifted to managing the
chronic effects of living with HIV. Many of these challenges
can be attributed to neurological complications caused by
HIV-associated neurocognitive disorders (HAND), acceler-
ated aging, drug abuse, and HIV-related comorbidities [2].
Together, the broad range of impairments experienced by
PLWH has been shown to impact instrumental activities of
daily living (IADLs), such as medication management, tele-
phone communication, cooking, and financial management [3].
In one study, upwards of 80% of PLWH reported dealing
with at least one impairment, activity limitation or disabil-
ity, or social participation restriction [4]. These deficits are
often tied to impairments in executive function, memory,
and visuospatial domains [5]. PLWH also experience motor
impairments in gait, coordination, upper limb fine motor skills,
and strength, with 69% of PLWH in one study demonstrat-
ing at least one motor impairment [6]-[9]. As such, there
is a pressing need for effective neurorehabilitation strate-
gies to slow or treat the progression of functional decline
in PLWH.

The gold standard for diagnosing neurocognitive impair-
ment has been established by the Frascati criteria, an extensive
neuropsychological battery that classifies HAND subtypes
as asymptomatic neurocognitive impairment, mild neurocog-
nitive disorder, or HIV-associated dementia [10]. However,
the assessments used to diagnose HAND often test domains
in isolation, which is not reflective of the dual involvement
of cognitive and motor demands in most IADL tasks. Dif-
ferences between HIV and non-HIV populations are also
seen in more nuanced tasks. Kronemer ef al. demonstrated
that even when there was no motor impairment detected on
clinical assessments, PLWH demonstrated upper limb motor
impairment while multitasking compared to a non-HIV control
group that did not relate to HAND stage [11]. Assessments
of multitasking have been shown to be more reflective of
IADL performance in PLWH compared to standard clini-
cal assessments [12]. These results demonstrate that current
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clinical assessments and biomarkers of HIV do not necessarily
correspond well to more subtle impairments in cognition and
motor performance [11].

HIV-associated non-communicable diseases, such as cere-
brovascular disease (CVD), are a secondary effect of HIV
infection that can further exacerbate existing cognitive and
motor impairments. HIV is an independent risk factor for
CVD such as stroke [13]. With an incidence rate of 3.87 per
1000 years lived, CVDs occur at an average age of 48 years in
the HIV population [13]. These numbers are 1.5 times higher
and 22 years younger than the general U.S. population [14].
Augustyn et al. recently showed that stroke survivors with
HIV experienced a decline in ADL functions one month after
discharge compared to stroke survivors without HIV who
continued to show improvement, highlighting how HIV can
impact stroke recovery [15].

Efforts to develop neurorehabilitation strategies have been
made in the stroke population, but there is a paucity of
established solutions for PLWH despite evidence that reha-
bilitation can positively address HIV-related challenges in
physical, social, and psychological well-being [16], [17]. The
rehabilitation robotics field provides a potential solution to
address these challenges [18]. Robot-assisted stroke therapy
has been shown to be as effective as high-intensity physical
therapy for chronic stroke patients [19]. Additionally, robotic
systems allow for a variety of kinematic metrics to be observed
that relate to clinical measures of motor impairment [20]-[24].

While the primary focus to date has been on motor impair-
ment, recent studies have started to look at robot-based
measures of cognitive impairment in stroke and traumatic
brain injury populations [21], [22]. Both of these studies
have demonstrated a relationship between robot-based metrics
and overall cognitive scores. However, given that cognition
is broadly defined, more work needs to be done to establish
robot-based metrics relating to specific domains.

The strengths of a rehabilitation robotics-based approach
include the ability to standardize assessments with a greater
range of objective measures, collect a vast amount of data,
and develop personalized neurorehabilitation strategies based
on the patient’s presenting characteristics. Our prior work has
also shown the feasibility of deploying cost-effective rehabili-
tation robotics systems in lower-resource contexts [25]. Cost-
effective rehabilitation robotics systems can bridge healthcare
gaps in countries with low-to-middle income economies that
are dealing with large populations of patients with impairments
and a shortage of rehabilitation professionals. This approach
has the potential to positively impact PLWH by building
upon the body of work that has been done in the stroke
population.

This preliminary cross-sectional study aims to establish
objective, robot-based measures of executive function and
upper limb motor impairment in PLWH - including a subset
with stroke — and assess the strength of the relationship
between these robot-based and clinical assessment scores. This
study tests three hypotheses to demonstrate the utility of a
robotic approach in assessing impairments in PLWH. Given
the heterogeneous nature of impairments in this population,
the first part of this study tests the hypothesis that robot-based

metrics can differentiate subjects with and without moderate
executive function or upper-limb motor impairments (H1).
The second hypothesis measures the relationship between
robot-based metrics and clinical assessments used in PLWH
by testing whether robot-based metrics are good predictors of
clinical cognitive assessment scores (H2) as well as clinical
motor assessment scores (H3). This work lays the foundation
for the development of novel neurorehabilitation strategies for
PLWH.

Il. METHODS
A. Subject Population and Procedure

Individuals over the age of 18 years old were recruited from
the community through flyers posted at local HIV clinics and
organizations. Inclusion criteria for the HIV group consisted
of documented HIV status that was ART-treated and virally-
suppressed, the ability to ambulate, the ability to comprehend
study procedures, and the ability to provide written informed
consent. Individuals with neuropathy (i.e. distal symmetric
polyneuropathy) were excluded.

