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Transfer Learning for Clinical Sleep Pose
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Abstract— Sleep quality is an important determinant of
human health and wellbeing. Novel technologies that can
quantify sleep quality at scale are required to enable the
diagnosis and epidemiology of poor sleep. One important
indicator of sleep quality is body posture. In this paper,
we present the design and implementation of a non-contact
sleep monitoring system that analyses body posture and
movement. Supervised machine learning strategies applied
to noncontact vision-based infrared camera data using a
transfer learning approach, successfully quantified sleep
poses of participants covered by a blanket. This repre-
sents the first occasion that such a machine learning
approach has been used to successfully detect four pre-
defined poses and the empty bed state during 8-10 hour
overnight sleep episodes representing a realistic domestic
sleep situation. The methodology was evaluated against
manually scored sleep poses and poses estimated using
clinical polysomnography measurement technology. In a
cohort of 12 healthy participants, we find that a ResNet-
152 pre-trained network achieved the best performance
compared with the standard de novo CNN network and other
pre-trained networks. The performance of our approach was
better than other video-based methods for sleep pose esti-
mation and produced higher performance compared to the
clinical standard for pose estimation using a polysomnogra-
phy position sensor. It can be concluded that infrared video
capture coupled with deep learning AI can be successfully
used to quantify sleep poses as well as the transitions
between poses in realistic nocturnal conditions, and that
this non-contact approach provides superior pose estima-
tion compared to currently accepted clinical methods.

Index Terms— Pose detection, convolutional neural net-
works (CNN), sleep, transfer learning, polysomnography
(PSG).

I. INTRODUCTION

SLEEP plays an important role in physical and mental
health and is a major determinant of well-being [1]. Sleep
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disorders are prevalent across the life-span, increase with
aging, and contribute to neurodegeneration [2]. Sleep disorders
are frequently under-diagnosed. Methodologies to quantify
sleep can be classified into two broad categories: in the first,
physiological variables are monitored during sleep and used
for sleep stage classification and sleep quality assessments
[3], [4]; the second category of methodologies examines
individuals’ external body characteristics during sleep, by pose
and movement detection [5], [6]. During a sleep episode,
periods of immobility are interspersed with movements that
may or may not lead to a change in body position or
sleep pose and may also be associated with brief awaken-
ings [7]. Body movements during sleep and brief awakenings
are directly related to the perceived quality and depth of
sleep [8].

Some sleep disorders, such as periodic limb movement
disorder or rapid eye movement (REM) sleep behavior dis-
order are characterized by major or minor-movements [9].
Sleep-disordered breathing is modulated by body position such
that it is more severe in the supine position [10].

Recent research has focused on non-contact methodologies
to measure external body characteristics to determine body
positions and detect movement during sleep [5], [6], [11].

Polysomnography (PSG) is the gold standard method
for assessing sleep and encompasses electroencephalography
(EEG), electrooculography (EOG), electromyography (EMG),
and other measurements such as breathing-related variables
and a body position signal. Although PSG offers vital infor-
mation, it is an expensive, inconvenient, and time-consuming
approach that requires many sensors to be attached to the
participant which may, in themselves, impact on sleep quality
of the participant under investigation. PSG recordings are
usually obtained in a dedicated sleep laboratory which is
a high-cost facility that may not be widely accessible. The
unfamiliar sleep laboratory environment may also reduce the
quality of sleep. These characteristics prevent PSG from being
used for long-term monitoring, at large scale, or in populations
that do not tolerate the attachment of sensors.

Body position is recorded in standard PSG by a position
sensor that is placed on the participants’ abdomen using a belt.
However, the current standard manual or automated scoring of
PSG does not include a comprehensive quantification of body
position during sleep [12].

Quantitative non-contact sleep monitoring methods repre-
sent a potential approach to address these issues and could
eventually be used to diagnose sleep disorders, improve
sleep-interventions, and thereby increase quality of life.
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Fig. 1. Schematic diagram of the proposed methodology. Starting
with 2D IR video camera data a block matching algorithm is used to
determine major and minor-movements, representing pose changes,
and intra-pose motion, respectively. The data are then transformed using
homography to a common viewpoint to assist machine learning across
different participants. Video data are hand-labeled for one of four poses
plus the empty bed state representing ground truth prior to machine
learning using fine-tuning of a pre-trained CNN network. Classification is
then assessed and compared to manual labels using a leave-one-out
cross-validation strategy. Performance is assessed by comparison to
manual labeling and pose estimation data obtained from standard clinical
PSG equipment using various metrics and a Markov Chain transition
analysis.

