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Abstract— Individualized reference gait patterns for
lower limb rehabilitation robots can greatly improve the
effectiveness of rehabilitation. However, previous methods
can only generate customized gait patterns at several fixed
discrete walking speeds and generating gaits at continu-
ously varying speeds and stride lengths remains unsolved.
This work proposes an individualized gait pattern genera-
tion method based on a recurrent neural network (RNN),
which is proficient in series modeling. We collected the
largest gait data set of this kind, which consists of 4,425 gait
patterns from 137 subjects. Using this data set, we trained
an RNN to create a function mapping from body parameters
and gait parameters to a gait pattern. The experimental
results indicate that our model is able to generate gait
patterns at continuously varying walking speeds and stride
lengths while also reducing the errors in the ankle, knee,
and hip measurements by 12.83%, 20.95%, and 28.25%,
respectively, compared to previous state-of-the-art method.

Index Terms— Gait rehabilitation, gait generation,
recurrent neural network.

I. INTRODUCTION

ROBOTIC systems are gaining popularity as rehabilitation
tools for patients with impaired mobility; for instance,

patients with hemiplegia caused by a stroke [1] or paraplegia
caused by a spinal cord injury [2]. Numerous lower limb
rehabilitation robots (LLRRs), such as LOPES [3], ALEX [4],
WalkTrainer [5], Lokomat [6], and MINDWALKER [7] have
been reported to be clinically effective. These robots help
patients restore mobility by assisting them in performing
rehabilitation tasks such as walking and cycling intensively.
Many studies have proven that these repetitive activities are
helpful for the recovery of motor abilities [8], [9].
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Although much progress has been made in the field of
LLRRs, it remains a challenge to adapt LLRRs to different
users’ gait patterns. Research shows that each person has
a unique gait pattern [10], which is often highly related to
physical body parameters, such as height, weight, and gender,
and gait parameters, such as walking speed and stride length
[11], [12]. Vallery et al. have proved that customized gait
trajectories for rehabilitation robots can improve the efficiency
of the rehabilitation [13]. Many works attempt to generate a
customized gait for users of LLRRs based on body parameters
and target gait parameters; generally, they can be divided into
model-based methods and learning-based methods.

Model-based optimization methods attempt to model and
simulate human walking by hypothesizing a mathematical
human-skeleton model and cost functions for the human walk-
ing process; they calculate the optimized limb motions subject
to a minimum cost function value. In [14], Anderson et al.
modeled the human body as a 23 degrees-of-freedom (DOFs)
mechanical linkage driven by 54 muscles. The optimization
problem calculates the muscle forces and limb motions that
minimize metabolic energy. Xiang et al. created a skeletal
model that has 38 active DOFs, predicting human gait both
in a symmetric [15] and asymmetric way [16] by minimizing
the dynamic effort of walking while considering the associated
physical and kinematical constraints.

However, for all of these model-based methods [14]–[16],
whether the optimization result is reasonable depends on the
degree of similarity between the virtual human model and the
real human body, and regardless of how elaborate the model
is, it cannot fully describe the real human body. In addition,
the optimization processes are highly sensitive to the boundary
conditions and the mass-inertial parameters, and are prone to
numerical instabilities.

Recently, with the rapid development of machine learning
techniques, researchers have turned to learning-based methods,
considering gait generation as a regression problem [17]–[21].
Typically, these works collect a database of healthy people,
which contains the gait patterns of many subjects walking
in various states and their body parameters. Then they use a
regression model to establish a mapping relationship between
body parameters and gait patterns, and a personalized gait
pattern can be obtained when the patient’s body parameters
are fed into the trained regression model.

Artificial neural networks are great tools for regression.
Lim et al. used a Multi-Layer Perceptron Neural Network
(MLPNN) [17], Luu et al. used Generalized Regression Neural
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Networks (GRNNs) [19] to predict gait patterns from a
subject’s body and gait parameters. Gait patterns are repre-
sented by Fourier coefficients; in this way, the output dimen-
sions and required model complexity are reduced. However,
this inevitably introduces reconstruction errors.

