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Abstract— Ataxic gait monitoring and assessment of
neurological disorders belong to important multidiscipli-
nary areas that are supported by digital signal processing
methods and machine learning tools. This paper presents
the possibility of using accelerometricdata to optimise deep
learning convolutional neural network systems to distin-
guish between ataxic and normal gait. The experimental
dataset includes 860 signal segments of 16 ataxic patients
and 19 individuals from the control set with the mean age of
38.6 and 39.6 years, respectively. The proposed methodol-
ogy is based upon the analysis of frequency components of
accelerometric signals simultaneously recorded at specific
body positions with a sampling frequency of 60 Hz. The deep
learning system uses all of the frequency components in a
range of 〈0, 30〉 Hz. Our classification results are compared
with those obtained by standard methods, which include
the support vector machine, Bayesian methods, and the
two-layer neural network with features estimated as the
relative power in selected frequency bands. Our results
show that the appropriate selection of sensor positions can
increase the accuracy from 81.2% for the foot position to
91.7% for the spine position. Combining the input data and
the deep learning methodology with five layers increased
the accuracy to 95.8%. Our methodology suggests that arti-
ficial intelligence methods and deep learning are efficient
methods in the assessment of motion disorders and they
have a wide range of further applications.

Index Terms— Accelerometric signal analysis, compu-
tational intelligence, deep learning, classification, motion
monitoring.
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I. INTRODUCTION

GAIT assessment and the study of motion
disorders [1]–[5] have a wide range of applications

in early diagnostics in neurology [6]–[8], physical therapy,
rehabilitation, and physical activity analysis. The ataxic gait
monitoring of patients with the multiple sclerosis forms a
very important problem in this area. The recent rapid progress
of sensor technology and wireless communication links allow
the use of different microelectromechanical sensor units
(MEMS), video, depth and thermal camera systems [9], [10],
and wearable devices [11]–[15] for the associated motion
analysis [16]–[19]. Specific mathematical methods are then
used to process data in the time, frequency, or scale domains
to perform human activity analysis.

This paper is devoted to the analysis of the gait patterns
[20] that are related to ataxia [12], [21]–[24] as a neurological
disorder associated with the loss of balance [6], [25]. The
present analysis is based on three-axis accelerometric data
of 16 ataxic patients and 19 healthy controls. All of the
datasets were acquired by a system of sensors located at differ-
ent positions [8] of the body, using a full-body motion capture
device (Perception Neuron [26]) to simultaneously record
accelerometric data [27] during the gait. Figure 1 presents an
example of some possible locations for accelerometers used
for data acquisition.

Computational intelligence and standard classification meth-
ods, including decision tree (DT), k-nearest neighbour (k-NN),
support vector machines (SVM), Bayesian methods, and the
two-layer neural network (NN) algorithms, are often used
in this area [28]. All these methods assume the appropriate
selection of features in the time, frequency and scale [29]
domains.

Another more complex approach is based on the use of arti-
ficial intelligence and deep neural networks (DNNs) [30]–[35]
that are applied to optimize multilayer mathematical systems
and their coefficients. These methods are often used in the
analysis of the body’s motion [36], for the natural kinematics
of human activity recognition [37]–[40], and for the evaluation
of motion disorders. They allow us to avoid many of the
problems related to feature selection and they are also used
for more effective decision making in some cases. Although
this complex approach [41], [42] to the construction of clas-
sification models can be very efficient, it needs sophisticated
software and powerful computational tools.
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Fig. 1. Principle of data processing presenting (a) accelerometric data
acquisition using a wearable sensor in the chosen (spine) area of the
body, (b) the time segment of the data module 5 s long, and (c) associated
spectral values in the range of 〈0, fs/2〉 Hz for the sampling frequency
fs = 60 Hz used as patterns for the deep learning or for the estimation
of features as the mean power in selected frequency ranges.

The goal of the present study is to contribute to the analysis
of accelerometric data for motion monitoring and to compare
the results of the deep learning with further classification
methods for the recognition of different motion patterns asso-
ciated with an ataxic gait. From the more general point of
view, it contributes to the classification of motion disorders in
neurology. It also allows us to improve the treatment outcomes
and to reduce the need for invasive procedures. the results
point to the use of artificial intelligence methods in human
activity monitoring and motion analysis in different areas.