Subjects were included in the HIV-stroke subgroup if they
met the inclusion criteria for the HIV group and were at least
three months removed from a stroke event. HIV-stroke subjects
with severe aphasia, visual neglect, or basal ganglia stroke
were excluded. Subjects were excluded if they were more
than mildly depressed as assessed by the Beck’s Depression
Inventory — Fast Screen (score > 4) [26]. Subjects were com-
pensated for time and travel. This protocol was approved by
the Internal Review Board of the University of Pennsylvania
(Protocol no. 823511).

Subjects underwent a preliminary phone screen to screen for
study eligibility. They were then sent a copy of the informed
consent to review prior to coming in for their scheduled
in-person appointment. After written informed consent was
obtained in-person, cognitive and motor assessments were
performed. Participants then completed three robot-based tasks
in a randomized order with the dominant and non-dominant
upper-extremity limb.

B. Cognitive Assessments

The cognitive assessments consisted of the Color Trails,
Digit Symbol-Coding (WAIS-III ®), Montreal Cognitive
Assessment (MoCA), and International HIV Dementia Scale
(IHDS) [27]-[30]. These tests have all been administered in
PLWH previously to measure neurocognitive impairment [8],
[30]-[33]. These tests were chosen to reflect the cognitive
domains commonly affected by HIV.

1) Color Trails: The Color Trails is a set of two cognitive
pencil and paper tests based on the Trail Making Test but does
not require knowledge of the alphabet, thus reducing potential
bias [27]. Color Trails 1 tests for sustained visual attention
and simple sequencing, while Color Trails 2 assesses frontal
systems such as selective attention, mental flexibility, visual
spatial skills, and motor speed. Performance was measured by
the time to complete the task, with a higher time indicating
worse performance. These scores were normalized by age,
gender, and education [27].
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2) Digit Symbol — Coding (WAIS-IIl ®): The Digit Symbol-
Coding (WAIS-III ®) test is another neuropsychological test
assessing processing speed [28]. Subjects use a number-
symbol key to copy symbols under a sequence of numbers.
Performance was measured by the number of symbols coded
in the span of two minutes, with a higher number of symbols
copied in the time span representing better performance.
Scores were normalized by age, gender, and education.

3) Montreal Cognitive Assessment (MoCA): The MoCA is a
screening tool to detect impairment in a number of cognitive
domains — visuospatial/executive, naming, memory, attention,
language, abstraction, delayed recall, and orientation — and
reflects the degree of cognitive impairment in a subject [29]. A
score above 25 out of 30 generally indicates normal cognitive
function, while a score below 19 indicates likely moderate
cognitive impairment.

An executive function subscore (MoCA-EF) was calculated
to serve as a proxy in place of a more extensive neu-
ropsychological assessment of executive function, based on
work by Lam er al. demonstrating good convergent validity
between this subscore and standardized neuropsychological
tests of executive function [34]. This subscore, scored out
of five points, was calculated from summing the scores from
the backward digit span, trail making, word similarities, and
‘F’-word list generation tasks [34]. Lam ef al. demonstrated
that a cutoff score of 4 had a sensitivity of 0.79 to executive
function impairment [34].

4) International HIV Dementia Scale (IHDS): The THDS is a
screening test for cognitive impairment designed to screen for
HAND, with a score below 10 out of 12 indicating potential
cognitive impairment [30]. It was developed as a culturally
appropriate adaptation of the HIV Dementia Scale. However,
the THDS has not been validated in the stroke population.

C. Motor Assessments

The motor assessments tested gross motor function, fine
motor function, and strength. They consisted of the Box and
Blocks Test (BBT), Grooved Pegboard (GP), and grip strength.

1) Box and Blocks (BBT): The BBT is a test of gross motor
function measuring how many blocks subjects are able to
transfer across a partition in one minute, with a higher number
of transferred blocks indicating better motor function [35].
Scores were normalized by age, gender, and limb. It is
typically used to measure reach and grasp function in the
stroke population.

2) Grooved Pegboard (GP): GP is a common motor assess-
ment in PLWH. It tests fine motor function and dexterity,
measuring the amount of time a subject takes to insert all of
the grooved pegs into matched holes on a board. Performance
was measured by the time to complete the task with longer
times indicating worse fine motor function [36]. GP data for
subjects unable to complete the task were not included in the
analysis (one subject).

3) Grip Strength: Grip strength is measured with a
dynamometer. Three trials were taken with each hand, with
the average and standard deviation being recorded. Accel-
erated grip strength decline has been shown in a study of
HIV-infected men, which may contribute to decreased life
expectancy and lower quality of life with aging [37].

Fig. 1. The Haptic Theradrive, a one degree-of-freedom rehabilitation
robot system used in this study. Image used with permission from [38].

D. Robot Assessment

1) Rehabilitation Robot System: The rehabilitation robot
used in this study, the Haptic TheraDrive, is a one
degree-of-freedom robot for upper limb stroke rehabilitation
(Fig. 1) [25]. The user operates the TheraDrive by manipu-
lating a vertically-mounted crank handle equipped with force
sensors and an optical encoder. For assessment purposes,
it is run in a gravity-compensation mode, which uses force
sensors as an input to a proportional-integral-derivative (PID)
controller to calculate the necessary response by the motor
to give the sensation that there is no resistance or assistance
while the user manipulates the handle.

2) Trajectory Tracking Motor Task: The trajectory tracking
task is designed to assess upper limb motor performance.
A single trial consists of the user moving the crank arm
forward and backward to follow a vertically scrolling sinu-
soidal path for 15 seconds. This task is repeated 15 times
after one training trial. The outcome measures include per-
formance error, movement smoothness, and the normalized
distance traversed. Performance error was calculated as the
root mean square error (RMSE) of the position relative to the
displayed trajectory and normalized by the RMSE assuming no
movement. A lower performance error indicates better tracking
performance. Spectral arc length was used as the measure of
smoothness, which has the benefit of being less sensitive to
noise compared to other measures of smoothness [39]. More
negative values of smoothness indicate less smooth move-
ments. Normalized distance traversed was calculated from
dividing the total angular distance that the subject traversed by
the expected angular distance of the displayed trajectory path.
A value closer to 1 reflects that the actual distance traversed
matched the expected distance. A lower value could reflect
moderate motor impairment, while a higher value could reflect
inefficient movement.

