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Motor Imagery EEG Decoding Method Based on
a Discriminative Feature Learning Strategy
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Abstract— With the rapid development of deep learning,
more and more deep learning-based motor imagery elec-
troencephalograph (EEG) decoding methods have emerged
in recent years. However, the existing deep learning-based
methods usually only adopt the constraint of classification
loss, which hardly obtains the features with high discrimina-
tion and limits the improvement of EEG decoding accuracy.
In this paper, a discriminative feature learning strategy is
proposed to improve the discrimination of features, which
includes the central distance loss (CD-loss), the central
vector shift strategy, and the central vector update process.
First, the CD-loss is proposed to make the same class
of samples converge to the corresponding central vector.
Then, the central vector shift strategy extends the distance
between different classes of samples in the feature space.
Finally, the central vector update process is adopted to avoid
the non-convergence of CD-loss and weaken the influence
of the initial value of central vectors on the final results.
In addition, overfitting is another severe challenge for deep
learning-based EEG decoding methods. To deal with this
problem, a data augmentation method based on circular
translation strategy is proposed to expand the experimental
datasets without introducing any extra noise or losing any
information of the original data. To validate the effectiveness
of the proposed method, we conduct some experiments on
two public motor imagery EEG datasets (BCI competition
IV 2a and 2b dataset), respectively. The comparison with
current state-of-the-art methods indicates that our method
achieves the highest average accuracy and good stability
on the two experimental datasets.

Index Terms— Motor imagery electroencephalograph
(EEG) decoding, central distance loss (CD-loss), central
vector shift, central vector update, circular translation strat-
egy.

I. INTRODUCTION

THE brain-computer interfaces (BCIs) provide a new com-
munication approach between the human brain and exter-
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nal devices by decoding the electrical signals from the nervous
system of brain [1]. This technology can be applied in various
occasions, such as helping people who suffer from stroke,
spinal cord injury, and amyotrophic lateral sclerosis, control
external devices and improve their quality of life [2], [3].
Many kinds of physiological information have been applied
to the BCI systems, among which motor imagery is one of
the most commonly used noninvasive electroencephalograph
(EEG) paradigms [4], [5]. When a person imagines or sim-
ulates physical actions, the corresponding motor imagery
responses are generated in the brain with substantial neuron
activity on the motor cortex [6]. Through the motor imagery
based EEG decoding, disabled people can control assistive
robots [7] or wheelchairs [8] to complete daily activities, such
as moving and drinking, which has proved to be helpful for
stroke rehabilitation [9]–[11].

There are two main processes in the motor imagery EEG
decoding tasks: feature extraction and classification. Many
conventional machine learning algorithms have been adopted
for motor imagery EEG classification, such as random for-
est (RF), linear discriminant analysis (LDA), support vector
machine (SVM), and so on. In research [12], Luo et al. pro-
posed a motor imagery EEG decoding method by combining
the dynamic frequency feature selection (DFFS) approach with
the RF classifier. To overcome the singularity problem in
the classical LDA, Fu et al. [13] proposed the regularized
linear discriminant analysis (RLDA) algorithm to increase the
magnitude of the diagonal elements of the scatter matrices
for the motor imagery EEG decoding tasks. On the basis
of classical SVM, Dong et al. [14] proposed a hierarchical
support vector machine (HSVM) algorithm to address an EEG-
based four-class motor imagery classification task. However,
due to the low signal-to-noise ratio (SNR) of EEG signal,
the original EEG data usually contains a lot of noise. So,
the distribution of the original EEG samples is messy and
the discrimination between different classes of samples is not
significant enough, which is disadvantageous to the motor
imagery EEG decoding tasks.

To deal with this issue, researchers have introduced a lot
of feature extraction methods to extract features from motor
imagery EEG samples before classification. The common
spatial pattern (CSP) [15] is one of the most popular feature
extraction method in the field of motor imagery EEG decoding,
which can increase the difference between the extracted feature
of different classes of samples. A large number of methods
based on CSP have been proposed to decode motor imagery
EEG accurately. For example, Novi et al. [16] proposed
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sub-band CSP (SBCSP) method, which applies different band-
pass filters to separate the raw EEG signal into different
frequency bands and then extract features for each frequency
band signal through CSP algorithm. Inspired by multiple sub-
bands input idea, Ang et al. [17] proposed the filter bank
common spatial pattern (FBCSP) that extracted the optimal
spatial features through a group of band-pass filters and CSP
algorithm. To improve the motor imagery EEG decoding
performance of FBCSP, Thomas et al. [18] proposed the
discriminative filter bank common spatial pattern (DFBCSP)
algorithm which could obtain subject-specific discriminative
filter bank instead of using fixed filter bank for all subjects.
The original CSP algorithm is only suitable for binary clas-
sification, Wu et al.[19] presented an one-versus-rest (OVR)
algorithm to extend CSP to multi-class cases. Besides the
CSP-based methods, some methods based on other feature
extraction algorithms also achieved excellent performance on
the motor imagery EEG decoding tasks. For example, Xie
et al. [20] proposed a simple yet efficient bilinear sub-manifold
learning (BSML) algorithm to learn the intrinsic sub-manifold
by identifying a bilinear mapping, and the tangent space of
sub-manifold (TSSM) classification algorithm and the LDA
algorithm were combined for motor imagery EEG decoding
tasks. In research [21], spatio-temporal discrepancy feature
(STDF) was combined with wavelet packet decomposition
(WPD) for motor imagery EEG decoding tasks. Although
these attempts have achieved good performance in the motor
imagery EEG decoding tasks, all these methods separate
feature extraction and classification into two stages. As a
result, the extracted features are not the most suitable for the
corresponding classifier.

In recent years, deep learning has gained extensive atten-
tion because of its excellent performance in the field of
computer vision and natural language processing [22], [23].
Researchers have proposed many end-to-end motor imagery
EEG decoding methods based on deep learning. For instance,
Li et al. [24] proposed an end-to-end framework named
channel-projection mixed-scale convolutional neural network
(CP-MixedNet) to improve the motor imagery EEG decoding
performance. In research [25], Zhao et al. proposed a 3D
representation for motor imagery EEG data, and designed a
multi-branch 3D convolutional neural network and the cor-
responding classification strategy for the new representation
data. Moreover, an envelope representation was proposed for
the motor imagery EEG data, and a convolutional neural
network (CNN) was designed and optimized according to the
representation for motor imagery EEG decoding in research
[26]. Because of the strong ability of feature learning and
embedding feature separation and classification into a single
network, in general, the deep learning-based methods can
achieve better performance than traditional methods. However,
the existing EEG decoding methods based on deep learning
only introduce the constraint of classification loss in their
objective functions, so they cannot obtain the features with
high discrimination, and it is difficult to further improve the
accuracy of motor imagery EEG decoding.