Yun et al. [18], Wu et al. [20], and Hong et al. [21] utilized
Gaussian Process Regression (GPR) to create a mapping
from body parameters to gait patterns. Since their data sets
contain only gait patterns at discrete fixed values of walking
speeds, their performance is bound to be unsatisfactory when
self-paced walking is needed. In addition, Hong et al. [21]
utilized the Gaussian Process Dynamic Model (GPDM) as
a nonlinear dimensionality reduction technique to represent
gait patterns. Nevertheless, modeling gait patterns with GPDM
causes an error up to 20%.

Another research direction of learning-based gait generation
is to infer abnormal joint motion from normal joint motion.
Liu et al. [22] employed a Deep Spatial-Temporal Model to
generate the trajectory of an ill-functioning knee based on
other normal joint motions. Nevertheless, they did not consider
the body characteristics of the subject, which have a tremen-
dous influence on gait patterns. In addition, the movement of
the healthy side of patients with hemiplegia is affected by the
motion of the affected side [23], so if this method is to be
introduced into the recovery of hemiplegia gait, methods to
eliminate this effect need to be considered.

None of the previous methods are able to generate gait at
continuously varying walking speeds and stride lengths, which
limits the rehabilitation effect. Walking speed and stride length
are two significant gait parameters that greatly affect walking
kinematics and kinetics [11], [24]–[26]. Varying walking speed
is needed in different stages of gait rehabilitation. For example,
patients with poor motor ability need to walk at a slower
pace, while those in better condition need to walk at a faster
pace to achieve a better training effect. Stride length and
walking speed also have great effects on walking stability.
Espy et al. [25] showed that a smaller stride length improves
stability against falls, whereas a smaller walking speed does
the opposite. Thus, generating gait patterns at continuously
varying speeds and strides is important, but all previous
methods have failed to do so.

The major contribution of this paper is a learning-based
individualized gait generation method based on Recurrent
Neural Networks (RNNs) aimed at generating reference
motions for gait rehabilitation robots. We collected the largest
gait data set to the best of knowledge, which consists
of 4,425 gait patterns at self-designated walking speeds and
strides of 137 subjects and their body parameters. Then,
we created RNNs to map body parameters and gait parameters
to gait patterns. After the RNNs were trained using the data
set, they are able to generate reference gait patterns for a
specific subject at a specific walking speed and stride length.
Experimental results indicate that our model is able to generate
gait patterns with continuously varying walking speeds and
stride lengths, which all previous works failed to achieve.
We also offer a comparison of prediction errors between our
method and previous methods as a validation of the advantages
of our method.

Fig. 1. Definition of the collected body parameters. ASIS is an abbre-
viation for the anterior superior iliac spine. The knee landmark (KL) is
the point at which the rotation axis of the knee intersects with the outer
skin, and the ankle landmark (AL) is the point at which the rotation axis
of the ankle intersects with the outer skin. Thigh length is defined as
the distance between the ASIS and KL, and calf length is the distance
between the KL and AL.

TABLE I
MEAN AND STANDARD DEVIATION OF THE COLLECTED BODY

PARAMETERS FROM 137 EXPERIMENT PARTICIPANTS1

II. METHODOLOGY

A. Data Collection

We recruited 137 healthy adults (71 males and 66 females)
from South China University of Technology (SCUT) in
Guangzhou, China. None of them had any history of neuro-
logical injury or gait disorder. The experimental protocol was
approved by the Ethics Committee of the Guangzhou First
People’s Hospital Department. Informed consent was obtained
from all participants.

We measured 9 body parameters of each participant,
as Fig. 1 and Table I show, age and gender were recorded
through a questionnaire for each subject, and the other 7 body
parameters were estimated by the experiment operator. For
those parameters that exist on both the left and right sides
of the body, we took the mean values. Table I shows the
distribution of the collected body parameters.