3) N-Back Cognitive Task: The N-back test is commonly
used in the cognitive neuroscience field as a test of working
memory and working memory capacity [40]. In this version,
the subject is presented with a sequence of numerical digits
(1-4) with three different conditions. For the 0-back condition,
the easiest condition, the subject indicates when the current
stimulus shown on the screen is the number ‘2.” For the more
cognitively-involved 1-back and 2-back conditions, the subject
indicates when the current stimulus matches the stimulus
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shown one stimulus or two stimuli prior, respectively. The sub-
ject indicates a match by pressing a button on the TheraDrive.
The number then flashes green or red for a correct or incorrect
response, respectively. Each subject performed the task with
each limb, cycling through the 0-back, 1-back, and 2-back
conditions four times for a total of 12 trials, all with different
numerical sequences. The first set of trials is used as a training
set and not included in the analysis. Ten responses are recorded
per trial. Each subject was shown the same set of 12 sequences,
with each sequence having a minimum of three button press
responses. N-back performance was measured as the total
number of correct responses divided by the total number of
responses across the trials, resulting in a score ranging from
0 to 1, with a score closer to 1 representing better performance.

4) Spatial Span Cognitive-Motor Task: The Spatial Span is a
test of visuospatial working memory based on the Corsi block-
tapping task used in neuropsychological assessments [41].
While computerized versions of the Spatial Span exist [42],
this version incorporates an added motor component to con-
currently test for arm coordination, visuospatial ability, and
working memory. A 3-by-3 grid of tiles is displayed to the user
on a computer screen, and a sequence of tiles is shown one
tile at a time. The user must operate the TheraDrive to select
the tiles in the order shown. If the user successfully repeats
the sequence by selecting the correct tiles in order, the next
displayed sequence increases in length by one to make the
task more difficult. If the user is unsuccessful, the sequence
decreases in length by one. The metrics of interest for the
task include the normalized distance traversed, movement
smoothness, mean sequence length across all the trials, and
performance. Normalized distance traversed and movement
smoothness were calculated the same way as in the trajectory
tracking task. Mean sequence length is the average number of
tiles displayed to the user per trial and reflects the capacity
of the subject. Spatial span performance was measured as the
total number correct tile matches divided by the total number
of tiles shown across the trials. Thus, spatial span performance
is a score ranging from O to 1, with 1 representing perfect
performance.

E. Data Processing

A one-sample Kolmogorov-Smirnov test for normal distrib-
ution was run on the raw continuous demographic, clinical,
and robot metrics. Given that the data were not normally
distributed, non-parametric Wilcoxon rank-sum tests were
conducted to test for differences between HIV and HIV-stroke
groups. To adjust for multiple comparisons, separate Bonfer-
roni corrections were applied for the clinical (adjusted p =
0.004) and robot-based (adjusted p = 0.006) scores.

All robot metrics were Z-score normalized by the entire
subject population in this study, resulting in a distribution with
a mean of zero and standard deviation of one. This was done to
ensure metrics were evenly weighted in the regression analysis.

F. Functional Subgroup Comparison Analysis

To investigate the first hypothesis that robot-based metrics
can differentiate between subjects with and without moderate

executive function impairments or upper-limb motor impair-
ment, all study subjects were categorized by their motor and
cognitive status based on clinical score cutoffs. The subject
population demonstrated motor impairment on both the BBT
and GP based on healthy population norms, but BBT was
chosen to avoid excluding individual subjects who did not
complete the GP. To categorize subjects by motor status, raw
BBT scores were normalized by published gender, age, and
limb side norms and converted into a Z-score. A BBT Z-score
of -2 and below was used to indicate moderate motor impair-
ment. To categorize subjects by cognitive status, a MoCA-EF
score of 3.5 and below was used as a cutoff for likely mod-
erate executive function impairment [34]. Subjects were then
categorized into one of four functional subgroups based on the
possible combinations of motor and cognitive status. Because
this was done for both dominant and non-dominant limb motor
status, subjects could be classified into two different functional
subgroup classifications based on differing motor performance
between dominant and non-dominant limbs.

For each robot-based metric, a two-way analysis of variance
(ANOVA) was conducted where the factors were functional
group and limb performance side. To adjust for all pairwise
comparisons between functional groups, a Tukey-Kramer hon-
est significance test was applied if the ANOVA was significant.
An alpha level of 0.05 was used to establish the significance
on all statistical tests.

G. Multiple Linear Regression Analysis

To investigate whether the robot-based metrics were sig-
nificant predictors of clinical assessment scores, a multiple
linear regression approach was used. Bosecker et al. previously
used a backward multiple linear approach to identify a set
of robot-based metrics reflective of various stroke outcome
measures [23]. Rather than start with all of the robot-based
metrics and remove terms, a forward stepwise approach was
implemented here. This consisted of individually testing each
robot-based metric and subsequently adding it to the model
only if it was a statistically significant predictor individually.
Given the sample size of the subject population, the model was
limited to two terms. In order to adjust for the number of pre-
dictors used in the model and to compare performance between
models with different numbers of predictors, the adjusted R? is
reported. A power analysis revealed that the linear regression
models were powered to detect a minimum R? of 0.40 with one
predictor and 0.43 with two predictors (n = 21, power = 0.80,
alpha = 0.05). A small, medium, and large effect size were
defined as an R? value of 0.01, 0.25, and 0.50, respectively.
The non-parametric Spearman’s rtho was also calculated to
measure the correlation between predicted and actual clinical
scores. All analysis was conducted in Matlab 2019A.