II. METHODS

A. Data Acquisition

Accelerometric signals recorded during the gait allow the
detection of motion patterns that are important for recognition
of movement disorders. Figure 1 presents the principle of
simultaneous data acquisition by the Perception neuron system
[8], [26], [43] that uses 31 sensor units located at different
parts of the body. This system enables the simultaneous
recording of accelerometric data at different body positions
with a given sampling frequency. Subjects wearing this device
were asked to walk forth and back in the 20 m long hospital
corridor (with the smooth floor surface) according to their
individual physical capabilities but with the maximum walk
length limited to 500 m. Records were split into 5 s long
segments including straight gait and turns. Poor quality parts
(in case of sensor detachment or gait interruption) were
manually removed.

The statistics of all 35 individuals who participated at this
study are summarized in Table I, which includes facts about
two separate classes and a total number of Q = 860 segments:

1) Class CA - norm: the control set of 19 individuals (355
time windows 5 s long),

2) Class CB - ataxic patients with the diagnosis of multiple
sclerosis: 16 individuals (505 time windows 5 s long).

The diagnosis of these individuals was evaluated by two expe-
rienced neurologists according to their behaviour during the
gait. The project was approved by the Local Ethics Committee
in accordance with the 1964 Helsinki declaration.

TABLE I
STATISTICS OF EXPERIMENTS INCLUDING THE NUMBER OF

INDIVIDUALS, THEIR MEAN AGE AND STANDARD DEVIATION (STD),
AND NUMBER OF SEGMENTS BELONGING TO CLASS CA

(NORM) AND CB (ATAXIA)

Simultaneous recording of accelerometric data with a sam-
pling frequency of fs = 60 Hz was performed by the
perception neuron after its initial calibration. Each time frame
included accelerometric data in three directions for specific
body positions. Their modulus was then used for data analysis.

All of the data segments of accelerometric signals related
to both classes were randomly divided into the training and
testing sets with 90% and 10% of observations, respectively.
The selection was done randomly but with a balanced number
of segments belonging to classes CA and CB. A comparison
of classification accuracies was then evaluated for both the
training and testing sets.

Figure 2(a) presents spectral values of signals that belong
to class CA (norm) and class CB (ataxic diagnosis) with
their mean values. Figures 2(b,c) present the training and
testing sets that we used to classify and validate the results,
respectively.

B. Feature Extraction and Classification

Data processing included statistical analysis of individual
accelerometric records for each class (class CA: control set,
class CB: ataxic gait) recorded with a sampling frequency fs =
60 Hz. Accelerometric signal sets T = 5 s long were recorded
in three directions {[sx(n), sy(n), sz(n)]}N−1

n=0 and then used to
evaluate their modulus {x(n)}N−1

n=0 for N = T fs samples.
Each record was then transformed by the discrete Fourier
transform (DFT) into the frequency domain, which was used
to separate the signals into individual classes.

The signal features can be evaluated in both the time and
transform domains using either the discrete Fourier or wavelet
transforms [44]. In these domains, the time dependent features
can be evaluated and spectrograms or scalograms can be
used to optimise the structure and coefficients of complex
mathematical models for data classification. Our proposed
approach uses the simple discrete Fourier transform (DFT)
of each time segment {x(n)}N−1

n=0 N samples long, forming the
sequence {X (k)}N−1

k=0

X (k) =
N−1∑

n=0

x(n) exp (− j k n 2 π/N) (1)

for frequency values fk = k/N fs , k = 0, 1, · · · , N −1 which
appears to be sufficient in the given application.

The pattern matrix of Q columns that will be used for
the following classification was defined by the following two
methods:

• Deep learning: each column of the pattern matrix
included N/2 values of each spectral curve in the training
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Fig. 2. Selection of pattern values from segments belonging to class CA (norm) and class CB (ataxic diagnosis) presenting (a) spectral component
of individual segments and their mean values, (b) the training set, (c) the testing set randomly selected from all experiments, and (d) data processing
by the deep learning classification system with five layers using column vectors of spectral components for each segment in the pattern matrix and
corresponding probabilities of class belongings at the output.

set with a frequency resolution of fs/N Hz for the chosen
total number of N/2 frequency samples {X (k)}N/2−1

k=0 .
• Standard classification methods: each column of the pat-

tern matrix included two values of two specific features
that were associated with each sample in the training set,
which were estimated in the frequency domains.