Non-invasive methods such as camera-based techniques rep-
resent a convenient, low-cost approach to monitoring sleep
behavior. Therefore, in this study, a camera-based method
using a single infrared (IR) camera is used to record sleep
behavior in a cohort of 12 healthy participants during
8-10 hour overnight sleep periods alongside PSG. The over-
all strategy of this work is illustrated in Fig. 1. Such
video data can be analyzed using a supervised deep learn-
ing (DL) methodology in specific convolutional neural net-
works (CNNs) to classify images of sleep behavior in a set
of accepted predefined sleep poses: supine, left, right, prone
as well as the null pose herein referred to as the ‘empty
bed’ state. Applications of CNNs conventionally encompass
image processing as well as techniques drawn from the com-
puter vision domains. For example, CNNs have successfully
demonstrated superior performance within the realm of image
classification when compared to humans [13], [14]. In this
paper, we focus on CNN algorithms for the classification of
five discrete states that represent four pre-defined sleep poses
and the empty bed state. Instead of developing the CNN
model de novo, a pre-trained CNN model can significantly
reduce the training time and requires significantly less training
data. In this paper, various CNN architectures pre-trained
on the Imagenet dataset [15] are used for the classification
task of sleep poses and compared to de novo performance
of a 4-layer dedicated CNN architecture. The output of the
best pre-trained networks for classifying the five states was
compared with the states detected using a standard position
sensor provided by a clinical PSG belt sensor. Post-acquisition
manual annotation of body position by visual inspection of
the video was considered as ground truth. In addition to the
detection of sleep poses we also compared the performance
of the various methodologies in quantifying the transitions
between poses by applying Markov chain analysis.

The major contributions of this paper are as follows: 1.
First demonstration of using a single 2D IR video cam-
era and CNN-DL for authentic clinical standard sleep-pose

classification: supine, left, right, and prone. This approach
is also capable of monitoring minor within-pose movements,
empty bed states, and other anomalous states. Moreover, this
is the first time that different pre-trained CNN networks have
been used for standard sleep-pose estimation, demonstrating
superior performance compared to a dedicated 4-layer de novo
network. 2. First demonstration of using a single 2D IR video
camera and CNN-DL for clinical standard sleep pose estima-
tion during realistic sleep conditions, robust to body occlusion
by blankets, variable illumination, and camera viewpoint. 3.
With an accuracy of 95.1% for pose classification during sleep,
this represents state-of-the-art performance for video-based
non-contact sleep pose estimation and this performance is
better than the clinical standard for pose estimation using a
PSG system (88.2%).

II. PRIOR WORK

There are several reports on non-contact methodologies for
estimating pose during sleep. These methodologies fall into
two main categories: instrumented beds (covering instrumen-
tation applied to the mattress, the bed frame, and the pillow)
and video-based monitoring approaches.

Within the first category, Hoque et al. suggested using
RFID (radio-frequency identification)-based 3-D accelerom-
eters tagged to the bed legs to monitor four different sleep
poses: supine, left, right, prone and, empty bed [6]. An average
accuracy of 90.0% was achieved for one subject over six
nights. Another study classified six common body poses using
a pressure-sensitive bedsheet utilizing high-resolution textile
pressure sensors [16]. Adami et al. [17] presented an approach
using load cells under the bed for unobtrusive continuous mon-
itoring of sleep patterns. The system was capable of classifying
sleep poses (supine, left, & right) with a correct classification
rate of 90.82 % and to analyse in-bed and out-of-bed events.
The study in [18] claimed that the morphology of the human
QRS (Q wave, R wave, and S wave of Electro-Cardio-Gram
(ECG)) ECG complex changes with different body poses.
Four body poses therefore using the ECG signal extracted
from the sensors attached to the conductive textile sheet
and an accuracy of 98.4% was obtained for simulated study
over 13 participants. Instrumented mattress-based methods are
effective at localising areas of increased pressure and can
automatically classify sleep poses, but the relatively high cost
of the pressure sensor array has prevented this solution from
achieving large-scale uptake. These sensors when attached to
either the mattress or pillow may also lead to discomfort and
thereby affect sleep quality [19].