In this paper, an end-to-end CNN framework is designed
to extract both spatial and temporal features of EEG data.

Inspired by the central loss of the face recognition task in
reference[27], a discriminative feature learning strategy is pro-
posed for the CNN framework to increase the discrimination of
different classes of samples in the feature space. This strategy
includes the central distance loss (CD-loss), the central vector
shift strategy, and the central vector update process. The CD-
loss is proposed to promote the same class of samples to
gather around the corresponding central vector in the feature
space. And the central vector shift strategy is proposed to
increase the distance between different classes of samples
in the feature space, which can significantly improve the
discrimination of different classes of samples in the feature
space. In addition, to avoid the non-convergence of CD-loss
and weaken the influence of the initial value of the central
vector on the final result, the central vector update process
is introduced in the proposed framework. Different from
the traditional EEG decoding methods, the feature extraction
part and the classification part of our method are optimized
according to the same objective function, which is conducive
to obtain more suitable features for classification and obtain
higher EEG decoding accuracy. Unlike other motor imagery
EEG decoding methods based on deep learning, we creatively
propose the CD-loss, the central vector shift strategy, and
the central vector update process, which are helpful to obtain
more discriminative features and achieve better classification
performance.

In addition, overfitting is another severe challenge for motor
imagery EEG decoding methods based on deep learning.
To deal with this problem, researchers have proposed some
data augmentation methods for EEG data. For example, in ref-
erence [24], the Gaussian noise with the mean value of 0
and the standard deviation of 0.001 was added to the original
EEG samples for data augmentation. Although this kind of
methods could alleviate the overfitting problem to a certain
extent, these methods would introduce some redundant noise,
which was harmful to stability of the motor imagery EEG
decoding process. Some researchers also took part of the
data from the original samples as new samples. For example,
Guennec et al. [28] extracted slices from the original samples
in the time series and perform EEG decoding at the slice level.
This kind of methods could extend the training set to alleviate
the overfitting problem. However, each sample only contains
partial data of the original sample, which was not conducive
to the improvement of EEG decoding accuracy. Considering
the shortcomings of these methods, a novel data augmentation
method based on circular translation is proposed in this paper.
The proposed data augmentation method can greatly expand
the dataset without introducing any additional noise and each
sample contains all the data of the corresponding original
sample. So, this data augmentation method can significantly
alleviate overfitting and improve the generalization ability of
our motor imagery EEG decoding model.

In summary, the main contributions of this work are summa-
rized as follows: first, a discriminative feature learning strategy
is proposed for motor imagery EEG decoding tasks.

This strategy can improve the discrimination of different
classes of samples in the feature space and improve the EEG
decoding accuracy to a large extent. Furthermore, to alleviate
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the overfitting problem, a data augmentation method based
on the circular translation strategy is proposed to expand the
original dataset without losing any information of the original
samples or introducing any extra noise. In addition, we present
a CNN framework based on the discriminative feature learning
strategy and the proposed data augmentation method for end-
to-end motor imagery EEG decoding.

II. METHODOLOGY

In this part, the proposed data augmentation method based
on the circular translation strategy is firstly introduced. Then
we describe the working principle of the proposed discrim-
inative feature learning strategy in detail. Next, we present
the specific network architecture of the motor imagery EEG
decoding method in this paper. And the training process of
the motor imagery EEG decoding framework based on the
discriminative feature learning strategy is introduced finally.

A. Data Augmentation With Circular Translation Strategy

In this paper, each sample of EEG data based on motor
imagery is represented as a 2D matrix of C × T , in which the
rows represent the data collected from different electrodes and
the columns are the data at different sampling time points (as
shown in Fig. 1 (a)).

Since the amount of EEG data is very limited, overfitting
is one of the most important problems encountered during
the network training process. In this paper, a novel data
augmentation method based on the circular translation strat-
egy is proposed to alleviate this problem. During the data
augmentation process, we move the samples circularly in the
time dimension with a step size of D, while the arrangement
of electrodes remaining unchanged. In the time dimension,
the initial sample is 0 ∼ T , the first circular translation sample
is spliced by D ∼T and 0 ∼ D, the second circular translation
sample is spliced by 2D ∼ T and 0 ∼ 2D, ……, and the
k-th circular translation sample is spliced by k D ∼ T and
0 ∼ k D (as shown in Fig. 1 (b)). It can be seen that the
new samples obtained by circular translation have the same
size as the original samples, and the new samples generated
by the same sample only have some staggered positions in
the time dimension. Therefore, the obtained samples retain
the temporal and spatial features of the original samples and
there are some differences between the obtained samples and
the corresponding original samples. After data augmentation,
the obtained samples are directly fed into the network without
any other preprocessing steps.

B. Working Principle of the Proposed Discriminative
Feature Learning Strategy

At present, the EEG decoding methods based on deep
learning are often optimized only by the classification loss to
find a hyperplane to divide input samples into different classes,
but ignore the process of feature extraction. However, in the
feature space, the distribution of the extracted features by these
methods is always scattered, which is disadvantageous for the
classification tasks. To address this problem, the CD-loss is

designed to centralize the distribution of features extracted
from the same class of samples to improve the classification
accuracy. The CD-loss is the average distance between the
feature vectors of a batch of samples and their corresponding
central vectors, which is calculated as follow:

Lcen = 1

nb

nb∑
i=1

|| f t
i − cent

yi
||

2
(1)

where f t
i represents the feature vector of the i -th sample in

the t-th iteration; yi represents the class of the i -th sample in
the training batch; cent

yi
represents the central vector of the

yi -th class of samples during the t-th iteration; and nb denotes
the number of samples in a batch.