Target values associated with each column of the pattern
matrix were defined by an experienced neurologist in both
cases (class CA-control set, class CB-ataxic gait).

The features that we used for standard classification are
based upon spectral components in the frequency domain,
including:

(i) The relative mean power in the range 〈 fa1, fa2〉,
(ii) The relative mean power in the range 〈 fa3, fa4〉.

Each of spectral features of a signal segment {x(n)}N−1
n=0

N samples long was evaluated using the discrete Fourier
transform in terms of the relative power P in the frequency
band 〈 fai , fa j 〉, as follows:

P =
∑

k∈� |X (k)|2
∑N/2

k= 0 |X (k)|2
(2)

where � is the set of indices for frequencies fk ∈ 〈 fai , fa j 〉.
Figure 3 presents the distribution of selected couples of

features that we used for the standard classification using the
relative mean power in the frequency range of 〈15, 30〉 Hz
versus the relative mean power in the frequency range of
〈3, 15〉 Hz with centers and c-multiples of standard deviations
of each class for c = 0.2, c = 0.5 and c = 1. The feature
clusters that are presented in Fig. 3(a) for the spine2 location
of the accelerometric sensor are much better separated then
those obtained from data recorded by accelerometers at the
right foot position that are presented in Fig. 3(b), which
corresponds with the study [8].

C. Movement Recognition

Pattern values in the feature matrix PR,Q and the associ-
ated target vector T1,Q were used to classify all of the Q
feature vectors or signal segments into separate categories

Fig. 3. The distribution of features using the relative mean power in the
frequency range of 〈15, 30〉 Hz versus the relative mean power in the
frequency range of 〈3, 15〉 Hz with centers and c-multiples of standard
deviations of each class for c = 0.2, c = 0.5, and c = 1 for (a) the spine2
position and (b) the right foot position of the accelerometric sensor.

using specific machine learning methods [45], [46]. The
results of the deep learning system were then compared with
those evaluated by classical systems, which included a SVM,
a Bayesian method, and a two-layer NN. Both the accuracies
and the cross-validation errors were then used to evaluate the
individual results.

In the deep learning strategy, the classification system
included the input layer with R = N/2 elements in the basic
case, bidirectional long short term memory (LSTM) [47], fully
connected layer, softmax layer and the classification layer [45],
[48] as presented in Fig. 2(d). Each input vector included all
R = N/2 values of the DFT defined by Eq. (1).

The two-layer NN system was defined by a simplified
system with coefficients W1S1,R, W2S2,S1, b1S1,1, b2S2,1.
Each input vector of feature matrix PR,Q included R = 2
values only evaluated as the mean power in two frequency
bands estimated by Eq. (2). The system evaluated output
values by the following relations:

A1S1,Q = f 1(W1S1,R PR,Q, b1S1,1) (3)

A2S2,Q = f 2(W2S2,S1 A1S1,Q, b2S2,1) (4)
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TABLE II
THE CONFUSION MATRIX WITH RESULTS OF THE TWO-CLASS

CLASSIFICATION SYSTEM FOR CLASS CA (NEGATIVE) AND CLASS

CB (POSITIVE) VALUES

For each column vector in the pattern matrix, the correspond-
ing target vector specifies the associated class as defined in
the learning stage.

The proposed models use the sigmoidal transfer function f 1
in the first layer and the probabilistic softmax transfer function
f 2 in the final layer. The values of the output layer, which
are based on Bayes’s theorem [49], provide the probabilities
of each class.

The performance of classification models is often eval-
uated by the log-loss function, which takes into account
the probability that is assigned to the estimation of the
target value. This can be evaluated by the following
relation

L L =− 1

Q

Q∑

i=1

(t (i) log(p(i))+(1 − t (i)) log(1 − p(i))) (5)

where t (i) stands for the binary output to be predicted,
p(i) stands for the probability assigned by the model, and
Q is the number of target values. The coefficients of the
classification system are then optimised during the machine
learning process to minimise the value of this criterion,
whose strength lies in the fact that the log-loss function
combines the correct and strong prediction. In addition, as a
measure of predictive inaccuracy, it should be as low as
possible.

The selection of the classification model is closely related to
the application area and the number of pattern values that are
used for system optimisation in the learning stage. In many
applications, simple classification systems provide sufficient
results. However, in the case of more complicated patterns,
DNNs with specific (convolutional) layers [45] are often used
for effective decision making with a sufficient generalisation
ability.