Visual sensing through video cameras is one of the most
popular approaches for human pose estimation due to the
low cost of the technology and ease of maintenance. Such
approaches have usually harnessed the power of machine
learning to analyze the acquired video data. A neural-network
approach was employed [19] to recognize simulated body
movement and body poses (supine, left, right, & prone) using
the features extracted from the image sequences captured with
IR camera. In this study the participants were not covered by
a bed sheet and therefore has limited application in real-world
scenarios. Furthermore, the study did not provide any
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quantitative assessment, thus it is difficult to assess the perfor-
mance. In another approach, a sleep monitoring system was
developed to identify movement and six body poses during
sleep [5] using x, y and, z positions of 25 body joint skeleton
information from a Kinect depth camera. Whilst this is an
interesting approach to detect poses, no performance matrix
was provided. Furthermore, the system was not able to detect
skeleton information when participants were occluded by a
blanket and the method was unable to detect the prone posi-
tion. Recently, frequency-based feature selection was used to
extract sleep pose information from depth data in a simulated
sleep study in 14 participants [20]. The extracted features were
used to train a support vector machine (SVM) for the two-class
problem of supine and side-lying with and without the pres-
ence of a bed covering such as a blanket. Another study [21]
also solved a two-class problem of supine and side-lying
based on depth camera technology analysis. This study used
a cross-section method to localise participant’s head and
torso from the sequence of depth images. The algorithm was
evaluated in eight participants in a simulated sleep experiment
and achieved an accuracy of 97.0% for classifying two poses.
Liu and Ostadabbas [22] proposed a computer vision-based
method for predicting the sleep positions of hospital patients
using a standard video camera in a simulated scenario. The
histograms of oriented gradients (HOG) were used to extract
features from the images and were fed into the SVM clas-
sification to detect three sleep poses: supine, left, and right.
One of the major challenges reported by the authors was that
their method was ineffective for subjects covered by a sheet or
blanket. Also, regular video cameras cannot be applied in a low
light sleep environment. To address the problem of variations
in lighting, a more recent solution used a near-infrared modal-
ity [23]. The researchers fine-tuned the convolutional pose
machine (CPM) [24] as a pre-trained network for classification
of supine, left, and right. Although the CPM obtained good
performance for pose tracking (accuracy = 86.7%), the study
was performed on a mannequin which could not be considered
as representative of real human pose variation and also the
method assumes that there is no occlusion of the participant.
Recently, simultaneous analysis of respiration, head posture,
and body posture was presented [25]. In this study, a Kinect
motion sensor was utilized to obtain a skeleton description
of seven individuals simulating three body poses. Machine
learning techniques were then used for classification of supine,
left, and right sleep poses. However, the proposed study was
unable to distinguish between the prone and supine sleeping
pose. Also, it was not possible to use it for real sleep scenarios
when poses are occluded by a blanket. The current state-of-
the-art in performance for video-based pose classification is
described in [26]. The authors used a dimensional reduction
technique known as bed aligned maps from depth images.
They employed a CNN network for classifying sleep poses
including supine, left, right, and empty bed for 78 patients
and achieved an accuracy of 94.0%. This was a mixed dataset
with some patients with and some without occlusion which
will improve the classification accuracy as it is much easier
to classify any pose without a blanket. Moreover, the test
data were down-sampled from 65 million images to 1880 and

the prone position was also removed from the dataset for the
analysis.

Among these technologies, non-contact video-based meth-
ods have been demonstrated some of the greatest promise. One
of the limitations of prior work in this area is that they are
not validated against the gold standard or clinical methods.
Moreover, many of these prior approaches have either used
simulated sleep rather than real sleep or require subjects to
avoid any occlusion from bedding. Therefore, it is difficult
to evaluate how well such methods can operate in a routine
sleep situation as they do not represent the true behaviour
of human sleep patterns. These aspects constitute significant
limitations for the routine implementation of video monitoring
to measure body position and movements during sleep. This
paper addresses these limitations by using data captured from
actual sleep, with participants using a blanket bed covering
and comparing the approach to clinical standard methods and
gold-standard manual annotation of the video data.

III. MATERIALS AND METHODS

The study aimed to develop a system that can identify
sleep poses, and that is robust to bed covering and cam-
era orientation, and performs as well as the current clinical
standard. Data were collected during an overnight 8-10 hour
sleep study at the Surrey Sleep Research Centre (SSRC). The
study was designed to demonstrate the proof of concept of
measuring sleep poses using IR camera data as input to a
pose estimation method that is robust to bed covering and
orientation. The study was completed in 12 participants and
the performance of the new system was compared to body
position as detected by a body position sensor which is part
of the PSG set up. The performance was also compared to
manual scoring of body position by visual inspection of the
video-PSG. Manual scoring of the poses observed on video
playback was considered the ground truth.

A. Data Collection

Participants were recruited from the University of Surrey
and the general public.1 In total, 12 healthy participants (five
females and six males, aged between 18 and 65 years) were
screened for eligibility2 and were enrolled in the study at
SSRC. All participants provided written informed consent
before participation. Participants were fitted with the elec-
trodes and sensors of the SomnoHD PSG system (Som-
nomedics Gmbh, Germany). The SomnoHD is a wireless PSG
system approved and validated for sleep medicine and stores
data locally to a memory card and data are also sent to a
remote monitoring station. Somnomedics uses a 3-axis micro
electro mechanical system (MEMS) accelerometer to record
body poses during the sleep period with a sampling rate of
once every 30-seconds. The position sensor was attached to
the participants’ abdomen using a belt. The position sensor
captures four basic sleep poses: supine, left, right, & prone.