Before the training process, we need to initialize the cen-
tral vectors of each class of samples at first. In this paper,
the average value of the initial feature vectors extracted from
each class of samples in the training set are taken as the
initial values of the corresponding central vectors (as shown
in Fig. 2(a)). The expression of the central vector initialization
process is:

cen0
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∑ns
i=1 δ(yi = j)· f 0

i

1 + ∑ns
i=1 δ(yi = j)

(2)

where cen0
j is the initial central vector corresponding to the

samples with the label of j ; ns denotes the total number of

samples in the training set; δ (yi = j) =
{

0,i f yi �= j
1,i f yi = j

; yi

represents the class of the i -th sample in the training set; and
f 0
i is the initial feature vector of the i -th sample in the training

set.
Through the constraint of CD-loss, the distance between

feature vectors of the same class of samples is gradually
reduced, and each class of samples is eventually clustered
near the corresponding central vector (as shown in Fig. 2 (b)).
However, the samples whose feature vectors are relatively
far away from the corresponding central vector are still easy
to be misclassified because the distance between different
central vectors is not large enough. To deal with this issue,
the central vector shift strategy is proposed to increase the
distance between the central vectors of different classes. First,
we calculate the average vector ct of all the central vectors
during the t-th iteration and then shift each central vector cent

i

along the direction of
−−−→
ctcent

i by a certain step size (as shown in
Fig. 2 (c)). The expression of the central vector shift process
is as follows:

ct = 1
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∑nc

i=1
cent

i (3)

cent+1
i = cent

i + α· (cent
yi

− ct )
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where ct is the average vector of all central vectors during
the t-th iteration; cent

i and cent+1
i are the central vectors of

samples with the label of i before and after the central vector
shift process in the t-th iteration, respectively; nc is the number
of classes of all samples in the experimental datasets; and α
is the step size of the central vector shift process.
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Fig. 1. The representation of each EEG sample and the data augmentation method based on the circular translation strategy. (a) is the data
representation in this paper, C denotes the number of channels per sample, T is the number of sampling points contained in each sample; (b) is the
data augmentation method based on the circular translation strategy.

Fig. 2. The working principle schematic diagram of the proposed EEG decoding method. The solid dots with different colors represent the feature
vectors of different classes of samples. (a) The initialization and update process of the central vectors; (b) The result with the constraint of the
CD-loss; (c) The central vector shift process; (d) The classification results.

During the training process, if the speed of the central vector
shift process is faster than that of the feature vectors con-
verging to the corresponding central vectors, the CD-loss will
be increasingly larger and become nonconvergent. To avoid
this situation, the central vector update process is proposed in
this paper. After P epochs training, the corresponding central
vectors are updated by the average values of the feature vectors
extracted from each class of samples (as shown in Fig. 2 (a)).
The expression of the central vector update process is:

cen0,e
j =

∑ns
i=1 δ(yi = j)· f 0,e

i

1 + ∑ns
i=1 δ(yi = j)

(5)

where cen0,e
j represents the initial central vector corresponding

to the samples of the j -th class in the e-th epoch and f 0,e
i

denotes the initial feature vector of the i -th sample in the e-th
epoch. The update of the central vectors can not only avoid
the nonconvergence of the CD-loss caused by the fast shift
speed of the central vectors but also weaken the influence of
the initial value of the central vectors on the final classification
results. Through the proposed discriminative feature learning
strategy, we can obtain the features with very high discrim-
ination. Then classification is conducted according to these

discriminative features to realize motor imagery EEG decoding
with high accuracy (as shown in Fig. 2 (d)).

C. Network Architecture

The representation of EEG data in this paper is the same
as that of the single-channel image data represented as a
2D digital matrix but with different meanings for the rows
and columns. For the EEG data, each row represents the
data collected from different electrodes, and each column
represents data of different sampling time, while the rows
and columns of the image represent the locations of pixels.
Therefore, some typical CNN frameworks that are applied for
the classification tasks in the field of computer vision, such as
LeNet [29], AlexNet [30], VGG [31], or ResNet [32], cannot
directly perform well on the original EEG data.

In this paper, a CNN framework is proposed for the motor
imagery EEG decoding tasks based on the discriminative
feature learning strategy and the proposed data augmentation
method, which mainly includes a convolutional part and a
fully connected part (as shown in Fig. 3). The convolutional
part is composed of a temporal convolution module, a spatial
convolution module and a general convolution module. The
temporal convolution module with the convolutional kernel
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Fig. 3. The overall network structure of our motor imagery EEG decoding method.

size of 1 × m is adopted to extract the temporal features,
and the spatial convolutional module with the convolutional
kernel size of n × 1 is applied for the spatial feature extrac-
tion. After these two modules, a general convolution module
is introduced for feature integration and high-level features
extraction. Following this module, a fully connected module
is adopted for classification according to the features extracted
by the convolutional part.

The specific network structure of the proposed EEG decod-
ing method is shown in Table I. The temporal convolutional
module contains a convolutional layer with a kernel size of
1 × 23, and the stride step size of the convolutional kernel
is (1, 1). The main function of this module is to extract the
temporal features from the input EEG samples. The spatial
convolutional module includes a spatial convolutional layer
with the kernel size and stride step size of C× 1 and (1, 1)
respectively, where C is the number of channels for the input
EEG data. This module is introduced to extract the spatial
features of different channels. A general convolutional module
with two convolutional layers and two max-pooling layers is
added following these two modules to improve the learning
ability of the framework and integrate the extracted temporal
and spatial features. The first convolutional layer with the
kernel size of 1 × 17 and the stride step size of (1, 1) is
adopted to extract features with a larger scale. The second
convolutional layer with the kernel size of 1×7 and the stride
step size of (1, 1) is used for small scale features extraction.
Each convolutional layer of this module is followed by a
max-pooling layer with the kernel size and stride step size of
1×6 and (1,6), respectively. There is only one fully connected
layer in the fully connected module, which is introduced for
the classification of input samples according to the features
extracted by the convolutional part.

D. Training Process of the Proposed CNN Framework

The training process of the proposed EEG decoding frame-
work is described as Algorithm 1. Before the training process,
the network parameters are initialized according to standard
normal distribution, and the central vector is initialized accord-
ing to equation (2). Then, the classification loss is adopted to

promote features of samples in the same class to converge
into the same region, and the proposed CD-loss is adopted
to improve the feature discrimination of different classes of
samples (as show in Fig. 3). In each iteration of the training
process, the central vectors shift process is conducted accord-
ing to equation (3) and (4) to improve the performance and
robustness of the proposed framework. In addition, the central
vectors are updated according to equation (5) to avoid the
non-convergence of CD-loss and weaken the influence of the
central vector initial value after every P epochs of training.

III. EXPERIMENTS

A. Experimental Dataset

1) BCI Competition IV 2a Dataset: The BCI competition
IV 2a dataset [33], provided by Graz University, is used to
evaluate the effectiveness of our motor imagery EEG decoding
method. The dataset contains EEG data from 9 healthy subjects
performing 4 different motor imagery tasks: movement of
the left hand, right hand, both feet and tongue. The signals
were recorded by 22 EEG electrodes at a 250 Hz sampling
frequency and then bandpass filtered between 0.5 Hz and
100 Hz and notch filtered at 50 Hz. 2 sessions on different days
were recorded for each subject, and each session comprised
288 trials. The sampling period of each trial is 3s, which results
in 750 sample points for each trial. In this paper, we take each
trial as a sample, and each sample is represented as a 2D-
matrix of 22 × 750. The 22 rows of each sample represent
signals recorded from the 22 electrodes, and the 750 columns
of a sample represent the EEG data of the 750 sample points.