I1l. RESULTS
A. Subject Population Breakdown
The descriptive statistics for demographic and clinical
information for the subject groups (HIV, HIV-stroke, and
combined) are presented in Table I. Twenty-one subjects in
total — thirteen male and eight female — participated in the
study. Six subjects had a history of stroke. The average age



580

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021

TABLE |
SUBJECT DEMOGRAPHICS AND CLINICAL SCORES
Characteristics HIV-only HIV-stroke Subject
meanzstandard | group population
deviation mean+standard | mean-standard
(n=15) deviation deviation
(n=6) (n=21)
Age (years old) | 56.2 + 54 54.248.1 55.5 £6.3
Gender 10M/5F 3M/3F 13M/8F
(Male/Female)
> 12 years edu | 10 5 15
(count)
Color Trails 1 | 50.27+21.74 41.83+13.48 47.861+20.10
(seconds)
Color Trails 2 | 125.53+£67.30 | 105.504+22.60 | 119.81458.85
(seconds)
Digit Symbol- | 45.07£12.48 49.67+6.16 46.38+11.24
Coding Score
MoCA 21.474+4.43 23.83 +2.19 22.144+4.06
(out of 30)
MoCA-EF 2.87+1.31 2.8340.69 2.86+1.17
(score out of 5)
IHDS (out of | 7.47+2.60 8.001+2.75 7.621+2.66
12)
Dominant 54.2049.73 52.754+11.57 53.794+10.01
BBT (blocks)
Non-Dominant 54.4049.54 47.83+18.62 52.52+12.63
BBT (blocks)
Dominant 91.60426.36 102.92+40.55 | 94.834+30.41
GP (seconds)
Non-Dominant 111.53+£49.49 160.33+£84.63 125.48+63.36
GP (seconds)
Dominant Grip | 29.56£12.15 30.934+3.22 29.95+10.31
Strength (kg)
Non-Dominant 28.084+13.60 22.13+10.97 26.38+12.93
Grip  Strength
(kg)

of the HIV and HIV-stroke groups were 56.2+5.4 years old
and 54.248.1 years old, respectively, while the average age of
the entire subject population was 55.546.3 years old. Fifteen
subjects had 12 or more years of education. Fourteen subjects
had MoCA-EF scores below 3.5 and sixteen subjects displayed
moderate motor impairment in at least one limb based on BBT
scores. There were no statistically significant differences —
even at the unadjusted alpha level of 0.05 — between HIV
and HIV-stroke groups or between limbs on the clinical motor
assessments.

B. Robot-Based Performance for Example Subjects
Performance data from two sample subjects (Subjects
12 and 18) on the trajectory tracking and spatial span tasks are
presented, highlighting the wide variety of impairments seen
in the subject population (Fig. 2). Subject 12 is a 56-year-old
male HIV subject with moderate cognitive and moderate motor
impairment, scoring a 13 on the MoCA and more than two
standard deviations below Box and Block population norms
on both the dominant and non-dominant limb. Subject 18 is
a 49-year-old male HIV-stroke subject with low cognitive and
low motor impairment, scoring a 25 on the MoCA and less
than two standard deviations below BBT populations norms
on both the dominant and non-dominant limb. Qualitatively,
Subject 12 demonstrates poorer performance compared to
Subject 18 (Fig. 2; left). This can be seen in comparing the
average trajectory of each subject to the desired trajectory and
the larger variance across the trials as seen in the shaded

100 10
B Example HIV subject (Subject 12)
Example HIV-stroke subject (Subject 18)

Position (deg)
Count

== Example HIV subject (Subject 12)
Example HIV-stroke subject (Subject 18)
-+ Desired trajectory

0
5 10 15 1 2 3 4 5 6 7

2 ‘ ‘
-100
0

Time (sec) Sequence Length Distribution

Fig. 2. Left: The mean trajectory from the trajectory tracking task is
shown for an example HIV (blue) and HIV-stroke (pink) subject. The
expected trajectory is shown as a black dotted line. The shaded region
represents the standard deviation across all the trials. Right: Histograms
showing the distribution of sequence lengths on the spatial span task for
the same HIV and HIV-stroke subject.

TABLE Il
GROUP ROBOT PERFORMANCE RESULTS BY DOMINANT (D) AND
NON-DOMINANT (ND) LimBS (MEAN £ STANDARD DEVIATION)

Robot Metrics HIV-only HIV-Stroke Subject
population
N-back D: 0.86+0.08 0.85+0.07 0.86£0.07
performance ND: 0.87+0.07 | 0.8440.03 0.8610.06
Trajectory tracking | 0.34 £0.15 0.44+0.23 0.37£0.18
performance 0.34+0.14 0.5440.37 0.3940.24
Trajectory tracking | 1.0140.11 1.06+0.07 1.02+0.10
normalized 1.04+£0.10 0.96+0.29 1.0240.17
distance traversed
Trajectory tracking | -9.19£1.16 -10.26£1.06 | -9.50+1.21
smoothness -9.56+1.23 -10.414+2.46 | -9.80+1.65
Spatial span mean | 2.8340.97 2.9740.88 2.8740.93
sequence length 3.2240.99 3.024+1.32 3.164+1.06
Spatial span 0.62+0.13 0.67£0.06 0.63£0.12
performance 0.69+0.09 0.5940.20 0.66+0.13
Spatial span 1.57£0.56 1.58 +£0.26 1.57£0.48
normalized 1.61£0.35 1.50£0.29 1.59+0.33
distance traversed
Spatial span -2.18+0.41 -2.36+0.42 -2.23£0.41
smoothness -2.35+0.51 -2.5940.97 -2.4240.65

regions. On the robotic spatial span task, the histogram of
sequence lengths across the trials shows a distinct difference
between the two subjects (Fig. 2; right).