The receiver operating characteristic (ROC) curves were
used as an efficient tool to evaluate the classification results.
The selected classifier finds in the negative set (controls) and
positive set (atactic gait) the number of true-negative (TN),
false-positive (FP), true-positive (TP) and false-negative (FN)
experiments.

The associated performance metrics [50] can then be used
to evaluate:

Fig. 4. The evolution of the accuracy and the loss for the norm and
ataxic patients during the selected number of training epochs of the deep
learning system for (a) the spine2 position of the accelerometric sensor
with the final accuracy of 92.2% after 1400 learning epochs and (b) the
right foot position of the accelerometric sensor with a final accuracy of
84.3% after 6000 learning epochs.

• The true positive rate (sensitivity) and the true negative
rate (specificity)

T P R = T P

T P + F N
, T N R = T N

T N + F P
(6)

• The false negative rate and the false positive rate

F N R = F N

T P + F N
, F P R = F P

T N + F P
(7)

• The negative predictive value and the positive predictive
value (precision)

N PV = T N

T N + F N
, P PV = T P

T P + F P
(8)

• Accuracy

ACC = T P + T N

T P + T N + F P + F N
(9)

Cross-validation errors were then evaluated as a measure of
the generalization abilities of classification models using the
leave-one-out method.

III. RESULTS

The optimisation process was done for the DNN structure
presented in Fig. 2(d) in the incremental mode, which allowed
us to modify the structure and network coefficients during the
learning stage. This process aimed to optimise the network
to maximise the accuracy and to minimise the loss during
individual epochs. This optimisation was performed using the
mathematical and software environment of the Matlab2020b
system.

Figure 4 presents the evolution of the accuracy and the loss
during the selected number of incremental learning stages of
the deep learning system. This process enabled us to improve
the behaviour of the DNN that we used for classification
with the randomly selected training system initialisations.
Figure 4(a) presents results for the spine2 and Fig. 4(b) for the
right foot position of the accelerometric sensor with the final
accuracy of the training set 92.2% and 84.3%, respectively.
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TABLE III
ACCURACY (ACC) AND THE LOSS VALUE OF CLASSIFICATION INTO

TWO CLASSES BY THE DEEP LEARNING METHOD FOR DIFFERENT

POSITIONS OF ACCELEROMETRIC SENSORS WITH THEIR FINAL

VALUES AND THEIR MEAN OVER THE LAST FIVE LEARNING EPOCHS

OF THE TRAINING STAGE

TABLE IV
CONFUSION MATRIX OF THE CLASSIFICATION BY THE DEEP

LEARNING (DL) NEURAL NETWORK MODEL FOR THE TRAINING AND

TESTING SETS WITH TRUE POSITIVE VALUES ON THE MATRIX

DIAGONAL (IN THE BOLD), TRUE POSITIVE/NEGATIVE RATES TR(k ),
AND POSITIVE/NEGATIVE PREDICTION VALUES PV(k) FOR THE SPINE2

ACCELEROMETER POSITION

TABLE V
CONFUSION MATRIX OF THE CLASSIFICATION BY THE DEEP

LEARNING (DL) NEURAL NETWORK MODEL FOR THE TRAINING AND

TESTING SETS WITH TRUE POSITIVE VALUES ON THE MATRIX

DIAGONAL (IN THE BOLD), TRUE POSITIVE/NEGATIVE RATES TR(k),
AND POSITIVE/NEGATIVE PREDICTION VALUES PV(k) FOR THE RIGHT

FOOT ACCELEROMETER POSITION

Table III summarizes further results, which also include the
loss values.

Tables IV and V present associated confusion matrices of
the final deep learning model for two accelerometer positions,
and for both the training and testing sets. The precision of
the testing set is much better for the spine2 position (with the
accuracy of 91.7%) in comparison with the right foot sensor
(with the accuracy of 81.2%).

Figure 5 presents the results of the network with predicted
probabilities of classes CA and CB for the input test set of
signal segments that belong to class CA (norm) and class
CB (ataxia) with associated classification errors for accelerom-
eter located at the spine2 (in Figures 5(a,b)) and at the right
foot (in Figures 5(c,d)).