Gait patterns were recorded with a Vicon motion capture
system (Fig. 2) with 10 infrared cameras and 4 force plates.
First, as shown in Fig. 3, we attached 16 reflective markers

1The values of gender are not applicable due to its discrete characteristic.
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Fig. 2. Vicon motion capture system, consisting of 10 infrared cameras and 4 force plates. The sampling rates of the cameras and force plates
are set to 250 Hz and 1000 Hz respectively. The cameras capture the movement of the markers that are used to reconstruct a lower limb model for
calculating joint kinematics; force plates record the reaction force between the foot and ground to measure the foot-ground contact timings.

Fig. 3. Reflective markers attached to the subject.

to the subject, the marker positions are described in refer-
ence [27]. Then, we asked the experiment participants to walk
20 times on a 10 meter walkway at self-paced walking speed
at five different speed levels. Meanwhile, the Vicon system
measured the trajectories of the 16 reflective markers, which
were used to calculate joint kinematics.

To keep the gait pattern natural, we did not ask subjects
to intentionally step their foot fully on the force plates, even
though data would be valid only in that case, so many collected
gait patterns are not valid since heel strike moments cannot
be measured.

Gait patterns are represented by lower limb joint trajecto-
ries: hip flexion/extension, knee flexion/extension, and ankle
flexion/extension in the sagittal plane. Since most of the reha-
bilitation robots only support these three freedom of motion
mentioned above, we decided to focus on these rotations in
the sagittal plane.

TABLE II
MEAN AND STANDARD DEVIATION OF THE CALCULATED GAIT

PARAMETERS FROM 4,425 COLLECTED GAIT PATTERNS

B. Preprocessing of Collected Data

To obtain a well-organized data set and to speed up neural
network training, raw gait data obtained from the Vicon system
and collected body parameters need to go through a series of
further processes.

1) Remove invalid gait patterns: Due to marker occlusion
or foot deviation from force plates, not every collected
gait pattern is valid, so we need to eliminate those data.

2) Low-pass filtering: To reduce noise data in the raw
signals, we apply a Butterworth low-pass filter whose
cut-off frequency is 6 Hz, as suggested by refer-
ences [19], [28]. Fig. 4 shows a comparison between
raw and filtered gait patterns; it is clear that the filtered
waveform is much smoother.

3) Split the gait sequence into gait cycles: Our goal is
to generate gait cycles, so we need to divide the gait
patterns into several gait cycles. The moment when the
heel strikes a force plate is used as the cut-off point to
divide gait cycles.

4) Calculate gait parameters: The walking speed and
stride length are calculated from gait data. The distri-
bution of walking speed and stride length is presented
in Table II.

5) Unify the gait cycle lengths: All gait cycles are nor-
malized to the same period length (80) using a time
resampling method; in other words, all gait cycles are
expressed as 80 discrete values.

6) Input normalization: To improve neural network per-
formance and to speed up the training process, all
input features (body parameters and gait parameters) are
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Fig. 4. Comparison between filtered and raw gait pattern. The curve of
hip is not shown here for the sake of brevity.

normalized to a range between 0 and 1 using a Min-Max
scaling method, which has wide application in machine
learning (Equation 1).

xk
scaled =

xk − min(xk)

max(xk)− min(xk)
(1)

where k is the index of input feature.
Finally, we obtained a well structured data set containing

4,425 valid gait cycles from 137 subjects.

Algorithm 1 Forward Propagation of the GRU
Require: Sequence {x1, x2, . . . , xn};
Ensure: Sequence { y1, y2, . . . , yn};

h0 ← 0
for t = 1 to n do

Update gate: zt = σ(W z xt + U z ht−1 + bz);
Reset gate: rt = σ(W r xt + Ur ht−1 + br );
Candidate activation: h̃t = tanh(W xt + rt � Uht−1);
Activation: ht = (1− zt )� ht−1 + zt � h̃t ;
Output: yt = tanh(V ht );

end for
where � represents element-wise production, W , U , and V
denote weights that are determined through optimization; b
denotes biases; σ(z) = 1

1+e−z is sigmoid activation function;

tanh(z) = ez−e−z

ez+e−z is tanh activation.