C. Raw Robot Performance Metrics

Table IT shows the mean and standard deviations for the raw
robot-based metrics across the HIV-only group, HIV-stroke
group, and the entire subject population. The scores for both
the dominant and non-dominant limb are reported. There were
no statistically significant differences — even at the unadjusted
alpha level of 0.05 — in any robot metrics between dominant
and non-dominant limbs or between HIV and HIV-stroke
groups. However, some qualitative differences are notable. For
example, while trajectory tracking performance was similar on
both limbs in the HIV-only group, it was noticeably different
for the HIV-stroke group, reflecting the presence of motor
impairments in the non-dominant limb likely caused by stroke.
The spatial span mean sequence length in each group was
lower than the reported average span of 4.8 in a study that
developed a computer-based version of the Corsi block-tapping
task [42]. Given that moderate cognitive impairment may mask
motor performance, the study subjects were further stratified
by their cognitive and motor function.
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Fig. 3. Distribution of subjects by cognitive and motor function, using a
score of 3.5 for the MoCA-EF cutoff and —2 as the BBT Z-score cutoff.
The left figure is the distribution using the dominant limb BBT scores,
while the right is from non-dominant limb BBT scores. (Cl = cognitive
impairment; Ml = motor impairment; mod = moderate).

D. Stratification by Functional Subgroups (Hypothesis 1)

Figure 3 shows the distribution of the subject population
by their functional groups using MoCA-EF subscores and
BBT Z-scores to separate subjects by cognitive and motor
function, respectively. The number of subjects in each of the
four functional groups were the same when using dominant
versus non-dominant BBT z-scores. There were two subjects
in the low cognitive and low motor impairment group, five
subjects in the low cognitive and moderate motor impairment
group, six subjects in the moderate cognitive and low motor
impairment group, and eight subjects in the moderate cognitive
and moderate motor impairment group. Five HIV subjects and
one stroke subject had different functional group classifications
based on their dominant and non-dominant motor scores.

There was a statistically significant main effect of functional
group on N-back performance (F(3,34) = 6.64, p = 0.001).
There was no main effect of limb side or interaction effect.
Subjects with low cognitive and low motor impairments per-
formed better on the N-back task compared to subjects with
moderate cognitive and moderate motor impairments (0.96+
0.01 vs. 0.83% 0.05, p = 0.001) and subjects with moderate
cognitive and low motor impairments (0.96+ 0.01 vs. 0.85+
0.06, p = 0.01). Fig. 4 (top) shows the N-back performance
scores for each of the functional subgroups.

There was a statistically significant main effect of functional
group on trajectory tracking performance error (F(3,34) =
7.78, p = 0.0004). There was no main effect of limb
side or interaction effect. Subjects with moderate cognitive
and moderate motor impairment had significantly higher per-
formance error scores compared to subjects with low cognitive
and moderate motor impairment (0.50% 0.25 vs. 0.28+0.08,
p = 0.04) and subjects with low cognitive and low motor
impairment (0.50£ 0.25 vs. 0.20£0.04, p = 0.04). Fig. 4
(middle) shows the trajectory tracking performance for each
of the functional groups.

There was a statistically significant main effect of functional
group on spatial span mean sequence length (F(3, 34) = 8.23,
p = 0.0004). There was no main effect of limb side or inter-
action effect. Subjects with low cognitive and low motor
impairment had longer average sequence lengths compared
to subjects with moderate cognitive and moderate motor
impairments (4.48+0.56 vs. 2.39£0.74, p = 0.0004) and
subjects with moderate cognitive and low motor impairments
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Fig. 4.  Box plots for each of the functional subgroups on N-back

performance (top), trajectory tracking performance error (middle), and
spatial span mean sequence length (bottom). Cl = cognitive impairment;
MI = motor impairment (* = p < 0.05, ** = p < 0.005 after correcting for
multiple comparisons).

(4.484+0.56 vs. 3.12+1.00, p = 0.04). Subjects with low
cognitive and moderate motor impairment also had longer
average sequence lengths compared to subjects with moderate
cognitive and moderate motor impairment (3.31+0.70 vs.
2.39+0.74, p = 0.04). Fig. 4 (bottom) shows the spatial span
mean sequence length for each of the functional subgroups.

There was a statistically significant main effect of functional
group on spatial span performance, but there were no signifi-
cant differences between any of the functional subgroups after
correcting for multiple comparisons.

There were no statistically significant main or interaction
effects for trajectory tracking normalized distance traversed,
trajectory tracking smoothness, spatial span normalized dis-
tance traversed, or spatial span smoothness scores.

E. Estimating Clinical Cognitive Scores (Hypothesis 2)

1) Dominant Limb Predictors: Fig. 5 shows the multiple
linear regression models for each of the clinical cognitive
assessments using dominant limb robot-based metrics as the
predictors.

Color Trails 1 was predicted by a combination of trajectory
tracking normalized distance traversed and spatial span mean
sequence length (p = 0.03 and 0.001, respectively). The robot-
based predictors accounted for 60% of the variance in the
model, and the predicted scores strongly correlated with actual
Color Trails 1 scores (rho = 0.83, p = 3.33 x 107°; adjusted
R?=0.60, p=1.13 x 107%).