1This study, EGA application no ’UEC 2018 051 FEPS’ was submit-
ted to the University of Surrey Ethics Committee for ethical review on
30/05/2018 and granted a favourable ethical opinion on 29/06/2018.

2Inclusion: Healthy male and female; Aged over 18 years Exclusion:
Diagnosed with a previous sleep disorder; Known pregnant woman
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Fig. 2. Examples of poses in different participants: (a) supine, (b) left,
(c) right, (d) prone, & (e) empty bed. Note that on some occasions
some of the participants were observed sleeping only partly, and very
occasionally not at all, covered by the blanket.

In cases where the participants left the bedroom, for example
for a toilet break, the sensor scores the pose as an artifact
due to losing connection with the recording unit which was
located at the back of the bedroom. We assign these events to
the ‘empty bed’ state. Other sensors such as EEG, ECG, and
other physiological signals were also acquired for subsequent
analysis. In the standard PSG acquisition, IR video recording is
also included. The IR video was captured with a Somnomedics
active IR camera system. The camera was set to take images
at 25 frames per second (FPS) thus providing approximately
900,000 frames over the 8-10 hour recording period for each
participant. Participants slept in individual, sound attenuated,
temperature-controlled, windowless bedrooms at the dedicated
Sleep Laboratory within the University of Surrey’s Clinical
Research Facility. We recorded sleep for up to 10 hours
because longer than habitual sleep periods are characterized
by more awakenings and movements and thereby provide a
good model to test systems for monitoring of undisturbed and
disturbed sleep. Fig. 2 presents examples of each of the five
pre-defined states (four poses + empty bed) from different
participants. This illustrates the diversity of pose appearance
across the dataset during actual sleep, in contrast to the limited
variation seen in simulated approaches with mannequins or
compliant volunteers [27].

B. Frame Extraction & Movement Detection

For movement detection and position tracking, frames were
extracted from the raw video data. To make the analysis more
tractable and to reduce the computational cost of the algorithm
downsampling was undertaken. The temporal resolution of the
extracted frames was reduced by a factor two. Next frames
were classified into either no-movement, minor-movement,

or major-movement using a motion estimation and threshold-
ing algorithm based on block-matching and decision tree [28].
In this study body movements were grouped into two main
classes:

Class 1 (Major movement): Motion in the body’s torso such
as changing body pose; Getting in and out of the bed.

Class 2 (Minor movement): Any minor movement of a body
part such as re-positioning the arm or head but which did not
result in a change of overall pose.

C. Block Matching Algorithm

A block-matching algorithm was used as a motion esti-
mation algorithm to detect movement. Its ease of use
along with minimum computational costs made this approach
very effective. After applying the block-matching algorithm,
we employed a decision tree classifier to automatically predict
the threshold for static and dynamic states. To generate the
training samples of the decision tree, we selected 800 frames
from each participant which included all the aforementioned
motion classes, i.e. no-movements, minor-movement, and
major-movement. Two sets of thresholds were defined based
on visual inspection of the block-matching output for each
participant. One for distinguishing the static and dynamic
episodes. Another threshold was also set to divide movement
episodes into classes 1 and 2 i.e., minor-movement and major-
movement. Thus, using the two sets of thresholds, class
labels were derived. Any movement below threshold1 is a
no-movement and any movement between the two sets of
thresholds is a minor-movement and finally, any movement
greater than threshold2 considered to be major-movement.
The corresponding block-matching vector was used as input
variables for constructing the decision tree using the class
labels generated. A leave-one-subject-out cross-validation was
conducted to examine the misclassification rate (MCR) of
the decision tree classifier. The decision tree predicts the
thresholds with an averaged MCR error of 0.0046. Fig. 3
represents an example of a block-matching output and the
predicted thresholds through the decision tree algorithm for
one of the participants. In this study, the block-matching
algorithm combined with decision tree was used to automat-
ically detect movement. This resulted in every raw frame
of video data being tagged with a timestamp and labeled
in one of three classes: no-movement, minor-movement, and
major-movement. Therefore episodes of no-movement and
minor-movement carried the same state and those frames
involving major-movement represent transitions between sleep
posed.