The classification results achieved for the DNNs were
compared with those evaluated by the SVM method, Bayesian

Fig. 5. Results of a network test presenting predicted probabilities of
classes CA and CB for the input test set of signal segments that belong
to class CA (norm) and class CB (ataxia) with associated classification
errors for an accelerometer located at position (a,b) spine2 and (c,d) right
foot.

TABLE VI
ACCURACY (ACC) AND CROSS-VALIDATION ERRORS (CV) FOR

CLASSIFICATION OF ACCELEROMETRIC DATA INTO TWO CLASSES BY

THE SVM, BAYESIAN METHOD, AND THE TWO-LAYER NN FOR THE

SPINE2 AND THE RIGHT FOOT SENSOR POSITIONS

method (Naïve Bayes’ Classifier), and the two layer NN
with the sigmoidal and softmax transfer functions. Table VI
presents the accuracy and cross validation errors for classi-
fication of data acquired at different positions of accelero-
metric sensors. The results of the classification for the SVM,
Bayesian method, and the two-layer NN are very close, with
a mean accuracy of 89.2% and 65.8% for the spine2 and
the right foot sensor position, respectively. The mean value
of cross-validation of 0.062 and 0.344 for the spine2 and
the right foot position, respectively, also point to completely
different features of these datasets and to the importance of
the appropriate selection of sensor positions to obtain reliable
classification results.

Figure 6 presents the classification into two classes (class
CA: control set, class CB: ataxic patients) for two features
evaluated as the relative power in two frequency bands using
selected classification methods with the accuracy (AC) and
the k-fold cross-validation (CV ) errors (for k = 10) with
visualisation of class boundaries.

The deep learning system for processing of accelerometric
data acquired either at the spine2 or the right foot position
had R = 150 input elements that represented 150 spectral
components evaluated for 5 s long data segments recorded
with the sampling frequency of 60 Hz. To obtain more
reliable results, these two records were combined into pattern
vectors of R = 300 elements. Figure 7(a) presents results
of the associated deep learning process of 7250 training
epochs and 25 incremental learning stages with a final training
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Fig. 6. Classification of accelerometric data for two features evaluated as the relative power in two frequency bands using: (a) the SVM method,
(b) Bayesian method, and (c) the two layer NN with accuracy (AC [%]) and cross-validation (CV) errors.

TABLE VII
CONFUSION MATRIX OF THE CLASSIFICATION BY THE DEEP

LEARNING (DL) NEURAL NETWORK MODEL FOR THE TRAINING AND

TESTING SETS WITH TRUE POSITIVE VALUES ON THE MATRIX

DIAGONAL (IN THE BOLD), TRUE POSITIVE/NEGATIVE RATES TR(k),
AND POSITIVE/NEGATIVE PREDICTION VALUES PV(k) FOR THE SPINE2
AND THE RIGHT FOOT POSITIONS OF THE ACCELEROMETRIC SENSOR

accuracy and loss of 95.8% and 0.09, respectively. The more
complex structure of input elements required additional com-
putational time but the accuracy and the loss was better than
for a single accelerometer only, as compared in Table III.

Table VII presents the associated confusion matrices of the
final neural network model for this complex model based upon
datasets from different sensors. The precision is higher than
94.4% in all cases.

Figures 7(b,c) present the predicted probabilities of classes
CA and CB for the input test set of signal segments that belong
to class CA (norm) and class CB (ataxia) with associated
classification errors. The total number of three segments out
of 72 from the testing set was misclassified. It is assumed that
this number can be decreased further with the use of additional
sensors, even though the learning process will be longer. The
advantage of deep learning is that it is not necessary to specify
any signal features in advance, which is compensated by very
extensive datasets and complex model structures.

IV. DISCUSSION

The results of the accelerometric data analysis correspond
with those published recently [6], [51], [52] and they point
to the possibility to use upper-body movements as a clinical
biomarker during the gait. These suggestions are based on

Fig. 7. Results of the deep learning for the spine2 and the right foot
position of the accelerometric sensor presenting (a) the evolution of the
accuracy and the loss for the norm and ataxic patients during 25 incre-
mental learning stages and 7250 training epochs with the final accuracy
and loss 95.8% and 0.09, respectively; and the network test presenting
predicted probabilities of (b) classes CA and (c) class CB for the input
test set of signal segments that belong to class CA (norm) and class
CB (ataxia) with associated classification errors.

the fact that ankle sensors record less involuntary movements
owing to their partial stabilization by the contact with the floor.
Sensors placed in the upper part of the body are therefore
more sensitive to separation of normal and ataxic gait. The
classification accuracy for sensors located on the left/right foot
of about 77% increased to more than 98% for sensors located
on the head, spine or shoulders [8]. These results allow the
replacement of the complex set of accelerometric sensors by
the one wearable sensor in the selected position only.