2) BCI Competition IV 2b Dataset: The BCI competition IV
2b dataset [34] includes two classes (motor imagery of left
hand and right hand) EEG data from 9 subjects of a study
published in [35]. For each subject, there are 5 sessions,
in which the first 2 sessions contain data without feedback and
the last 3 sessions were recorded with feedback. Each session
without feedback consisted of 6 runs, and each run includes
10 trials of each kind of motor imagery task. This resulted
in 120 trials of each subject per session. The subjects had to
imagine the corresponding hand movement over a period of 3s.
Each trial was followed by a short break of at least 1.5s. For
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TABLE I
THE SPECIFIC NETWORK STRUCTURE OF THE PROPOSED EEG DECODING FRAMEWORK. C IS THE NUMBER OF CHANNELS FOR THE INPUT

EEG DATA

Fig. 4. The experimental results of data augmentation with different circular translation step sizes. (a) is the experimental result of the BCI competition
IV 2a dataset; (b) is the experimental result of the BCI competition IV 2b dataset.

TABLE II
THE EXPERIMENTAL RESULTS OF THE BASELINE, EXPERIMENT 1 ∼ 4 ON THE BCI COMPETITION IV 2A DATASET

the 3 online feedback sessions, 4 runs with smiley feedback
were recorded, whereby each run consisted of 20 trials for
each type of motor imagery. There were 160 trials of every
subject in each of the last three sessions and the feedback
period of each trial last 4s. All the EEG data in this dataset
were recorded from 3 channels (channel C3, Cz and C4) with
the sampling frequency of 250 Hz. The data from 4s to 7s
of each trial is intercepted as a sample in our works, which
results in 750 sampling points of each sample. As described
in Section II.A, each sample is represented as a 2D matrix of
3 × 750.

B. Data Augmentation

To alleviate the overfitting problem, we expand the exper-
imental datasets through the circular translation strategy
described in Section II.A. In the data augmentation process,
the step size of circular translation is a very important para-
meter. If the step size is too large, we cannot obtain enough
augmented data to overcome the overfitting problem. However,
if the step size is too small, the difference between differ-
ent samples becomes very small, which is disadvantageous
to improve the generalization of the proposed framework.
To select a suitable step size for each dataset, we conduct
some experiments on the two experimental datasets with many

different step sizes. According to the experimental results (as
shown in Fig. 4), the circular translation step size of BCI
competition IV 2a and 2b dataset are select as 50 and 140,
respectively.

1) Experimental Implementation Details: Similar to [25],
the original data of each subject in the BCI competition IV 2a
dataset is randomly divided into 10 subsets of equal size. Then,
10-fold cross-validation is conducted for each subject. In the
experiments of the BCI competition IV 2b dataset, the same as
[36], we take the 400 trails of session 1∼3 for each subject as
the training set, and the 320 trails of session 4 and 5 for each
subject is taken as the test set. Before the training process,
the training set of each subject is augmented according to the
data augmentation method based on the circular translation
strategy.

To further alleviate overfitting, dropout layer with the prob-
ability of 0.38 is added following each convolutional layer
of the proposed framework. The activation functions of all
the convolutional layers are selected as ELUs. In addition,
the Adam optimizer is selected to optimize the proposed
framework, and the parameters of the optimizer are set as
β1= 0.5, β2= 0.999. During the training process, the learning
rate is set to 0.0005, and the batch size is set to 24. Moreover,
the central vector shift is conducted every epoch with the shift
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TABLE III
THE ACCURACY COMPARISON OF THE PROPOSED METHOD AND THE CURRENT STATE-OF-THE-ART METHODS ON BCI COMPETITION IV 2A

DATASETS. S 1∼9 DENOTE THE 9 SUBJECTS IN THE DATASET, RESPECTIVELY

Fig. 5. The confusion matrices of the Baseline, Experiment 1, and Experiment 4 on the BCI competition IV 2a dataset. In each confusion matrix,
LH, RH, F, and T denote the movement imagery tasks of left hand, right hand, both feet and tongue, respectively. (a) is the confusion matrix of
Baseline, (b) is the confusion matrix of Experiment 1, and (c) is the confusion matrix of Experiment 4.

Fig. 6. The experimental results of different data augmentation methods.
A is the result of experiment without data augmentation; B is the
experimental result of data augmentation with Gaussian noise; C is the
experimental result of data augmentation with sliding windows; D is the
experimental results of the data augmentation method proposed in this
paper. (a) are the experimental results on the BCI competition IV 2a
dataset; (b) are the experimental results on the BCI competition IV 2b
dataset.

step size of 0.002, the period of central vector updating process
is 20 epochs, and the weight λ of central loss in the full
objective function is set as λ = 10 in this paper. In order to
speed up the training process, the proposed CNN framework
is implemented with PyTorch on the GeForce 2080ti platform.

IV. EXPERIMENTAL RESULTS

A. Evaluation of the Proposed Discriminative Feature
Learning Strategy

To evaluate the effectiveness of the CD-loss, the central vec-
tor shift strategy, and the central vector update process of the
proposed discriminative feature learning strategy, we carry out
several comparative experiments on the BCI competition IV
2a dataset in this section. The experimental results are shown

in Table II. First, the proposed framework with only the con-
straints of classification loss is taken as the Baseline, of which
the result is 75.1 ± 11.33%. Then, we adopt the constraint of
CD-loss to the Baseline and take it as Experiment 1. According
to the table, the average accuracy of Experiment 1 is 6.16%
higher than that of Baseline, which proves that the proposed
CD-loss is very effective to improve the performance of the
motor imagery EEG decoding tasks. Next, we introduce the
central vector shift strategy on the basis of Experiment 1 and
take it as Experiment 2. It can be seen from the experimental
results of Experiment 1 and Experiment 2 that by introducing
the central vector shift strategy individually, although the
average accuracy is slightly improved, the standard deviation
of accuracy for all subjects increases a little as well. And the
experiment by introducing the central vector update process on
the basis of Experiment 1 is taken as Experiment 3. According
to the experimental results of Experiment 1 and Experiment
3, we know that both the average accuracy and the standard
deviation of accuracy are reduced by introducing the central
vector update process separately. Finally, the central vector
shift strategy and central vector updating strategy are adopted
to Experiment 1 together, which is taken as Experiment 4.
According the results comparison of Experiment 1 ∼ 4, it can
be concluded that introducing the central vector shift strategy
and the central vector update process separately is difficult to
improve the experimental results. And the performance and
stability of our method can be improved by introducing the
central vector shift strategy together with the central vector
update process.