D. Manual Scoring

Video recordings and sensor recordings were synchronised
so that timestamps for each pose could be identified and scored
in conjunction with the standard PSG-position sensor. Ground
truth labels for sleep pose, lighting and motion were annotated
for each frame using manual expert observation (Table I).
Label #6 was given to frames with major movement, indicating
a change of pose. Label #7 was assigned to frames where the
lights were on. Note, labels #6 and #7 were removed from the
dataset for the purposes of training and test. All other image
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Fig. 3. The blue graph represents the motion magnitude output of
the block-matching algorithm during a period which contains all three
events: no-movements, minor-movement, and major-movement. The red
graph shows the predicted thresholds using the decision tree algorithm
where 0 label corresponds to no-movement, 1 to minor-movement,
and 2 to major-movement frames. Examples of major-movement and
minor-movement are represented by red and green circles respectively.

TABLE I
GROUND TRUTH LABELS NUMBER (#) AND THEIR CORRESPONDING

STATUS & DETAILS USED FOR MANUAL ANNOTATION

frames containing no-movement or minor movement were
then manually labelled by selecting a small number of frames
from the period of consistent pose and to determine a label
for this consistent pose interval. No-movement frames were
assigned labels #1 to #5 (supine, left, right, prone, empty bed)
based on the specifications in Table II. Two dimensions were
considered in defining poses including the upper and lower
body. Regarding the frames containing minor movement, they
were labelled against #8, #9, #10, & #11 in case participants
were in supine, left, right, & prone respectively.

E. Train and Test

In order to prepare the data for training and testing of
the CNN, the raw data needed to be prepared. Most of the
frames consist of still images without any detectable changes
in pose. To train a robust CNN, we need to provide signif-
icant variation in the image content for a given class label.
Therefore, only a small selection of no-movement frames was
included in the training set, alongside any frame labeled with
minor-movement to maximise the variance across the training
data. Across all participants, states supine, left, right, & prone
were the most common positions. To have a balance in the
training set, data downsampling was applied to each state
based on its proportion. To this end, only the first 2, 3, 5,
& 8 frames of label #1, #2, #3, & #4 respectively were
considered. All frames with label #8, #9, #10, & #11 were

TABLE II
DEFINITIONS USED FOR MANUAL ANNOTATIONS OF THE FOUR BODY

POSITIONS (SUPINE (S), LEFT (L), RIGHT (R), PRONE (P)) AND

EMPTY BED (E) OF MANUAL ANNOTATION

assigned to state supine, left, right, & prone, respectively.
For the frames in the category of empty bed state, only the
first 10 frames of label #5 were selected in order to sample
different configuration of the pillow and bed. The leave-one-
subject-out cross-validation approach was used to generate
training and testing sets. Therefore, for training the network,
in this case, eleven (i.e. n-1) cases were used to train the
network and the remaining subject dataset was then used
for the test. For each participant on the test, all data, which
consist of approximately 90,000 frames for the entire night
of sleep, were included in the test data. The process was
repeated 12 times so that the network had been trained, using
transfer learning, on 12 separate occasions with each fold of
the training and validation data removing one participant that
was kept as a unique test case for that fold. At each fold
20% of the training data was used as validation data to set the
network’s parameters.

F. Image Transformation Using Homography

The camera position and orientation in each of the six
bedrooms was different and created a different view of the
bed. To prevent over-training and ensure the CNN trained on
the pose variations in image content rather than background
geometry, we aligned all images with different camera views to
the same reference using homography [29]. Each IR pixel from
the captured camera view was mapped into a virtual camera
view using homography as illustrated in Fig. 4. Homography
is a linear geometric transformation that connects two images
of the same plane. The relationship between two planes can
be represented by a 2D projective transformation, abbreviated
as H [29]:

Xt = H Xs (1)⎛
⎝

u
v
1

⎞
⎠ =

⎡
⎣

h11 h12 h13
h21 h22 h23
h31 h32 h33

⎤
⎦

⎛
⎝

x
y
1

⎞
⎠ (2)
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Fig. 4. The installed camera position at the sleep lab and the transformed
virtual camera view from the top generated through homography.

where Xt = [ut , vt , 1]T and Xs = [xs, ys, 1] are the homo-
geneous coordinates of a pair of corresponding points in the
target and source images, respectively.

G. Data Augmentation

Due to the small size of our training set with frames that
illustrated the prone and empty bed state, a data augmen-
tation method was applied to boost the multi-classification
performance and resolve the imbalanced class problem. Aug-
mentation was applied by randomly rotating input images in
the range [0, π/6] and randomly translating them horizontally
and vertically in the range [0, 45] pixels, to reduce sensitivity
to intra-pose orientation. This was applied to prone and
empty bed states for all participants increasing the training set
from 85083 to 89731 frames representing an increase of 6%.
Particularly, it boosted the number of prone and empty bed
states from 2068 to 6204 frames and from 256 to 512 frames
respectively. To avoid border effects, all the images were
cropped and scaled to 400 × 700 pixels after performing the
augmentation so that a bounding box was shaped around the
body shape and bed.