Color Trails 2 was predicted by spatial span mean sequence
length (p = 0.002). The robot-based predictor accounted for
36% of the variance in the model, and the predicted scores
strongly correlated with actual Color Trails 2 scores (rho =
0.71, p = 3.34 x 107%; adjusted R?> = 0.36, p = 0.002).

Digit Symbol Coding was predicted by spatial span mean
sequence length (p = 1.83 x 107°). The robot-based predictor
accounted for 61% of the variance in the model, and the
predicted scores strongly correlated with actual Digit Symbol
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Coding scores (rho = 0.81, p = 7.06 x 107°; adjusted
RZ=0.61, p=1.83x 1077).

MoCA was predicted by spatial span mean sequence length
(p = 0.003). The robot-based predictor accounted for 34% of
the variance in the model, and the predicted scores moderately
correlated with actual MoCA scores (rho = 0.64, p = 0.002;
adjusted R = 0.34, p = 0.003).

MoCA-EF was predicted by spatial span mean sequence
length (p = 5.30x 10™#). The robot-based predictor accounted
for 45% of the variance in the model, and the predicted scores
strongly correlated with actual MoCA-EF scores (rho = 0.70,
p =4.07 x 107%; adjusted R? = 0.45, p = 5.30 x 107%).

IHDS was predicted by spatial span performance (p =
5.31 x 10~%). The robot-based predictor accounted for 45% of
the variance in the model, and the predicted scores moderately
correlated with actual IHDS scores (rho = 0.52, p = 0.02;
adjusted RZ = 0.45, p = 5.30 x 107%).

2) Non-Dominant Limb Predictors: Fig. 6 shows the linear
regression models for each of the clinical cognitive assess-
ments using non-dominant limb robot-based metrics as the
predictors.

Color Trails 1 was predicted by spatial span mean sequence
length (p = 0.001). The robot-based predictor accounted for
39% of the variance in the model, and the predicted scores
strongly correlated with actual Color Trails 1 scores (rho =
0.70, p = 3.73 x 10~*; adjusted R? = 0.39, p = 0.001).

Color Trails 2 was predicted by N-back performance (p =
0.003). The robot-based predictor accounted for 35% of the
variance in the model, and the predicted scores moderately
correlated with actual Color Trails 2 scores (rho = 0.68, p =
7.79 x 10~%; adjusted R? = 0.35, p = 0.003).

Digit Symbol Coding was predicted by spatial span mean
sequence length (p = 1.51 x 10~%). The robot-based predictor
accounted for 51% of the variance in the model, and the
predicted scores strongly correlated with actual Digit Symbol
Coding scores (rho = 0.76, p = 6.38 x 107°; adjusted
R?2=0.51,p= 151 x107%).

MoCA was predicted by N-back performance (p = 0.007).
The robot-based predictor accounted for 28% of the variance
in the model, and the predicted scores weakly correlated with
actual MoCA scores (rho = 0.48, p = 4.07 x 1074; adjusted
R? = 0.28, p = 0.007).

MoCA-EF was predicted by spatial span mean sequence
length (p = 0.001). The robot-based predictor accounted for
41% of the variance in the model, and the predicted scores
moderately correlated with actual MoCA-EF scores (rho =
0.68, p = 7.00 x 107%; adjusted R?> = 0.41, p = 0.001).

IHDS was predicted by a combination of trajectory tracking
smoothness and spatial span smoothness (p = 9.76 x 10~ and
0.02, respectively). The robot-based predictors accounted for
53% of the variance in the model, and the predicted scores
strongly correlated with actual IHDS scores (rho = 0.80, p =
1.46 x 1073; adjusted R = 0.53, p = 4.12 x 107%).

F. Estimating Clinical Motor Scores (Hypothesis 3)

1) Dominant Limb Predictors: Fig. 5 shows the linear regres-
sion models for each of the clinical motor assessments using
dominant limb robot-based metrics as the predictors.

Dominant limb BBT was predicted by a combination of
trajectory tracking normalized distance traversed and spatial
span normalized distance traversed (p = 0.003 and 0.02,
respectively). The robot-based predictors accounted for 53%
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Fig. 6. Multiple linear regression for clinical assessments using non-dominant limb robot-based metrics. The robot-based predictors for each model
are included in the equation at the top of each subplot. Spearman’s rho and adjusted R? are shown. (* = p < 0.05, ** = p < 0.001).

of the variance in the model, and the predicted scores strongly
correlated with actual BBT scores (rho = 0.74, p = 1.46 x
10~4; adjusted R? = 0.53, p = 4.72 x 107%).

Dominant limb GP was predicted by trajectory tracking
performance (p = 0.002). The robot-based predictor accounted
for 38% of the variance in the model, and the predicted scores
moderately correlated with actual GP scores (rho = 0.58,
p = 0.006; adjusted R? = 0.38, p = 0.002).

Dominant limb grip strength was predicted by spatial span
normalized distance traversed, but it was neither a significant
predictor nor correlated to actual grip strength scores (rho =
0.29, p = 0.20; adjusted R? = 0.10, p = 0.09).

2) Non-Dominant Limb Predictors: Fig. 6 shows the linear
regression models for each of the clinical motor assessments
using non-dominant limb robot-based metrics as the predictors.

Non-dominant limb BBT was predicted by a combination
of trajectory tracking normalized distance traversed and spatial
span mean sequence length (p = 0.002 and 0.01, respectively).
The robot-based predictors accounted for 64% of the variance
in the model, and the predicted scores strongly correlated with
actual BBT scores (rho = 0.71, p = 3.41 x 1074; adjusted
RZ = 0.64, p =4.44 x 1077).