C. Gait Pattern Generation Model

We use a Gated Recurrent Unit (GRU)-based Recurrent
Neural Network (RNN) as our gait generator, which takes

Fig. 5. A simple RNN, before and after folding by time.

body parameters and gait parameters as input and outputs gait
patterns. RNNs are highly efficient neural networks designed
for modeling sequence data such as sentences, voices, and gait
patterns. RNNs are naturally more suitable for gait generation
tasks than traditional feed-forward neural networks and have
been widely used in gait classification [29], [30] and motion
forecasting [31], [32].

The term recurrent means that the output of the RNN at the
current time step will be part of the input to the next time step.
As shown in Fig. 5, the hidden state h of an RNN is updated
according to the current and previous states of the sequential
inputs. In this way, the RNN considers not only the current
input but also what it remembers about its previous elements.

Because traditional RNNs suffer from the gradient vanishing
problem, our RNN model uses the GRU [33], [34], a variant
of the traditional RNN, as its main structure. To restrain
gradient vanishing, the GRU is designed with a reset gate
that decides what to “forget” and an update gate that decides
what to “remember”. Alogorithm 1 demonstrates the forward
propagation of the GRU.

Fig. 6 is the architecture of our RNN model, which consists
of one GRU and 2 fully connected layers. For each time step
of total 80 steps, the same input (body parameters and gait
parameters) is passed to the RNN, which then outputs the
corresponding joint angle at the current time step. That is,
in Alogorithm 1, all the vectors in the input sequence are the
same, x1 = x2 = . . . = xn .

The RNN is trained with Adam, an algorithm for first-order
gradient-based optimization of stochastic objective func-
tions [35]. We created and verified the RNN using Keras [36].
The activation function of the GRU unit and the first
fully-connected layer is ReLU(Equation 2), the activation
function of the second fully-connected layer is linear activa-
tion(Equation 3); their definitions are shown below:

ReLU(x) =
{

x, if x ≥ 0;
0, otherwise.

(2)

linear(x) = x; (3)

The loss function of the RNN has two parts (Equation 4),
one is the mean squared error (Equation 5), the other is the
gap loss (Equation 6). The gap loss is designed to punish the
RNN for generating non-periodic gait patterns.

Loss = LossM S E + Lossgap (4)
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Fig. 6. The structure of the RNN. The model input vector includes
9 body parameters (Fig. 1) and 2 gait parameters (walking speed and
stride length). Neurons in the first fully connected layer use ReLU
activation(Equation 2); in the second layer, we apply linear activa-
tion(Equation 3). The loss function is mean squared error(Equation 5).
Note that for each time step, the same input vector is passed to the RNN.

LossM S E = 1

T M

M∑
i=1

� ŷi − yi�2 (5)

Lossgap = 1

M

M∑
i=1

∣∣ ŷi,t=1 − yi,t=80

∣∣ (6)

where M is the number of samples in a training batch, T is
the length of gait cycles (80 in specific), yi is the actual gait
pattern vector, and ŷi is the generated gait pattern vector.

III. RESULTS

A. Verification of Generated Gait Patterns

We present a case study to demonstrate the similarity
between the generated and actual gait patterns. We selected
two representative subjects, no. 1 and no. 2, and their body
parameters are shown in Fig. 7. Subject no. 1 has body para-
meters close to the mean values, whereas subject no. 2 deviates
greatly from the mean values. Fig. 8 illustrates the generated
and actual gait patterns of these subjects. Generally, the gen-
erated gait pattern of subject no. 1 is close to the actual gait;
in most of the time, the deviation between the generated and
actual gait is smaller than one std. However, the predicted
ankle and hip patterns of subject no. 2 occasionally deviate
from the actual patterns by more than one std, and we suppose
that this is because subject no. 2’s body parameters highly
deviate from the average values.