H. Supervised Classification Approach

1) De novo CNN: A 4-layer CNN network encompassing
four convolutional layers (C1-C4) with rectification (ReLU),
2 × 2 max pooling (MP1-MP3), and batch normalization,
followed by two fully connected layers and a softmax layer
was trained from scratch. For training the network a stochastic
gradient descent was used as an optimiser with hyperparame-
ters initially sampled from a Gaussian with zero bias and the
learning rate was set to 0.0001. The de novo CNN was trained
using a leave-one-subject-out methodology with 12-way cross-
validation.

2) Transfer Learning: Transfer learning is a machine learning
method that can transfer the knowledge learned from one
task in one field to a different task in another field. By the
use of transfer learning in the CNN model, we propose
that knowledge learned in identifying everyday objects within
ImageNet database [15] can be used in our task of sleep pose
classification. This also addresses the issue of limited training
images to train the CNN model. The CNN model is usually
divided into two parts: the feature extractor (representing shal-
lower layers: convolutional, pooling and rectification layers)
and the fully connected classifier layer. The shallower layers
of the pre-trained model learn the basic low-level general

TABLE III
PRE-TRAINED NETWORK SPECIFICATIONS

features of the images which may be applicable to a variety of
different vision tasks including pose estimation during sleep
while features from deeper layers (e.g. the fully connected
layer) are more abstract and task-specific. Therefore, in this
study, we retained all weights of convolutional layers and
reinitialise the weights of fully connected layers.

In this study AlexNet [30], VGG-16, VGG-19 [31],
GoogLeNet [32], ResNet-50, ResNet-101, & ResNet-152 [33]
have been explored to examine the variation in performance
of different CNN architectures for the transfer learning task
of sleep pose estimation. A summary of the specification
and description of these networks are presented in Table III.
These convolutional networks are pre-trained on the ImageNet
dataset (with more than 1.2 million RGB images) of natural
objects and the knowledge learned from ImageNet can be used
in our task. Fine-tuning begins with transferring the weights
from a pre-trained network to the network we wish to train.
For all the pre-trained networks, we have frozen the weights of
the all convolutional layers and fine-tuned the weights of the
last layers. The last layers including fully connected, softmax,
and classification layers of the network were removed and
replaced with new layers that are relevant to the current sleep
pose classification task. For example, a new fully connected
layer was added to the networks but with fewer parameters,
since we have fewer classes to classify, and initialized with
random weights, whereas the rest of the layers were initialized
using the weights of the pre-trained networks. During the
training process, we only trained the newly added layers with
our training data and set the gradient of other layers in the
back-propagation process to zero. The networks were trained
using a stochastic gradient descent optimisation using a batch
size of 32. The learning rate was also empirically set and
optimised to 0.0001

I. Quantifying Sleep Behavior Using State Transitions
From a Markov Chain

The transitions between sleep poses can be analyzed through
a Markov chain probability-based model which provides a
view of sleep dynamics. The Markov chain is a stochastic
process x = {x1, x2, · · · , xn} that undergoes the transition
from one to another state wherein for this work the states are
presented as sleep poses and empty bed: S = {ss , sl , sr , sp, se}
(where xi ∈ S) [34], [35]. Within this regime, we assume that
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Fig. 5. Generic five state Markov chain model and the corresponding
generic transition matrix.

the probability distribution of each xi depends only on the
value of the previous sample and not on the sequence of events
that preceded it xi−2, xi−3, etc. State transition probabilities
describe the probability of going from xi−1 to xi :

P(xi |xi−1, · · · , x1) = P(xi |xi−1) = Pi−1,i (3)

Fig. 5 represents the five states Markov chain with a corre-
sponding generic transition matrix. Tx illustrates the transition
probabilities between these five states. Each element of the
matrix represents a transition probability, for example, Ps,r :
the probability of transition from supine to right. While the
matrix diagonal shows the state maintenance probabilities,
where Pl,l describes the probability of remaining in the left
state. This approach has been utilized here as a way of
compactly characterizing individual sleep behavior, which can
then be used to globally compare the performance of the DL
video scoring sleep pose classification with that of standard
pose estimation, using manual scoring of the video as ground
truth.

IV. RESULTS & DISCUSSION

The evaluation of supervised classification of sleep poses in
our cohort of 12 participants during sleep is divided into three
sections: the first section includes analysis of the influence of
various CNN architectures for classification of five states using
data obtained from a simple 2D IR camera system; the second
section compares the performance of DL video scoring and
standard PSG-position sensor for body pose and empty bed
detection. This represents a direct comparison between pose
classification and ground truth in our cohort under the realistic
conditions of actual sleep and using a bed covering; the third
section evaluates these two approaches to pose classification
by comparing their performance in describing individual sleep
dynamics, using a Markov-based analysis. This is used to
consider the statistical significance of each particular pose
transition compared to the ground truth. In this study, body
position was manually annotated by visually inspecting the
video that was recorded as part of the PSG recording and
thereby considered ground truth for our analyses.