In addition, we present the confusion matrices of the
Baseline, Experiment 1, and Experiment 4 on the BCI com-
petition IV 2a dataset, respectively (as shown in Fig. 5).
The comparison of Fig. 5 (a) and (b) indicates that CD-loss
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TABLE IV
THE ACCURACY COMPARISON OF THE PROPOSED METHOD AND THE CURRENT STATE-OF-THE-ART METHODS ON BCI COMPETITION IV 2B

DATASETS. S 1∼9 DENOTE THE 9 SUBJECTS IN THE DATASET, RESPECTIVELY

Fig. 7. The features that are obtained by the feature extraction part of the proposed EEG decoding framework in Baseline, mapped to 2D plane by
TSNE.

plays a significant role in accuracy improvement of the EEG
decoding tasks. The confusion matrix in Fig. 5 (c) shows
that, by adopting the central vector shift strategy and central
vector update process, the average accuracy is improved, and
the accuracy gap between different classes has narrowed.
These experimental results further prove that the proposed
CD-loss can greatly improve the EEG decoding accuracy.
Moreover, by adopting the central vector shift strategy and
central vector update process, the experimental results can be
further improved and the accuracy of every class will become
more balanced.

B. Evaluation of Our Data Augmentations Method

To evaluate the data augmentation method proposed in
this paper, we conduct some experiments with different data
augmentation methods on the BCI competition IV 2a and 2b
dataset, respectively. First, we conduct the experiment without
data augmentation as the control group. Then, under the same
conditions, experiments are carried out on the data obtained
through the data augmentation method by adding Gaussian
noise, the data augmentation method based on window sliding

and the proposed data augmentation method based on circular
translation strategy. As shown in Fig. 6, A is the experimental
result of the control group. B is the result of experiment
with the data augmentation method by adding Gaussian noise,
of which the standard deviation is set to 0.001 according
to [24]. C is the result of the data augmentation method
based on window sliding, and in this paper, the length of
each windows and the sliding step size are set to 600 and
10, respectively. D is the experimental results of our data
augmentation method. As illustrated in Fig. 6, the proposed
data augmentation method achieves higher average accuracy
and lower accuracy standard deviation than those of other data
augmentation methods, which demonstrates that the proposed
data augmentation method can alleviate overfitting to a large
extent and helps achieve better and more stable performance
than other methods.

C. Comparison With the-State-of-the-Art Methods

In this section, we conduct some experiments on BCI
competition IV 2a and 2b dataset respectively, and compare
the experimental results with that of the current state-of-the-art
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Fig. 8. The features that are obtained by the feature extraction part of the proposed EEG decoding framework in Experiment 1, mapped to 2D plane
by TSNE.

methods to further prove the effectiveness of the proposed
EEG decoding method. It is well known that there are huge
individual differences between EEG signals of different sub-
jects. To overcome the individual difference, the same as many
researches such as [21], [22], and [25], we train a model for
each subject separately.

The motor imagery EEG decoding accuracy of each subjects
and their average accuracy on this dataset are shown in
Table III. In this table, we evaluate the proposed algorithms
against the competing algorithms on the BCI competition IV
2a dataset, including Multi-Branch 3D CNN [25], TSSM +
LDA [20], and Envelope + CNN [26]. As we can see in this
table that our method can achieve higher accuracy than all the
competing methods on the majority of subjects except for S6,
S7, and S9. Moreover, the proposed EEG decoding method
achieves the highest average accuracy on the BCI competition
IV 2a dataset. Although the accuracy standard deviation of
multi-branch 3D CNN is 3.23 lower than that of our method,
its average accuracy is 6.835% lower than that of our method.
And the accuracy standard deviation of our method is lower
than that of other competing methods. In general, our method
has the best performance and very good stability on the BCI
competition IV 2a dataset.

As shown in Table IV, the experimental results on the BCI
competition IV 2b dataset of our method is compared with that
of some state-of-the-art methods, such as RSMM [36], FDBN
[37], RF with DFFS [12], and WPD + STDF [21]. Because of
the huge difference between EEG signals of different subjects,
many EEG decoding methods are not stable for different
subjects, which achieve very high accuracy on some subjects,

but achieve low accuracy on other subjects. It can be seen
from Table IV that some methods achieve higher classifica-
tion accuracy than our method on some subjects. However,
our method has higher average accuracy and lower standard
deviation than all the competing state-of-the-art methods on
this dataset. These results prove that our method performs
better than all the competing state-of-the-art methods, and it
is more robust to different experimental subjects than other
methods on the BCI competition IV 2b dataset.

V. DISCUSSION

At present, a number of end-to-end EEG decoding methods
based on deep learning have emerged. However, almost all
these methods adopt only the classification loss in their objec-
tive functions. As can be seen from Fig. 7, only under the
constraint of classification loss, the distribution of the obtained
features in the feature space is chaotic, and the features of
different classes of samples is not discriminative enough, so it
is difficult to achieve high classification accuracy. In order to
increase the discrimination of different classes of samples in
the feature space, the discriminative feature learning strategy is
proposed in this paper, which includes the CD-loss, the central
vector shift strategy, and the central vector update process.

The discriminative feature learning strategy is inspired by
the central loss of the face recognition task in reference[27],
but it is obviously different from the central loss. Firstly,
the central loss can only make samples of the same class
converge to the same region, but cannot increase the distance
between different classes of samples in the feature space. Due
to the low discrimination of different classes of motor imagery
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Fig. 9. The features that are obtained by the feature extraction part of the proposed EEG decoding framework in Experiment 4, mapped to 2D plane
by TSNE.

EEG samples, the distribution regions of different classes of
samples in the feature space often have some intersections,
which is very disadvantageous to the decoding task. In order
to improve the discrimination of different classes of samples in
the feature space, the central vector shift process is introduced
in our discriminative feature learning strategy. In addition,
the central vectors of central loss are updated according to
each batch of samples. Due to the low SNR of the motor
imagery EEG data, this update process will lead to confusion
in the update direction of the central vectors, which makes the
central loss continuously oscillate and difficult to converge. To
ensure that the convergence process of CD-loss is more stable,
our discriminative feature learning strategy updates the central
vectors according to the whole training set.