Accelerometric data processing forms a complementary
approach to traditional gait analysis that use stepping charac-
teristics [49], [53] to discriminate ataxic patients from controls.
Moreover, its accuracy is higher than that of different models
based on the selection of spatial domain features [54], [55]
with an accuracy between 70 and 80% in the early stage of
the disease [53], [56].

Ataxic gait monitoring and analysis is based upon reliable
data acqusition and their processing. The paper shows that
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accelerometric signals can be used to distinguish gait dis-
orders as an alternative to observation by camera systems.
Data processing is then related to deep learning and to
construction of feature vectors by complete signal segments
transformed into the frequency domain. This approach with
no specification of features enables the simplification of the
whole classification process and sufficient accuracy in many
applications.

V. CONCLUSION

This paper has presented the use of selected mathematical
methods for the classification of accelerometric data recorded
for 35 individuals of the similar age with normal or ataxic
gate. The whole database included 860 signal segments, each
of them was 5 seconds long and they were recorded with a
sampling frequency of 60 Hz. Both standard and deep learning
methods were used to distinguish gait features and to select
patients with neurological disorders.

Standard classification tools included the SVM, Bayesian
method and the two layer NN. The mean accuracy was 89.2%
and 65.8% for accelerometric data recorded at the spine2 and
the right foot position, respectively. The results obtained by
the complex multilayer neural network optimized by the deep
learning method provided a classification accuracy of 95.8%.

It was confirmed that accelerometric data and their math-
ematical processing in the frequency domain can be used to
classify signal segments into two categories, which represent
normal or ataxic gait. The present research has also con-
firmed that the selection of appropriate positions of sensors is
very important for reliable classification and better separation
abilities of motion patterns. In addition it was verified that
classification of motion patterns by accelerometers is affected
by two main factors: (i) optimal positioning of accelerometric
sensors, and (ii) appropriate selection of computational tools
and associated mathematical methodology.

The advantages of the deep learning system are that no
selection of features was necessary and that better classifi-
cation of segments was achieved. The advantage of standard
methods was in better possibilities for visualization, simpler
models, and faster optimization of its coefficients. Therefore,
a combination of both approaches to data processing can lead
to a deeper understanding of the physical behaviour of the
studied system.

This paper forms a multidisciplinary approach to neurologi-
cal data processing with the use of computational intelligence
to contribute to the more reliable diagnostics of neurological
disorders. It describes how wearable sensors and appropriate
data processing tools can be useful in the detection of motion
patterns and their analysis.

Our future work will be devoted to the verification of these
results using more extensive datasets. We will also further
study appropriate sensor positions in relation to different neu-
rological problems and specific motion patterns. In addition,
deep learning methods will be applied to datasets preprocessed
by further functional transforms. Thanks to the complicated
structures and incremental learning strategy of deep learning
systems, it will be possible to study changes in the system
structure and its coefficients during the learning process.

The general background of our research suggests that it
may be possible to use motion patterns classification in many
different areas using similar mathematical tools. For example,
feature-based methods can benefit from the visual assessment
of their distribution. Meanwhile, deep learning methods can be
used for the direct analysis of observed sequences, either in
the time or frequency domains, without any initial selection of
features but with specific demands for a much more complex
computational environment. In both cases, new machine learn-
ing strategies, and their implementation for neurological data
processing and physical activity monitoring will be studied.

Further research will be devoted to gait analysis by dif-
ferent sensors using accelerometers, gyrometers, and video
based systems [19], [49], [57] as well. Depth sensors and
RGB cameras are based upon processing of video sequences
acquired in the limited spatial area. Wearable sensors have no
such limits but their accuracy is affected by many additional
signal components. It seems that multivariable data processing,
including studies of simultaneously recorded EEG signals, and
their time synchronized processing can also contribute to better
diagnosis of neurological disorders in the clinical environment.
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