For the evaluation of the influence of various CNN
architectures on performance, the leave-one-subject-out
cross-validation was used to validate different pre-trained DL
architectures using a transfer learning paradigm, as well as a
4-layer de novo CNN network. To evaluate the performance of
the classifier five statistical measures were obtained: accuracy,
precision, recall, F1-score, and Cohen’s kappa.

Table IV illustrates the performance of AlexNet, VGG-16,
VGG-19, GoogLeNet, ResNet-50, ResNet-101, ResNet-152,

TABLE IV
STATISTICAL EVALUATION OF DIFFERENT PRE-TRAINED NETWORKS

AND 4-LAYER DE NOVO CNN NETWORK USING ACCURACY,
PRECISION, RECALL, F1SCORE, AND COHEN’S KAPPA (%) AS WELL

AS THEIR STANDARD DEVIATIONS (SD) OVER 12 PARTICIPANTS.
GOLD STANDARD IS THE MANUALLY SCORE VIDEO DATA. THE

PERFORMANCE OF THE STANDARD PSG-POSITION SENSOR

CURRENTLY ROUTINELY USED IN CLINICAL

PRACTICE IS ALSO PROVIDED

and a 4-layer de novo CNN network trained from scratch,
using the afore-mentioned statistical measures. The results in
this table show the average performance of 12 participants over
five sleep poses. Fine-tuning of all pre-trained networks yields
relatively better performance than the standard dedicated de
novo CNN network and other pre-trained networks. Fig. 6
presents a different, but more informative view of the accuracy
values for different pre-trained networks, because it also
visualises the depth and the number of network’s parameters.
The first thing that is very obvious in this graph is that VGG-16
& VGG-19, although widely used in various applications, are
by far the most expensive architecture regarding the number
of parameters. ResNet-50, ResNet-101, and ResNet-152 archi-
tectures in terms of the number of layers are isolated from
all other networks. However, the ResNet architecture starts to
outperform in accuracy by increasing the number of layers.
In Fig. 7 we illustrate these results by selecting accuracy
and Cohen’s Kappa statistics across the different networks
used for analysis. This shows that performance across all
networks, apart from GoogLeNet, is fairly similar, but that
with ResNet-152 there is a reduced spread in the results and
an incrementally better mean accuracy and Cohen’s kappa
compared to other networks. We, therefore, take ResNet-
152 as our preferred network architecture on which further
analyses are based.

In the second part, we focus on comparing the stan-
dard PSG-position sensor with DL video scoring. For this,
the temporal resolution of the body position sensor and the
video data need to be identical. The standard PSG-position
sensor scores the body position for every 30-second epoch
(i.e. two frames per minute (FPM)), while the manual video
scoring and camera-based algorithm annotated pose at 2 FPS.
Therefore, we downsampled the frames from 2 FPS to 2 FPM.
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Fig. 6. Accuracy of different pre-trained networks vs. number of layer
and number of parameters of each network. The size of the blobs is
proportional to the number of network parameters; a legend is reported
in the bottom right corner.

Fig. 7. Boxplot representing the performance of various pre-trained
networks: AlexNet, VGG-16, VGG-19, GoogLeNet, ResNet-50, ResNet-
101, & ResNet-152. The central line shows the median, the edges of
the box represent the 25th and 75th percentiles, the error bars represent
95% confidence intervals, and the additional black markers represent
statistical outliers for accuracy (red) and Cohen’s kappa (blue). The
ResNet-152 outperforms other networks in both comparisons.

Fig. 8. Comparison of Accuracy between standard PSG-position sensor
and DL video scoring (ResNet-152) for classification of sleep poses
in 12 participants.

Where there was any variation in pose estimation during the
downsampled period, a majority vote was used to describe the
pose during this interval. When compared to pose estimation

Fig. 9. Time course of poses as detected by Manual video scoring (top),
DL video scoring (middle) and standard PSG-position sensor (bottom)
during a nocturnal sleep episode in participant # 11. Red lines indicate
discrepancies with manual video scoring.

via standard PSG-position sensor, DL video scoring achieved
the highest performance on all metrics (accuracy = 95.1%,
F1score = 94.9%, kappa = 92.2%) compared with standard
PSG-position sensor (accuracy = 88.2%, F1score = 89.3%,
kappa = 81.8%).