Fig. 7. The distribution of the body parameters of subject no. 1 (male)
and subject no. 2 (male). All body features are normalized, so 0 indicates
the mean value (μ), whereas 1 indicates one standard deviation (σ).

We verified the performance of our RNN model by compar-
ing it with previous methods which have the same objective
as ours [18], [19], all methods are applied to the same data
set. We used the leave-one-subject-out cross-validation method
to verify the performance of our RNN in gait generation, for
each iteration, we randomly selected the data of one subject
as the test set and the data of the remaining 136 subjects as
the training set. Then, we trained the models on the training
set and calculated the mean absolute deviation (MAD) of the
models on the test set. And finally, we took the average MAD
of these 137 iterations as the final result. The definition of
MAD is given by Equation 7:

M AD = 1

T N

N∑
i=1

� ŷi − yi�1 (7)

where N is the number of samples in the test set, T is the
length of gait cycles (80 in specific) and ŷi and yi are the
generated and actual gait patterns, respectively.

As shown in Fig. 9, our method achieved a significant
precision improvement on the quality of the generated gait
pattern. For the ankle, knee, and hip, our method has 12.83%,
20.95%, and 28.25% less MAD than the previous state-of-
the-art method GRNN [19], respectively. Table III provides
the details of the results.

B. Generating Gait Patterns at Continuously Varying
Walking Speeds and Stride Lengths

Our RNN model is able to generate gait patterns at contin-
uously varying walking speeds and stride lengths. To verify
these properties, we created a virtual subject whose body
parameters are set to the mean values of the 137 subjects,
and we then generated gait patterns for this virtual subject at
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Fig. 8. Generated gait pattern vs actual gait pattern.

TABLE III
MAD(STD) COMPARISON AMONG METHODS (IN DEGREES)

varying walking speeds and stride lengths. Fig. 10 shows the
generated patterns at a walking speed ranging from 0.85 m/s
to 1.05 m/s at an interval of 0.05 m/s, and the gait is updated
smoothly when increasing walking speed is input into the
gait generation model. The plots also illustrate that the peaks
of the hip and knee joint are increased when the walking

speed is increased, which agrees with a previous study of
gait kinematics [37]. Fig. 11 shows the generated gait patterns
at stride lengths ranging from 1.10 m to 1.30 m at intervals
of 0.05 m, and the connections between the gait patterns with
different stride lengths are smooth. These results indicated that
our method is able to generate gait patterns during self-paced
walking.

C. Periodicity of Generated Gait Patterns

The periodicity of the reference gait is very important for the
lower limb rehabilitation robot. If the generated gait patterns
are not periodic, for example, a significant gap between the
beginning and the end of the joint trajectory, this will lead
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Fig. 9. MAD (std) measured in different methods. GRNN and GPR are
proposed in [19] and [18] respectively.

Fig. 10. Cyclogram of gait patterns generated in the walking speed
range 0.85 to 1.05m/s at intervals of 0.05m/s.

TABLE IV
AVERAGE GAP COMPARISON (IN DEGREES)

to a jerky behavior of the rehabilitation robot. In order to
solve this problem, we added the gap loss (Equation 6) to the
loss function of the RNN. In this way, the RNN will try to
minimize the discontinuity between the initial state and the
ending state. After adding the gap loss, the discontinuity of
the generated gait is well inhibited. As shown in Fig. 12 and
Table IV, the average gap between the beginning and the end
of generated gait patterns dropped a lot after adding the gap
loss term to the loss function. The performance of our method

Fig. 11. Cyclogram of gait patterns generated in the stride length
range 1.10 to 1.30m at intervals of 0.05m.