With the constraint of CD-loss, the features of each sample
converge to the central vector of the corresponding class.
As shown in Fig. 8, features of the same class of samples
will eventually gather to the same region of the feature space,
and the features of samples in different classes are distributed
in different regions, which indicates that the discrimination
of features extracted from different classes of sample is
significantly enhanced. Therefore, according to the results of
Baseline and Experiment 1 in Table II, the average accuracy
is improved from 75.1% to 81.26% after introducing the
CD-loss, which confirms that the proposed CD-loss is very
effective in improving the performance of EEG decoding tasks.

In order to increase the distance between the feature dis-
tribution regions of different classes of samples and further
improve the discrimination of different classes of samples

in the feature space, the central vector shift strategy is
proposed in our works. In addition, we update the central
vectors according to the obtained features of all samples after
every 20 epochs training to prevent the CD-loss from non-
convergence due to the fast speed of the central vector shift.
According to the comparison of Fig. 8 and Fig. 9, the distance
between the regions of different classes of samples increases
significantly after introducing the central vector shift strategy
together with the central vector update process. Moreover, the
experimental results of Experiment 1 and 4 in Table II show
that the central vector shift strategy and the central vector
update process not only improve the average accuracy, but also
reduce the accuracy standard deviation of different subjects.
The results demonstrate that the central vector shift strategy
together with the central vector update process can promote
our method to achieve better and more robust performance.

To overcome the overfitting problem, a data augmentation
method based on the circular translation strategy is proposed
in this paper, which neither introduces additional noise as the
method based on adding random noise [24] nor loses part of
the information as the method based on sliding window [28].
According to the experimental results in Fig. 6, by comparing
the experimental results B with A, we know that the data
augmentation method by adding Gaussian noise is helpful to
improve the average accuracy, but the accuracy standard devi-
ation of this method is significantly higher than that of other
methods. This is because the data augmentation method will
introduce redundant noise, which leads to the poor stability
of the EEG decoding process. From the experimental results
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comparison of A, C, and D, we can see that the average accu-
racy is improved by adopting the data augmentation method
based on window sliding. But each sample obtained by this
method contains only partial data of the corresponding original
sample, which limits the improvement of decoding accuracy.
The proposed data augmentation method based on the circular
translation strategy can obtain a large number of samples that
have the same size as the original samples, without any data
loss. Therefore, our data augmentation method significantly
improves the accuracy and stability of the EEG decoding
process.

In addition, the experimental results comparison with the
state-of-the-art methods in Table III and Table IV proves that
the proposed data augmentation method alleviates the overfit-
ting problem to a large extent, and the discriminative feature
learning strategy promotes our CNN framework to achieve
better performance and good stability on the motor imagery
EEG decoding tasks.

However, the proposed motor imagery EEG decoding
method still suffers from some limitations. First, in the central
vector update process, we need to calculate the mean vector
of all the feature vectors extracted from the training samples,
which consumes many computing resources. In addition, each
input sample of our motor imagery EEG decoding method
contains the EEG signal lasting for 3s in the time dimension,
which will lead to the delay of our method in the online
system. Therefore, in the future work, we will optimize the
discriminative feature learning strategy to reduce the amount
of computation of our method. And we will further reduce
the length of the input sample in the time dimension while
maintaining high motor imagery EEG decoding accuracy.

VI. CONCLUSION

In summary, we propose a motor imagery EEG decoding
method based on the discriminative feature learning strategy
and the circular translation data augmentation method in this
paper. First, the discriminative feature learning strategy is
proposed for the motor imagery EEG decoding network to
increase the discrimination of different classes of samples in
the feature space, which helps improve the decoding accuracy
to a large extent. Then, a data augmentation method based
on circular translation strategy is proposed to alleviate the
overfitting problem. The experimental results on the two public
datasets (the BCI competition IV 2a and 2b dataset) show that
our method achieves better performance than the compared
state-of-the-art methods, and has good stability for different
objects. These results confirm that the proposed method can be
regarded as a potential approach to improve the performance
of motor imagery EEG-based BCI systems.

APPENDIX

Evaluate the Proposed Discriminative Feature Learning
Strategy at the Feature Level

In order to further explore the role of CD-loss at the feature
level, we map the features that are obtained by the feature
extraction part of the proposed framework in Experiment
1 and Baseline to a 2D plane by TSNE [38] for every

Algorithm 1 Optimization Algorithm of the Proposed Frame-
work

Input: Training set D = {Di }s
i=1; the batch size B ,

the learning rate of generator and discriminator optimization
lr , the type of optimizer Adam, the parameters of the
optimizer β1, β2; The number of classes nc; the weight of
CD-loss in the full objective function λ.
Output: Network parameters of the proposed CNN frame-
work W .

Initialize: Network parameters W are initialized accord-
ing to standard normal distribution; the central vectors
ceni (i= 1, 2, 3, . . . ,nc) are initialized according to equation
(2).
Repeat:
1. Update the central vectors after every P epochs of

training according to equation (5).
2. for t = 1, 2, …, s do
3. Dt = {x, y, x is a batch of sample, y is the

corresponding labels of x .
4. Extract features of input data x with the fea-

ture extraction part Conv: Conv (x) → Features,
and classification through the fully connected part Cls:
Cls (Features) → cp.

5. Calculating the classification loss is: Lcls =
Ex,y [−logCls (y | Conv (x))].

6. Calculating the CD-loss is: Lcen =
1
B

∑B
i=1 || fi − cenyi ||2, where { fi }B

i=1 =
f eaturesandcenk is the central vector of the k-th
class.

7. Optimize the network parameters of the proposed CNN
framework W according to the full objective function
Loss through the optimizer: Loss = Lcls + λ · Lcen .

8. Central vector shift according to equation (3) and (4).
9. end for
Until convergence

subject (as shown in Fig. 7 and Fig. 8). It can be seen from
Fig. 7 that when CD-loss is not introduced, the distribution
of the obtained features is rather chaotic, and the features of
samples in different classes are interwoven in the feature space.
However, as we can see in Fig. 8 that with the constraint of
CD-loss, features of the same class of samples converge to the
same region in the feature space, and the features of different
class of samples become more distinguishable, which is very
beneficial to the classification tasks.

In addition, to further study the effect of the central vector
shift strategy together with the central vector update process on
the EEG decoding tasks, the features of each subject obtained
from the feature extraction part in Experiment 4 are mapped to
a 2D plane through TSNE [38] (as shown in the Fig. 9). The
comparison of Fig. 8 and Fig. 9 indicates that the distance
between features of sample in different classes increases
significantly by introducing the central vector shift strategy
and the central vector update process. The results show that
the central vector shift strategy together with the central vector
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update process further increases the discrimination of samples
in different classes.