Non-dominant limb GP was predicted by trajectory tracking
normalized distance traversed (p = 0.005). The robot-based
predictor accounted for 31% of the variance in the model while
the predicted scores were not significantly correlated with
actual GP scores (rho = 0.29, p = 0.21; adjusted R% = 0.31,
p = 0.005).

Non-dominant limb grip strength was predicted by spatial
span performance (p 0.03). The robot-based predictor

accounted for 19% of the variance in the model, and the
predicted scores weakly correlated with actual grip strength
scores (rho 044, p 0.04; adjusted RZ = 0.19,
p = 0.03).

IV. DISCUSSION
A. Gross Motor Impairments Are Prevalent in PLWH

This study aimed to use a robot-based approach to explore
objective measures of cognitive and motor impairment in
HIV and HIV-stroke populations. The HIV and HIV-stroke
groups displayed no significant differences in clinical or robot-
based scores. Subjects in both the HIV and HIV-stroke groups
demonstrated mild to moderate impairment in executive func-
tion, information processing, and upper limb fine and gross
motor domains relative to published population normal per-
formance values in uninfected populations. These results are
consistent with previous research demonstrating impairments
in these domains in PLWH [6], [10], [43].

We found it notable that the HIV-only group demonstrated
not only fine motor impairment as previously reported in the
literature [7]-[9], [11], but also gross upper limb motor impair-
ment. Gross motor impairment has generally been considered
a pre-ART era manifestation of HIV infection, and studies
since then have focused on the fine motor deficits that result
from HIV [7]. Moderate bilateral gross motor impairment,
as measured by the BBT and adjusted to healthy population
norms, was present in 7 of 15 subjects in the HIV group. The
prevalence of moderate bilateral fine motor impairment in the
HIV-only subjects in this study (5 out of 15), as measured
by the GP, is higher than what was reported in Wilson et al.
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(2 out of 12) in a group of PLWH with a similar average
age of 57.9 years old [7]. These results suggest that gross
upper limb motor impairments may be an overlooked effect
of chronic HIV and that the BBT can be used to identify
these impairments as an alternative to the GP. This approach
could be useful when examining patients with both HIV and
stroke in particular, when motor impairments may be more
prevalent [44].

B. Robot-Based Metrics Capture Differences in
Functional Subgroups

A wide range of impairments was observed in the subject
population and there was no clear separation between the
HIV and HIV-stroke groups on either the clinical assess-
ments or robot-based metrics. As such, subjects were classified
into one of four functional groups by their cognitive and
motor performance. The results provide evidence in support
of the study’s first hypothesis that robot-based metrics can
differentiate subjects with and without moderate executive
function or upper-limb motor impairments.

Subjects with moderate executive function impairment,
regardless of motor status, performed worse on the N-back
compared to subjects with low cognitive and low motor
impairment. These results suggest the robot-based N-back
can be used to isolate executive function deficits. This is
consistent with previous findings that the paper-based N-back
test, although specifically a test for working memory, engages
executive function domains impacted by HIV [45].

Subjects with moderate executive function and moderate
gross motor impairments performed worse on the robot-based
trajectory tracking task compared to subjects with low cogni-
tive impairment, regardless of motor status. This suggests that
there might be a cognitive component to the trajectory tracking
task that exacerbates performance error in the presence of
executive function impairments.

Similarly to the robot-based N-back, subjects with moderate
executive function impairment, regardless of motor status,
had shorter sequences on the robot-based spatial span task
compared to subjects with low cognitive and low motor
impairment. Additionally, subjects with low cognitive and
moderate motor impairment performed better than subjects
with moderate cognitive and moderate motor impairment.
These results suggest that a robot-based spatial span task can
be used to detect executive function impairment, even in the
presence of moderate motor impairment.

Together, these robot-based metrics provide a set of mea-
sures that are able distinguish between certain functional
groups. Going forward, these represent a potential set of
objective metrics that can be used to track longitudinal per-
formance that relate to functional status in PLWH, stroke,
and other conditions presenting with both motor and cognitive
impairments.

C. Robot-Based Metrics Relate to HIV-Related
Clinical Assessments

To our knowledge, we are the first group to explore objective
robot-based measures of both motor and cognitive impairments

in PLWH. This study is a first step in developing more targeted
neurorehabilitation strategies for PLWH exhibiting both motor
and cognitive decline. The results support the study’s second
hypothesis and show that both individual and linear combina-
tions of robot-based metrics can successfully estimate clinical
cognitive scores. The regression models for Color Trails 1,
Digit Symbol-Coding, MoCA-EF and IHDS (adjusted R? =
0.41-0.60) — excluding the non-dominant limb model for
Color Trails 1 — performed the best, exceeding the effect size
for which the study was powered. The robot-based measures
also demonstrated statistically significant relationships with
Color Trails 2 and MoCA.

This is one of the first studies to establish objective
robot-based measures that relate to Digit Symbol-Coding,
MoCA-EF subscores, or IHDS. Given that the Digit
Symbol-Coding, MoCA-EF, and IHDS look at more specific
cognitive domains related to executive function, this suggests
the potential of robot-based metrics to identify more spe-
cific impairments going forward that are relevant to PLWH.
Notably, the robot-based metrics that best predicted these
clinical scores were consistent with the robot-based metrics
that showed differences between functional groups.

Two other studies that examine the relationship between
robotic metrics and MoCA scores in stroke and traumatic brain
injury populations reported correlation coefficients ranging
between 0.49 and 0.65 that are similar to the values observed
in this study (rho = 0.48-0.64) [21], [22].