Fig. 12. Average gap comparison.

on generating periodic gait patterns is close to the GRNN with
periodic basis functions.

IV. DISCUSSION

A. Mean Error of Generated Gait Pattern

What value of the prediction error would be low enough
for our intended application? Some gait rehabilitation robots
( [4], [5]) select reference gait from a large gait data set(e.g.
CGA database [28]). For example, selecting the gait patterns
of a healthy subject whose body parameters are close to the
patient as the reference gait pattern. Reference [19] reported
that the MAD values of the CGA method are 6.03, 9.28,
and 7.66 for ankle, knee, and hip respectively. The CGA
method has been widely tested that it can achieve effec-
tive rehabilitation training, thus it is proper to accept the
MAD values of the CGA method as the threshold values,
any value below this threshold would be enough for our
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intended application. It is obvious that our RNN model
produces much less error than the CGA method.

B. Walking Speed and Stride Length

In different stages of the gait rehabilitation process, the reha-
bilitation robotic system needs to control the walking of
patients at different speeds. For instance, in the early stages
of recovery, a lower walking speed is required since the motor
ability of the patient is still low. As the patient recovers their
walking ability, gait velocity should be increased for a better
rehabilitation effect. Nevertheless, many previous works only
produce gait at a single fixed speed [12], [18] or several
speeds [20], [21]. In contrast, our method is able to generate
gait patterns at continuously varying walking speeds (Fig. 10),
which provides a better rehabilitation effect since self-paced
walking is enabled.

Stride length is another important gait parameter.
Espy et al. [25] showed that a smaller stride increases walking
stability, which is beneficial to hemiplegia patients. Thus, it is
meaningful to plan gait at a smaller stride for rehabilitation
robots, and the experimental results demonstrated that our
method is capable of achieving that (Fig. 11).

C. Regression Model

The effectiveness of our approach can be attributed to
the high fitting efficiency of the RNN. Due to the high
dimensionality of gait data, it is difficult for regression models
with small complexity to fit gait patterns properly. Many
previous works have to use dimensionality reduction methods,
such as Fourier transforms [19] or GPDM [21] to encode gait
into a smaller dimension. However, dimensionality reduction
leads to unavoidable reconstruction errors. As a highly efficient
nonlinear fitting model, our RNN can fit the gait pattern
perfectly, and there is no need for dimension reduction. Also,
the RNNs are specially designed for modeling time series
such as gait patterns, this makes them extremely suitable for
the gait generation task. We believe this is the main reason
for the outstanding performance of our RNN. Unfortunately,
the dilemma is that the RNN often overfits, which requires
us to use a larger data set and take other actions to prevent
over-fitting.

D. Limitations

There are still some limitations in our work. First, the RNN
is a so-called “black box” model; although it achieved an
excellent fit, it cannot help us obtain any underlying relation
between body parameters and gait patterns. This applies to
all statistical methods including GPR and GRNN. The second
limitation is that the model does not handle the asymmetry
of the gait patterns and body parameters well. For those body
parameters that can be measured on both sides of the body,
such as thigh length and foot length, we take the average value.
We did not create different gaits for the left and right sides of
the lower limbs, and in doing so, we ignored the asymmetry
of the joint kinematics of both sides.

V. CONCLUSION

This paper presented a novel gait generation method based
on recurrent neural networks. The generated subject-specific
gait pattern can be used as a reference gait for lower limb
rehabilitation robots to provide a better rehabilitation effect.
We collected and cleaned the largest gait data set, which
contains 4,425 gait patterns from 137 subjects and the cor-
responding body parameters. Using this data set, we trained
a recurrent neural network as our gait generation model,
which takes the body parameters of a subject and desired
gait parameters as input and outputs a gait pattern that is
tailored to the subject. We evaluated our model using leave-
one-subject-out cross-validation. The results showed that our
method is able to generate subject-specific gait patterns at
self-paced walking speeds and strides with the lowest error
among all works.
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