In Fig. 8 we compare the performance of DL video scoring
using ResNet-152 against standard PSG-position sensor across
the different participants, using manual scoring as our ground
truth. It illustrates higher accuracy for all participants through
DL video scoring except for participant #6. By visual inspec-
tion, we realised that this participant covered their whole body
and face with a blanket during periods of the night which may
explain this deviation from the general trend. To illustrate the
comparison that is seen across the participant cohort in terms
of the temporal pose classification behavior time series, sleep
poses for a single typical participant quantified by manual
video scoring, DL video scoring, and standard PSG-position
sensor are shown in Fig. 9.

Markov chain transition matrices can also be used to quan-
tify the transitions between poses and was used here to provide
a visual global description of participants’ sleep behavior. The
five state Markov chain model for sleep poses is presented
in Fig. 10 for three participants with the highest, average,
and lowest number of state transitions, respectively. For this
section, manual video scoring is again considered as ground
truth against which performance of the two other methods
has been evaluated. Regarding participant #6, although the
standard PSG-position sensor performs better in predicting
the states than DL video scoring, it has missed the transition
between the left and right state. Similar to participant #6,
the standard PSG-position sensor could not detect some of
the state transitions for participant #4 as well. DL video
scoring performs similarly to the manual video scoring for the
state as well as transition detection for participant #3, while
PSG recognizes a false activation of prone state which led to
additional false transition.

Table V-VII summarises the average sleep pose transition
probability matrix derived from Markov analysis over 12 par-
ticipants for manual video scoring, DL video scoring, and the



298 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021

Fig. 10. Sleep pose transition diagram for three participants with the highest (participant 6), average (participant 4), and the lowest number of
transitions (participant 3). The left column corresponds to the models created by manual video scoring, the middle column corresponds to DL video
scoring, and the right column represents the models from the standard PSG-position sensor. The size of circles correspond to the probability of
maintaining a state (i.e., the time spent in the corresponding pose) and each pose is represented with a different colour (supine (S): red, left (L): blue,
right (R): green, prone (P): yellow, empty bed (E): purple); circle size is proportional to the state duration. Straight arrows correspond to transitions
between states; arrows colour are proportional to the transition probability colourmap, and the numbers on arrows represent the number of transitions
between two states.

TABLE V
AVERAGE PROBABILITY MATRIX & SD OF TRANSITIONS BETWEEN

STATES AND OF REMAINING IN A STATE FOR MANUAL SCORING

TABLE VI
AVERAGE PROBABILITY MATRIX & SD OF TRANSITIONS BETWEEN

STATES AND OF REMAINING IN A STATE FOR DL VIDEO SCORING

standard PSG-position sensor respectively. It revealed high
probabilities for staying in one pose (matrix diagonal) and
much lower probabilities of transition between different poses.
To evaluate the general performance of the transition matrix
for DL video scoring and standard PSG-position sensor against

TABLE VII
AVERAGE PROBABILITY MATRIX & SD OF TRANSITIONS BETWEEN

STATES AND OF REMAINING IN A STATE FOR STANDARD

PSG-POSITION SENSOR

ground truth, we take Root Mean Square Error (RMSE) as
evaluation indicators. The mean and SD of RMSE for DL
video scoring and standard PSG-position sensor amongst all
participants were 0.061±0.093 and 0.115±0.112 respectively
demonstrating the effectiveness of this approach compared to
standard clinical PSG methods.

V. CONCLUSION

In this work, we developed a non-contact video-based
algorithm to automatically monitor body poses and movement
during sleep. Nocturnal sleep was quantified in 12 healthy
participants by polysomnography. For the classification of five
sleep states (four sleep poses + empty bed) transfer learning
was introduced to fine-tune the pre-trained deep networks
to improve learning efficiency. Our transfer learning strategy
relied on keeping and freezing the convolutional layers and
updating the fully connected layers to recognize sleep poses.
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The performance of seven well-known pre-trained networks
including AlexNet, VGG-16, VGG-19, GoogLeNet, ResNet-
50, ResNet-101, &ResNet-152 has been explored. ResNet-
152 yielded the highest accuracy of 95.1% which was better
than all other pre-trained networks as well as a 4-layer de
novo CNN network. To benchmark the quality of the algo-
rithms performance was compared with the clinical standard
PSG-position sensor and validated against manual annotation.
We achieved superior performance using the proposed algo-
rithm compared with the standard PSG-position sensor for the
detection of sleep poses. Finally, the Markov-based transition
matrix was employed to evaluate the performance of the
algorithm in describing individual sleep dynamics. It can be
concluded that the developed method could be used to monitor
sleep positions overnight to assess sleep quality and irregular
sleeping patterns. In this study, we have not investigated the
impact of thicker blankets, but this is being investigated as
part of our on-going research. Future avenues of investigation
include investigating an intelligent non-contact monitoring
system using the same set-up for the home-environment. It also
include exploring the application of this approach across the
lifespan.
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