REFERENCES

[1] L. He, D. Hu, M. Wan, Y. Wen, K. M. von Deneen, and M. Zhou,
“Common Bayesian network for classification of EEG-based multi-
class motor imagery BCI,” IEEE Trans. Syst., Man, Cybern. Syst.,
vol. 46, no. 6, pp. 843–854, Jun. 2016, doi: 10.1109/TSMC.2015.
2450680.

[2] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller,
and T. M. Vaughan, “Brain-computer interfaces for communication
and control,” Clin. Neurophysiol., vol. 113, no. 6, pp. 767–791,
2002.

[3] U. Chaudhary, N. Birbaumer, and A. Ramos-Murguialday, “Brain–
computer interfaces for communication and rehabilitation,” Nature Rev.
Neurol., vol. 12, no. 9, pp. 513–525, Sep. 2016, doi: 10.1038/nrneurol.
2016.113.

[4] M. Hamedi, S.-H. Salleh, and A. M. Noor, “Electroencephalographic
motor imagery brain connectivity analysis for BCI: A review,” Neural
Comput., vol. 28, no. 6, pp. 999–1041, Jun. 2016, doi: 10.1162/
NECO_a_00838.

[5] G. Pfurtscheller and C. Neuper, “Motor imagery and direct brain-
computer communication,” Proc. IEEE, vol. 89, no. 7, pp. 1123–1134,
Jul. 2001, doi: 10.1109/5.939829.

[6] J. Decety and D. H. Ingvar, “Brain structures participating in mental
simulation of motor behavior: A neuropsychological interpretation,”
Acta Psychologica, vol. 73, no. 1, pp. 13–34, Feb. 1990.

[7] Y. Liu et al., “Motor-imagery-based teleoperation of a dual-arm robot
performing manipulation tasks,” IEEE Trans. Cognit. Develop. Syst.,
vol. 11, no. 3, pp. 414–424, Sep. 2019, doi: 10.1109/TCDS.2018.
2875052.

[8] R. Zhang et al., “Control of a wheelchair in an indoor environment
based on a brain–computer interface and automated navigation,” IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 24, no. 1, pp. 128–139, Jan. 2016,
doi: 10.1109/TNSRE.2015.2439298.

[9] S. Bajaj, A. J. Butler, D. Drake, and M. Dhamala, “Brain effective
connectivity during motor-imagery and execution following stroke and
rehabilitation,” NeuroImage, Clin., vol. 8, pp. 572–582, 2015, doi: 10.
1016/j.nicl.2015.06.006.

[10] L. M. Alonso-Valerdi, R. A. Salido-Ruiz, and R. A. Ramirez-Mendoza,
“Motor imagery based brain–computer interfaces: An emerging
technology to rehabilitate motor deficits,” Neuropsychologia, vol. 79,
pp. 354–363, Dec. 2015, doi: 10.1016/j.neuropsychologia.
2015.09.012.

[11] S. D. Vries and T. Mulder, “Motor imagery and stroke rehabilitation:
A critical discussion,” Acta Derm Venereol., vol. 39, no. 1, pp. 5–13,
2007, doi: 10.2340/16501977-0020.

[12] J. Luo, Z. Feng, J. Zhang, and N. Lu, “Dynamic frequency feature
selection based approach for classification of motor imageries,” Comput.
Biol. Med., vol. 75, pp. 45–53, Aug. 2016, doi: 10.1016/j.compbiomed.
2016.03.004.

[13] R. Fu, Y. Tian, T. Bao, Z. Meng, and P. Shi, “Improvement motor
imagery EEG classification based on regularized linear discriminant
analysis,” J. Med. Syst., vol. 43, no. 6, p. 169, Jun. 2019, doi: 10.
1007/s10916-019-1270-0.

[14] E. Dong, C. Li, L. Li, S. Du, A. N. Belkacem, and C. Chen, “Classi-
fication of multi-class motor imagery with a novel hierarchical SVM
algorithm for brain–computer interfaces,” Med. Biol. Eng. Comput.,
vol. 55, no. 10, pp. 1809–1818, Oct. 2017, doi: 10.1007/s11517-017-
1611-4.

[15] G. Pfurtscheller, C. Guger, and H. Ramoser, “EEG-based brain-computer
interface using subject-specific spatial filters,” in Engineering Appli-
cations of Bio-Inspired Artificial Neural Networks, vol. 1607, J. Mira
and J. V. Sánchez-Andrés, Eds. Berlin, Germany: Springer, 1999,
pp. 248–254.

[16] Q. Novi, C. Guan, T. H. Dat, and P. Xue, “Sub-band common spa-
tial pattern (SBCSP) for brain-computer interface,” in Proc. 3rd Int.
IEEE/EMBS Conf. Neural Eng., Kohala Coast, HI, USA, May 2007,
pp. 204–207, doi: 10.1109/CNE.2007.369647.

[17] K. K. Ang, Z. Y. Chin, H. Zhang, and C. Guan, “Filter bank common
spatial pattern (FBCSP) in brain-computer interface,” in Proc. IEEE
Int. Joint Conf. Neural Netw. (IEEE World Congr. Comput. Intell.),
Hong Kong, Jun. 2008, pp. 2390–2397, doi: 10.1109/IJCNN.2008.
4634130.

[18] K. P. Thomas, C. Guan, C. T. Lau, A. P. Vinod, and K. K. Ang,
“A new discriminative common spatial pattern method for motor imagery
brain–computer interfaces,” IEEE Trans. Biomed. Eng., vol. 56, no. 11,
pp. 2730–2733, Nov. 2009, doi: 10.1109/TBME.2009.2026181.

[19] W. Wu, X. Gao, and S. Gao, “One-versus-the-rest (OVR) algorithm:
An extension of common spatial Patterns(CSP) algorithm to multi-class
case,” in Proc. IEEE Eng. Med. Biol. 27th Annu. Conf., Shanghai, China,
Jan. 2006, pp. 2387–2390, doi: 10.1109/IEMBS.2005.1616947.

[20] X. Xie, Z. L. Yu, H. Lu, Z. Gu, and Y. Li, “Motor imagery classification
based on bilinear sub-manifold learning of symmetric positive-definite
matrices,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 6,
pp. 504–516, Jun. 2017, doi: 10.1109/TNSRE.2016.2587939.

[21] J. Luo, Z. Feng, and N. Lu, “Spatio-temporal discrepancy feature for
classification of motor imageries,” Biomed. Signal Process. Control,
vol. 47, pp. 137–144, Jan. 2019, doi: 10.1016/j.bspc.2018.07.003.