The results provide evidence that robot-based metrics can
successfully estimate clinical motor scores in PLWH. The
dominant and non-dominant limb models for BBT scores
(adjusted R? = 0.53 and 0.64, respectively) performed the
best, exceeding the effect size for which the study was powered
and demonstrating strong correlations between predicted and
actual scores. Using a multiple linear regression with eight
robotic predictors derived from three tasks, Bosecker et al.
demonstrated correlation coefficients between estimated and
actual scores for the Fugl-Meyer, Motor Status Score, Motor
Power Scale, and Modified Ashworth Scale of 0.42-0.80 on
training models [23]. While the clinical motor metrics differed
from those used in this study, these values were similar for
the dominant and non-dominant BBT and GP models (rho =
0.31-0.74, respectively) with fewer predictors.

While computerized versions of the spatial span exist [42],
the robotic aspect implemented in this study allows for kine-
matic measures to be observed that are reflective of motor
function. This enables more detailed study of the interactions
between cognitive and motor domains. The utility of this task
can be seen by the high prevalence of metrics from this task
demonstrating strong relationships with both cognitive and
motor clinical scores.

D. Relevance to HAND Assessment, Neurorehabilitation,
Global Health, and Robotics

Taken together, these results show the potential clinical
utility of a robotics-based approach to assess motor and
cognitive function in PLWH. Due to the involved nature of
performing a complete HAND assessment, other alternatives
have been explored to capture HIV-related neurocognitive
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impairments. For example, Fogel et al. used a stepwise mul-
tiple linear regression approach to predict a global deficit
score (GDS) from a set of 24 metrics extracted from basic
medical history in an older HIV population with an average
age of 61.144.6 years, which was similar to the average of the
HIV-only population in this study (56.2+5.4 years old) [46].
The GDS was calculated from a set of neuropsychological
tests encompassing working memory and memory, motor,
information processing, and learning domains that overlapped
with some of the assessments in this study — specifically the
GP, Trail Making A (equivalent to the Color Trails 1), and
Digit Symbol-Coding. The ultimate three-term model from
the Fogel er al. study had a R? of 0.29, which is weaker com-
pared to the R? values for the Color Trails 1,Digit Symbol—
Coding, and GP models in this study (R> = 0.31-0.60) [46].
In Botswana, a lower-resource setting, a six-part neurocogni-
tive battery, which also utilizes many of the same assessments
as this study, was used to identify impairments in cognitive-
motor areas in PLWH [8].

From a clinical rehabilitation perspective, increasing access
to effective rehabilitation interventions and enhancing outcome
measurement have been identified as research priorities in HIV,
disability, and rehabilitation [47]. There is a need to develop
interventions addressing the rapid aging and frailty associated
with HIV to reduce disparities in health outcomes that can
compound in the presence of other comorbidities or compli-
cations. No gold standard exists to capture the relationship
between cognitive impairment and physical frailty as it relates
to HIV [48]. While a limited number of studies have shown
that physical exercise can induce improvements in physical,
cognitive, and emotional wellbeing in both HIV and non-HIV
populations, there is a need for further work to understand
what impact exercise — including robot-based exercise — might
have on the aging immune system in PLWH. A benefit to
the objective quantification used in this study is the ability
to track changes during the course of rehabilitation with
specific metrics. This approach can be practical within a
neurorehabilitation context because the metrics are reflective
of clinically-relevant tests and can be administered in a less
time-intensive way.

From a global health perspective, this technology-based
approach provides a possible scalable strategy that is sensitive
to subtle signs of functional decline. With more affordable
rehabilitation robot systems becoming increasingly available,
this approach has the potential to meet a huge rehabilita-
tion need in lower resource settings where the capacity to
supply additional rehabilitation professionals is lacking but
the prevalence of non-communicable diseases necessitating
rehabilitation is increasing [25]. This would be valuable
particularly when medical history may be lacking or harder
to assess. This preliminary work lays the groundwork for
identifying specific impairments and developing HIV-specific
neurorehabilitation strategies to address the various cognitive
and motor impairments associated with aging with HIV. Our
group is currently exploring this in Botswana.

From a robotics perspective, this study expands the appli-
cation of rehabilitation robotics beyond stroke to PLWH
and those living with cognitive impairments. Given that

neurocognitive impairment is associated with instrumental
ADL function [49], assessments and treatments should reflect
the integration of both motor and cognitive domains that are
often assessed in isolation. Like other robotic studies, large
effect sizes were observed in this study, which can signifi-
cantly reduce the sample size needed for clinical trials going
forward [24]. This study also shows that clinical measures can
be estimated from both limbs, which can be helpful in avoiding
confounding factors, such as the presence of unilateral motor
impairment that could result from stroke. Although these
results do not provide enough information to generalize to
other neurological conditions, this approach allows for future
studies on other neurological conditions because it is rooted in
standard clinical assessments used in other populations beyond
HIV and stroke.

E. Study Limitations

Given the small sample size, lack of control group (either
non-HIV healthy control or non-HIV stroke group), and pre-
dominance of Black persons within the HIV group, we may
not be able to fully generalize these results. Although, the sam-
ple population is small, we were able to see significant
differences and the population was reflective of the aging
HIV population in the U.S. While we observed strong correla-
tions between robot-based measures and clinical cognitive and
motor assessments relevant to the HIV population, correlation
studies are susceptible to the distribution of the data across
the span of the predictor variables. While we had adequate
distribution across many variables, we were not able to get an
even distribution across functional groups, which could have
biased the analysis. Despite these limitations, further studies
with a larger sample size and a longitudinal evaluation of this
approach is warranted.
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