[22] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis,
“Deep learning for computer vision: A brief review,” Comput.
Intell. Neurosci., vol. 2018, pp. 1–13, Feb. 2018, doi: 10.1155/
2018/7068349.

[23] A. B. Nassif, I. Shahin, I. Attili, M. Azzeh, and K. Shaalan, “Speech
recognition using deep neural networks: A systematic review,” IEEE
Access, vol. 7, pp. 19143–19165, 2019, doi: 10.1109/ACCESS.2019.
2896880.

[24] Y. Li, X.-R. Zhang, B. Zhang, M.-Y. Lei, W.-G. Cui, and Y.-Z. Guo,
“A channel-projection mixed-scale convolutional neural network for
motor imagery EEG decoding,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 27, no. 6, pp. 1170–1180, Jun. 2019, doi: 10.1109/TNSRE.2019.
2915621.

[25] X. Zhao, H. Zhang, G. Zhu, F. You, S. Kuang, and L. Sun, “A multi-
branch 3D convolutional neural network for EEG-based motor imagery
classification,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 27, no. 10,
pp. 2164–2177, Oct. 2019, doi: 10.1109/TNSRE.2019.2938295.

[26] S. Sakhavi, C. Guan, and S. Yan, “Learning temporal information for
brain-computer interface using convolutional neural networks,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 29, no. 11, pp. 5619–5629,
Nov. 2018, doi: 10.1109/TNNLS.2018.2789927.

[27] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, “A discriminative feature
learning approach for deep face recognition,” in Computer Vision—
ECCV, vol. 9911, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds.
Cham, Switzerland: Springer, 2016, pp. 499–515.

[28] A. L. Guennec, S. Malinowski, and R. Tavenard, “Data augmentation
for time series classification using convolutional neural networks,” p. 9.

[29] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998, doi: 10.1109/5.726791.

[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017, doi: 10.1145/3065386.

[31] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014, arXiv:1409.1556. [Online].
Available: http://arxiv.org/abs/1409.1556

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 770–778, doi: 10.1109/
CVPR.2016.90.

[33] K. K. Ang, Z. Y. Chin, C. Wang, C. Guan, and H. Zhang, “Fil-
ter bank common spatial pattern algorithm on BCI competition IV
datasets 2a and 2b,” Frontiers Neurosci., vol. 6, p. 39, 2012, doi: 10.
3389/fnins.2012.00039.

[34] R. Leeb, C. Brunner, G. R. Muller-Putz, and A. Schlogl, “BCI compe-
tition 2008—Graz data set B,” p. 6.

[35] R. Leeb, F. Lee, C. Keinrath, R. Scherer, H. Bischof, and
G. Pfurtscheller, “Brain–computer communication: Motivation, aim, and
impact of exploring a virtual apartment,” IEEE Trans. Neural Syst. Reha-
bil. Eng., vol. 15, no. 4, pp. 473–482, Dec. 2007, doi: 10.1109/TNSRE.
2007.906956.

[36] Q. Zheng, F. Zhu, and P.-A. Heng, “Robust support matrix machine
for single trial EEG classification,” IEEE Trans. Neural Syst. Rehabil.
Eng., vol. 26, no. 3, pp. 551–562, Mar. 2018, doi: 10.1109/TNSRE.
2018.2794534.

[37] N. Lu, T. Li, X. Ren, and H. Miao, “A deep learning scheme for motor
imagery classification based on restricted Boltzmann machines,” IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 6, pp. 566–576, Jun. 2017,
doi: 10.1109/TNSRE.2016.2601240.

[38] L. van der Maaten and G. Hinton, “Visualizing Data using t-SNE,”
J. Mach. Learn. Res., pp. 2579–2605, 2008.

http://dx.doi.org/10.1109/5.939829
http://dx.doi.org/10.1109/TNSRE.2015.2439298
http://dx.doi.org/10.2340/16501977-0020
http://dx.doi.org/10.1109/CNE.2007.369647
http://dx.doi.org/10.1109/TBME.2009.2026181
http://dx.doi.org/10.1109/IEMBS.2005.1616947
http://dx.doi.org/10.1109/TNSRE.2016.2587939
http://dx.doi.org/10.1016/j.bspc.2018.07.003
http://dx.doi.org/10.1109/TNSRE.2019.2938295
http://dx.doi.org/10.1109/TNNLS.2018.2789927
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/TNSRE.2016.2601240
http://dx.doi.org/10.1109/TSMC.2015.2450680
http://dx.doi.org/10.1109/TSMC.2015.2450680
http://dx.doi.org/10.1038/nrneurol.2016.113
http://dx.doi.org/10.1038/nrneurol.2016.113
http://dx.doi.org/10.1162/NECO_a_00838
http://dx.doi.org/10.1162/NECO_a_00838
http://dx.doi.org/10.1109/TCDS.2018.2875052
http://dx.doi.org/10.1109/TCDS.2018.2875052
http://dx.doi.org/10.1016/j.nicl.2015.06.006
http://dx.doi.org/10.1016/j.nicl.2015.06.006
http://dx.doi.org/10.1016/j.neuropsychologia.2015.09.012
http://dx.doi.org/10.1016/j.neuropsychologia.2015.09.012
http://dx.doi.org/10.1016/j.compbiomed.2016.03.004
http://dx.doi.org/10.1016/j.compbiomed.2016.03.004
http://dx.doi.org/10.1007/s10916-019-1270-0
http://dx.doi.org/10.1007/s10916-019-1270-0
http://dx.doi.org/10.1007/s11517-017-1611-4
http://dx.doi.org/10.1007/s11517-017-1611-4
http://dx.doi.org/10.1109/IJCNN.2008.4634130
http://dx.doi.org/10.1109/IJCNN.2008.4634130
http://dx.doi.org/10.1155/2018/7068349
http://dx.doi.org/10.1155/2018/7068349
http://dx.doi.org/10.1109/ACCESS.2019.2896880
http://dx.doi.org/10.1109/ACCESS.2019.2896880
http://dx.doi.org/10.1109/TNSRE.2019.2915621
http://dx.doi.org/10.1109/TNSRE.2019.2915621
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.3389/fnins.2012.00039
http://dx.doi.org/10.3389/fnins.2012.00039
http://dx.doi.org/10.1109/TNSRE.2007.906956
http://dx.doi.org/10.1109/TNSRE.2007.906956
http://dx.doi.org/10.1109/TNSRE.2018.2794534
http://dx.doi.org/10.1109/TNSRE.2018.2794534


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


